

Deltares

A comparison of methods for the nonlinear optimization problem of hydropower generation in a reservoir cascade

Hydropower scheduling conference 2022 Oslo

Bernhard Becker (Deltares • RWTH Aachen University)

Dietlind Haf (LSBG Hamburg, formerly Deltares and RWTH Aachen University)

Teresa Piovesan (Deltares)

Reservoir cascade

- Three reservoirs, Inspired by the Grand River system (USA)
- Question: When to release how much?
 - o Reservoir inflow
 - o Load balance
 - o Flood control
 - o Generator limit
 - o Dam safety
 - o ...

Deltares

Bernhard Becker / HPSC 2022 Oslo

2

Equations

- Reservoir equation (linear)
- Turbine flow (power generation) and spill flow (no power generation) (linear)
- Relation between water level and volume (nonlinear)
- Power generation (nonlinear)
- Head difference (nonlinear)
- Tailwater level (linear)

$$\frac{\partial V}{\partial t} = Q_{\rm in} - Q_{\rm out}$$

$$Q_{\text{out}} = Q_{\text{turbine}} + Q_{\text{spill}}$$

$$h = f(V)$$
$$P = \Delta h \cdot Q_{\text{turbine}} \cdot \eta \cdot \rho \cdot g$$

$$\Delta h = h - h_{
m tailwater}$$

$$h_{\text{tailwater}} = \gamma(Q_{\text{out}})$$

Optimization problem

- Equality constraints:
 - o physical equations (previous slide)
- Bounds: physical limits:
 - o Minimum and maximum volume / pool elevation
 - o Maximum turbine admission
 - o Generator limits
 - o Spillway capacity
- Operational goals
 - o Generation targets (load)
 - o Operational range for water levels
 - Priorities (goal programming) and weights (Pareto optimization)
 - o Discharge targets

Deltares

4

(Nonlinear) reservoir optimization - linearization

- 1. Volumes and flows only
 - Very fast
 - Limited in equations to volumes and flows:
 - no hydropower, no water level
 - Compute hydropower in post-processing:
 - no optimization to maximize hydropower
 - no incentive to keep the water level high
- 2. Linear approximation
 - Compute linear although not linear
- 3. Piecewise-linear
 - Split nonlinear function into linear pieces
 - Linear behavior for sections limits inaccuracy
 - Quite fast

Deltares

• Adds Boolean logic to the optimization

Nonlinear reservoir optimization

- 4. Homotopy
 - Novel approach (Deltares, software: RTC-Tools)
 - Functional principle: "bend" the equations from linear towards nonlinear equations with the help of a θ between 0 and 1 during the optimization (iteration steps)
 - Path-stable solution, connected to a global optimum of the linear part of the problem

$$\begin{split} P_{\rm h} &= (1 - \theta) \cdot {\rm g} \cdot \rho \cdot \eta \cdot Q_{\rm turbine} \cdot \Delta \widetilde{H} & \text{linear part, } \Delta {\rm H} \text{ is constant} \\ &+ \theta \cdot ({\rm g} \cdot \rho \cdot \eta \cdot Q_{\rm turbine} \cdot \Delta {\rm H}) & \text{nonlinear part, } \Delta {\rm H} \text{ is variable} \end{split}$$

 $\Delta \widetilde{H} = \text{const}$

- 5. Heuristic approaches
 - Functional principle:
 - e.g. genetic algorithm inspired by natural selection
 - Can optimize anything
 - No guarantee for a global optimum
 - Result can depend on seeding
 - a little change in inflow can lead to a completely different result \rightarrow not suitable for operational use
 - Comparatively slow

The RTC-Tools model for the Grand River cascade

Operational goals

Variable	Goal		Priority	Weight
Н	Drawdown forebay < 0.0625 m/h	\rightarrow Bank stability	1	1.0
Qout	Qout,GL < 1 000 m ³ /s Qout,LH < 1 000 m ³ /s Qout,FG < 1 500 m ³ /s	→ Flood protection goal	2	1.0
V	$\begin{array}{l} 515\ 801\ 371\ m^3 < V_{GL} > 2\ 447\ 982\ 614\ m^3 \\ 250\ 765\ 250\ m^3 < V_{LH} < 548\ 049\ 719\ m^3 \\ 458\ 160\ 288\ m^3 < V_{FG} < 1\ 604\ 750\ 133\ m^3 \end{array}$	\rightarrow Water level range goals	3	1.0
V	1 639 356 717 m ³ < VGL< 1 949 341 935 m ³	\rightarrow Inner H goal for GL	4	1.0
Р	P = power request timeseries	→ Load request goal	5	1.0
Qspill	Minimize Qspill	ightarrow all water through the turbines	6	100.0
Qturb	Minimize change in Qturb	\rightarrow Smooth flow through turbines	6	1.0
Qspill	Minimize change in Qspill	\rightarrow Smooth flow through spillway	6	1.0

