Representation of uncertainty in market models for renewable power systems

Mari Haugen^{1,2}, Hossein Farahmand¹, Stefan Jaehnert², Stein-Erik Fleten³

¹Department of Electric Power Engineering, NTNU ²Energy Systems, SINTEF Energy Research ³Department of Industrial Economics and Technology Management, NTNU

Hydropower Scheduling Conference 12th September 2022

🖸 NTNU

() SINTEF

• Operational planning of hydropower

Nyttbart tilsig per uke [GWh]

- Operational planning of hydropower
- The future is uncertain!

DNTNU **(5)** SINTEF

Nyttbart tilsig per uke [GWh]

- Operational planning of hydropower
- The future is uncertain!
- Increased need for decision support tools and increased levels of uncertainty
 - VRE integration
 - Market liberalization
 - Climate change
 - Changing regulations
 - Technology development
- Uncertainty is often overlooked or simplified in models

NTNU SINTEF

- Review the representation of uncertainty in applied power market models
 - Types
 - Timescales
 - Methods
- Overview of methods:
 - Stochastic optimization
 - Scenario generation and reduction
- Identifying critical uncertainties and suitable methods

Timescale of uncertainty

■NTNU ⑤ SINTEF

Timescale of uncertainty

NTNU SINTEF

Timescale of uncertainty

NTNU SINTEF

Uncertainty									
	«Known»	«Unknown»	«Unknowable»						
Examples	 Demand Weather-related power production 	Outages/availabilityFuel prices/shortageExtreme weather	Black swansTerror and warNatural disasters						
Appropriate representation	 Probabilistic representation Stochastic process 	Bounded sets/IntervalsFuzzy sets	Scenarios						
Suitable method	Stochastic programming	Robust optimizationFuzzy programming	??						

Based on Velasquez et al. (2016)

Uncertainty									
	«Known»	«Unknown»	«Unknowable»						
Examples	 Demand Weather-related power production 	Outages/availabilityFuel prices/shortageExtreme weather	Black swansTerror and warNatural disasters						
Appropriate representation	 Probabilistic representation Stochastic process 	Bounded sets/IntervalsFuzzy sets	Scenarios						
Suitable method	Stochastic programming	Robust optimizationFuzzy programming	??						

Based on Velasquez et al. (2016)

Uncertainty									
	«Known»	«Unknown»	«Unknowable»						
Examples	 Demand Weather-related power production 	Outages/availabilityFuel prices/shortageExtreme weather	Black swansTerror and warNatural disasters						
Appropriate representation	 Probabilistic representation Stochastic process 	Bounded sets/IntervalsFuzzy sets	Scenarios						
Suitable method	Stochastic programming	Robust optimizationFuzzy programming	??						

Based on Velasquez et al. (2016)

	«Known»	«Unknown»	«Unknowable»		
Examples	 Demand Weather-related power production 	Outages/availabilityFuel prices/shortageExtreme weather	Black swansTerror and warNatural disasters		
Appropriate representation	 Probabilistic representation Stochastic process 	Bounded sets/IntervalsFuzzy sets	Scenarios		
Suitable method	Stochastic programming	Robust optimizationFuzzy programming	??		
			Based on Velasquez et al. (2		

Optimization

(Agent-based) Simulation

Equilibrium

Based on Ventosa et al. (2005)

Optimization

- Deterministic -
- Multi-deterministic
 - Scenario analysis

Stochastic

- Stochastic programming
- Chance constrained
 programming
- Robust programming
- Distributionally robust optimization
- Interval programming
- Fuzzy programming

