

Norwegian University of Science and Technology

Profitability of power generation and energy storage in low-carbon electricity markets: A fundamental analysis

Magnus Korpås

Dept. of Electric Power Engineering NTNU, Norway. magnusk@ntnu.no

In collaboration with

Guillaume Tarel (Hydro Quebec), Hannele Holttinen (Recognis/VTT), Audun Botterud (MIT/ANL)

NTNU Norwegian University of Science and Technology

Common hypohesis:

- Traditional electricity markets fail under large-scale penetration of wind and solar
 - Wind and solar have zero marginal cost
- Prices collapse and costs are not recovered in the long run

Our first result:

- All plants recover their costs in (perfect) energy-only markets with wind and solar
 - Holds true in general without energy storage
 - Holds true under certain simplifications with energy storage
- Think twice before embarking on complete re-design of electricity markets

Next step:

 Solve the equilibrium problem for a system without thermal generation

Norwegian University of Science and Technology

Investments in VRE and Storage

- Investments in VRE and energy storage have been driven, in part, by incentive schemes and policies
 - Feed-in tariffs/premiums, auction schemes, carbon pricing, net metering (Europe)
 - Production and investment tax credits, renewable portfolio standards, net metering, energy storage mandates (United States)
- Rapid reduction in costs for VRE and Storage
- How do these technologies influence thermal generation investments and market equilibrium in a competitive market?
 - Schmalensee, MIT (2019)
 - Joskow, MIT (2019)

System Optimality and Market Equilibrium

- Most electricity markets are based on marginal cost pricing
- Gives the optimal solution for the system in theory
 - System demand is met at minimum costs
 - All GenCos (price-takers) maximize their profits and recover their costs (Green 2000, Stoft 2002)
- We assume energy-only markets
 - Scarcity pricing ensure cost recovery of peaker (and all other) plants
 - No explicity capacity remuneration mechansism considered
 - They do influence market outcomes and prices (Kwon et al. 2019)
 - No direct incentive schemes for VRE and EES
 - Competing on equal terms as other technologies

Justification for marginal pricing

 Minimization of fixed (F_i) and variable (v_j) costs

$$\min_{x_i, q_k(t), q_{e^-}(t)} C = \sum_i F_i x_i + \sum_j v_j \int_0^T q_j(t) \, dt$$

- One can show that at optimality for the system
 - Energy must be priced at the marginal cost
 - Except during shedding: then it must be VOLL
 - All individual generators are able to recover their cost (« zero » profit)
- Valid under perfect market conditions, including no barriers to exit and entry

M. Korpås, A. Botterud. *Optimality Conditions and Cost Recovery in Electricity Markets with Variable Renewable Energy and Energy Storage*, MIT CEEPR Working Paper 2020-005, March 2020.

Keeping fossil generators, adding renewables

- By using the <u>same formalism</u>, one can show that an optimal solution still exists, with pricing at the marginal cost **under** certain conditions
 - Fossil generators (with a marginal cost) are still present
 - RES can be curtailed
 - RES have to recover all its fixed costs through the market (no subsidies)
 - Simplified energy storage representation

M. Korpås, A. Botterud. *Optimality Conditions and Cost Recovery in Electricity Markets with Variable Renewable Energy and Energy Storage*, MIT CEEPR Working Paper 2020-005, March 2020.

Korpås M., Tarel G., Holttinen H., Botterud A. *Profitability of Power Plants and Energy Storage in Low-Carbon Electricity Markets: A Fundamental Analysis*. Chaire European electricity markets, Manuscript, June 2020.

Market Equilibrium with VRE

- Net demand = Demand VRE output
- Cheap VRE will give negative Net demand
- Optimal t_s and t_p are independent of VRE level (Cost recovery)
- Base duration t_b is determined from the VRE optimality condition
- VRE is the marginal generator for $t > t_b$
 - Price p = 0
- Introduction of (competitive) VRE tends to give
 - Less baseplant capacity and energy
 - Slightly more peaker capacity
 - Slightly more load shedding
 - Some VRE curtailment

Market equilibrium with EES

- EES is challenging to include in duration curve modelling due to the storage level constraint
- We can model power capacity x_e and round-trip efficiency η_e explicitly, but not kWh constraint
- We have derived optimality conditions for different (simplified) EES operating assumptions

EES for surplus VRE. «Unlimited storage»

- Optimality condition for EES determines the duration of maximum charging
 - $t \le t_b$: Price set by most expensive generator in operation.
 - $t_b < t < t_v$: Price set by the storage opportunity cost. It is the value of one more kWh stored energy. $p = \eta_e \cdot VC_b$
 - $t \ge t_v$: Price set by VRE. $p = v_v = 0$
- Introduction of EES creates a new price segment where EES is the marginal load
 - This increases the optimal amount of VRE in the market
 - Thermal is reduced further

0 all the time except during shedding (VOLL)

NU Norwegian University of Science and Technology

Result

 A mathematically acceptable solution (confirmed using a numerical model) is an equilibrium based on the following « prices » during charge and discharge periods

 time-dependent « prices » that depend on fixed costs

Result

- Valid in a case with storage expensive compared to wind generation (in \$/MW)
- There exists an equilibrium (cost recovery, minimized to cost) when using those « prices »

Does it make more than mathematical sense ?

- Energy-only market with no variable costs: generators could compete to offer the lowest possible prices →collapse of prices to 0 throughout the year
- Generators could be supervised to offer their energy at prices > 0
- The supervision of prices offered by generators already exists. For example, market monitoring is used by NY-ISO ("Power Mitigation Measures")
 - Economic withholding ("submitting Bids for an Electric Facility that are unjustifiably high")
 - The very existence of power mitigation measures is an interesting element

What Is Monitored?

- Participant Behavior
 - Economic Withholding
 - Physical Withholding
 - Uneconomic Production
 - Actions that Cause Inefficient Operational Impact
 - Installed Capacity (ICAP) Bidding and Scheduling
 - Generating Availability Data System (GADS)
 Reporting
 - Persistent Underforecasting by Load Serving Entities (LSEs)

NY-ISO. (2012). Market Monitoring & Market Power Mitigation. https://www.nyiso.com/documents/20142/1392242/Market M onitoring and Market Power Mitigation - Belinda Thornton -_____01-19-12.pdf/dcd6fa5c-79c3-d247-1a3c-602f48d96a83

Conclusions

- For a system with variable costs, ideal energy-only markets create prices that recovers all fixed costs
 - Holds for MW-constrained storage
 - Not solved (yet) for storage with MW and MWh constraints
- Next, we have shown a theoretical analysis for an energy-only market with no variable costs
- Results indicate that VRE generators and storage could recover their costs as long as:
 - They offer their energy hourly using « prices » dependent on their fixed costs
 - They are supervised for doing so