Deltares

lateral inflo

٩V

• 🗸 🔻

Reservoir outflow

Flood scenario: Lake Hudson

Load balance scenario: system-wide generation

obtained with different methods

23 $\Delta^{I}h_{piecewise linear}$ 22 $\Delta h_{homotopy}$ Δ H [m AoD] 21 Δh_{linear} 20 Domain border Δh (piecewise-linear) 19 18 17 16 15 Aug-08 Aug-10 Aug-06 Aug-07 Aug-09 Aug-11 Aug-12 Aug-13 Time 1200 Discharge [m³/s] Q_{turbine}, piecewise-linear Q_{turbine}, linear Q_{turbine, homotopy} 1000 800 600 400 200 0 Aug-09 Aug-08 Aug-06 Aug-07 Aug-10 Aug-11 Aug-12 Aug-13 Time 1.5×10° ∑ 10⁸ Jaw 5×10⁷ Power generation, re-calculated $\mathsf{P}_{\mathsf{linear}}$ homoton piecewise linea n Aug-08 Aug-10 Aug-06 Aug-07 Aug-09 Aug-11 Aug-12 Aug-13 Time

Optimization result for Lake Hudson

Deltares

Load balance scenario: release and volume (GL)

Technical remarks and conclusions

- Result quality
 - All three methods produce good results
 - Different accuracy for the physics:
 - Homotopy
 - shows most accurate results for Q ∆h in generation
 - Piecewise-linear
 - Represents interplay Q Δh to some extent
 - Tends to not leave Δh domains
 - Linear
 - No incentive to keep water level high, only Q determines the generation

- Usability, performance and math
 - o Linear
 - Fast
 - Proven technology, straight-forward
 - Easy to understand
 - Global optimum for a simplified problem
 - o Piecewise-linear
 - Adds mixed integer logic
 - comes with user choices and tuning:
 - domain borders
 - scaling of the optimization problem
 - More domains (more accuracy) means exponentially more computing time (not shown here, see Haf 2019 for more details)
 - Global optimum for a simplified problem
 - o Homotopy
 - Easy to apply from a modeler's perspective
 - Must be supported by the software (here: RTC-Tools)
 - Novel method, not generally tested for other equations
 - Path-stable only
 - Not (yet) compatible with mixed integer logic
 - Not (yet) compatible with ensemble optimization

RTC-Tools

- A toolbox for (real-time) control and optimization of water systems
- Websites
 - o https://www.deltares.nl/en/software/rtc-tools/
 - o https://oss.deltares.nl/web/rtc-tools

- Open source
- Modelica-library with various flow equations
- Comes as Python package
- Conflict resolution with goal programming and weighting factors
- Ensemble optimization
- Integrates in Delft-FEWS for operational use

RTC-Tools optimization results in Delft-FEWS TransAlta (van Loenen & Fru, CEATI conference 2021)

Nonlinearity #1: Storage geometry

$$\frac{\partial V}{\partial t} = Q_{\rm in} - Q_{\rm out}$$

- The reservoir equation is linear
- The water volume in a reservoir is an <u>increasing</u>, but generally <u>nonlinear</u> function of water level.
- **Solution**: preprocess water level goals to volume goals

Nonlinearity #2: Hydropower generation

• Instantaneous power from a hydroelectric turbine:

 $P = \eta \cdot \rho \cdot \mathbf{g} \cdot Q \cdot \Delta H.$

- Q and ΔH are optimization variables.
- *P* is a nonlinear, even <u>nonconvex</u>, function of *Q* and ΔH .
- Solution: Choose of optimization variables and goals such that the problem is <u>nonlinear</u> but <u>convex</u> formulations
 - Assume $\Delta h = \text{const}$ (no incentive to keep the water level high)
 - Maximize power as optimization goal

Hydropower production depends on $Q \bullet \Delta h$ (maximize is ok, but not load balance)

Deltares

Contact

 \times

- linkedin.com/company/deltares www.deltares.nl @deltares in info@deltares.nl O
 - @deltares facebook.com/deltaresNL f

