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Motivation

 Hydro power is important to Norway.
1. Most of the energy production relies on hydropower.

2. Hydropower as a storable energy source, coupling with Renewable Energy Sources
(RES) to deal with uncertainty and variability.

e The long-term hydropower scheduling model is well-performed for
stochastically, dynamically scheduling problems, but is problematic with
computational time.

e Extreme inflows are important in the scheduling problem. How to reveal
potential risk by grouping inflow using machine learning (ML)?
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Overview of the methodology

Long-term hydropower scheduling — SFP*—> calculate water values

e Two-stage Stochastic programming using bender’s decomposition
e Receding horizon

e Qutcome is to simulate hydropower operation for each week considering the look-ahead
strategy—> representing the future by historical scenarios (50 climate years)

This approach (fundamental market model) fits modeling future hydropower scheduling
where we have a high share of RES

However, the number of scenarios has a high impact on computational time

We want to use the benefit of ML to reduce or cluster the scenarios
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Interaction between different models

Scenario Scenario Scenario Scenario Fan
clustering Blocks Candidates Problem

e \Water value

e Dispatching
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Self-Organizing-Map(SOM) methodology

e Why? :
e Total energy (vertically) and delay of the release (horizontal)

e Self-adaptive neural network

e Adjust weight for point clouds or time-series clouds to update the location of neural
e Avoid miss placing centroid compared with k-means
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Persistence homology (PH)
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Dynamic time warping o
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PH-DTW = SOM
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Case study

Hydro-thermal system

e 12 connected hydro plants
e 4 thermal plants

e 1 wind farm

e 1 transmission line

e 2 demands/consumers
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Clustering of Inflow scenarios
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Results

e Reservoirs level in aggregated level
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Future works

e Demonstrate the framework on a real case
e Sensitivity analysis

* Connect the inflow prediction algorithm to the scenario precursor and
weighted probability

* Increase the resolution of inflow data
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Other Presentations by Our Group

* Tuesday 13 September (P6- Inflow Modelling at 11:20) Forecasting
down-stream inflow discharge using time-series decomposition and
deep learning, Mojtaba Yousefi, Western Norway university of applied

science

* Tuesday 13 September (P6- Inflow Modelling at 12:20) A data-driven
short-term inflow forecasting model for hydropower scheduling-
Chinese use case, Xu Cheng, Smart Innovation Norway
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