ONTNU **()** SINTEF

DNTNU **(5)** SINTEF

 \bullet

		Time		Uncertainty						
Name	Reference	horizon	Problem solved	Demand	Hydro Inflow	VRES	Fuel prices	Outages	Problem formulation	Solution method
EMPS	Wolfgang et al (2009)	Long	Hydrothermal coordination	х	Х	х	(X)		multi-stage stochastic linear programming problem	SDP
FanSi	Helset et al. (2007)	Long	Hydrothermal coordination	х	х	х	(X)		two-stage stochastic linear programming problem	Benders decomposition and rolling horizon
NEWAVE	Maceria et al. (2008).	Long	Hydrothermal coordination		Х				multi-stage stochastic linear programming problem	SDDP
WILMAR	Meibom et al. (2011)	Short	Unit commitment and dispatch	х		х		х	stochastic mixed integer linear optimization problem	Rolling horizon
E2M2	Sun et al. (2008) / Swider and Weber (2007)	Long	Unit commitment and generation expansion planning			х		х	stochastic mixed integer linear optimization problem	Representative days, recombining three
stELMOD	Abrell and Kunz (2015)	Short	Unit commitment and dispatch			Х			stochastic mixed integer linear optimization problem	Rolling horizon
VALORAGUA	Baptista and Tavares (1987)	Long	Hydrothermal coordination	х	Х			х	multi-stage stochastic linear programming problem	SDP
Based on URBS	Heitmann and Hamacher (2009)	Medium	Plan generation mix			х	Х		two-stage stochastic linear programming problem	Representative hours/days
SiSTEM	Mathieu et al. (2017)	Short	Unit commitment and optimal bidding in sequential markets	х		х		х	Optimization and agent-based simulation	Simulation (combining optimization and simulation)
Antares	Doquet et al. (2008), Alimou et al. (2020)	Long	System adequacy, unit commitment and dispatch	х	х	х		х	(Mixed integer) linear optimization problem	Monte-Carlo simulation and heuristics

.

		Time		Uncertainty						
Name	Reference	horizon	Problem solved	Demand	Hydro Inflow	VRES	Fuel prices	Outages	Problem formulation	Solution method
EMPS	Wolfgang et al (2009)	Long	Hydrothermal coordination	Х	Х	х	(X)		multi-stage stochastic linear programming problem	SDP
FanSi	Helset et al. (2007)	Long	Hydrothermal coordination	Х	Х	х	(X)		two-stage stochastic linear programming problem	Benders decomposition and rolling horizon
NEWAVE	Maceria et al. (2008).	Long	Hydrothermal coordination		Х				multi-stage stochastic linear programming problem	SDDP
WILMAR	Meibom et al. (2011)	Short	Unit commitment and dispatch	Х		х		х	stochastic mixed integer linear optimization problem	Rolling horizon
E2M2	Sun et al. (2008) / Swider and Weber (2007)	Long	Unit commitment and generation expansion planning			х		x	stochastic mixed integer linear optimization problem	Representative days, recombining three
stELMOD	Abrell and Kunz (2015)	Short	Unit commitment and dispatch			х			stochastic mixed integer linear optimization problem	Rolling horizon
VALORAGUA	Baptista and Tavares (1987)	Long	Hydrothermal coordination	х	х			х	multi-stage stochastic linear programming problem	SDP
Based on URBS	Heitmann and Hamacher (2009)	Medium	Plan generation mix			х	Х		two-stage stochastic linear programming problem	Representative hours/days
SiSTEM	Mathieu et al. (2017)	Short	Unit commitment and optimal bidding in sequential markets	х		х		х	Optimization and agent-based simulation	Simulation (combining optimization and simulation)
Antares	Doquet et al. (2008), Alimou et al. (2020)	Long	System adequacy, unit commitment and dispatch	х	х	х		х	(Mixed integer) linear optimization problem	Monte-Carlo simulation and heuristics

0 0000 0

		Time		Uncertainty						
Name	Reference	horizon	Problem solved	Demand	Hydro Inflow	VRES	Fuel prices	Outages	Problem formulation	Solution method
EMPS	Wolfgang et al (2009)	Long	Hydrothermal coordination	Х	Х	х	(X)		multi-stage stochastic linear programming problem	SDP
FanSi	Helset et al. (2007)	Long	Hydrothermal coordination	Х	х	Х	(X)		two-stage stochastic linear programming problem	Benders decomposition and rolling horizon
NEWAVE	Maceria et al. (2008).	Long	Hydrothermal coordination		Х				multi-stage stochastic linear programming problem	SDDP
WILMAR	Meibom et al. (2011)	Short	Unit commitment and dispatch	Х		Х		х	stochastic mixed integer linear optimization problem	Rolling horizon
E2M2	Sun et al. (2008) / Swider and Weber (2007)	Long	Unit commitment and generation expansion planning			х		х	stochastic mixed integer linear optimization problem	Representative days, recombining three
stELMOD	Abrell and Kunz (2015)	Short	Unit commitment and dispatch			Х			stochastic mixed integer linear optimization problem	Rolling horizon
VALORAGUA	Baptista and Tavares (1987)	Long	Hydrothermal coordination	х	Х			х	multi-stage stochastic linear programming problem	SDP
Based on URBS	Heitmann and Hamacher (2009)	Medium	Plan generation mix			х	Х		two-stage stochastic linear programming problem	Representative hours/days
SiSTEM	Mathieu et al. (2017)	Short	Unit commitment and optimal bidding in sequential markets	Х		х		х	Optimization and agent-based simulation	Simulation (combining optimization and simulation)
Antares	Doquet et al. (2008), Alimou et al. (2020)	Long	System adequacy, unit commitment and dispatch	х	х	х		х	(Mixed integer) linear optimization problem	Monte-Carlo simulation and heuristics

Uncertainty modelling

- Challenges:
 - Describing the uncertainties

- Challenges:
 - Describing the uncertainties
 - Making good scenarios

- Challenges:
 - Describing the uncertainties
 - Making good scenarios
 - Transparency $\leftarrow \rightarrow$ Complexity

- Challenges:
 - Describing the uncertainties
 - Making good scenarios
 - Transparency $\leftarrow \rightarrow$ Complexity
 - Computation time

- Stochastic optimization is the best choice!
- Wider range of uncertainties instead of more detail

- Stochastic optimization is the best choice!
- Wider range of uncertainties instead of more detail
- Identified research gap:

Models representing multiple dimensions of uncertainty, and that can be solved on a real-size system in a reasonable time

Main references

- D. Möst and D. Keles, "A survey of stochastic modelling approaches for liberalised electricity markets," *Eur. J. Oper. Res.*, vol. 207, no. 2, pp. 543–556, Dec. 2010
- A. Zakaria, F. B. Ismail, M. S. H. Lipu, and M. A. Hannan, "Uncertainty models for stochastic optimization in renewable energy applications," *Renew. Energy*, vol. 145, pp. 1543–1571, Jan. 2020
- B. C. R. Fernandez, F. Careri, K. Kavvadias, G. I. Hidalgo, A. Zucker, and E. Peteves, "Systematic mapping of power system models: Expert survey," *JRC Publications Repository*, Dec. 04, 2017
- C. Velasquez, D. Watts, H. Rudnick, and C. Bustos, "A Framework for Transmission Expansion Planning: A Complex Problem Clouded by Uncertainty," *IEEE Power Energy Mag.*, vol. 14, no. 4, pp. 20–29, Jul. 2016
- M. Ventosa, Á. Baíllo, A. Ramos, and M. Rivier, "Electricity market modeling trends," Energy Policy, vol. 33, no. 7, pp. 897–913, May 2005
- L. A. Roald, D. Pozo, A. Papavasiliou, D. K. Molzahn, J. Kazempour, and A. Conejo, "Power Systems Optimization under Uncertainty: A Review of Methods and Applications," *Electric Power Systems Research*, 2022
- I. J. Scott, P. M. S. Carvalho, A. Botterud, and C. A. Silva, "Long-term uncertainties in generation expansion planning: Implications for electricity market modelling and policy," *Energy*, vol. 227, 2021
- J. Haas *et al.*, "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems a review," *Renew. Sustain. Energy Rev.*, vol. 80, pp. 603–619, Dec. 2017

DNTNU **(5)** SINTEF

