

Liquid hydrogen BLEVE modelling

SH2IFT project final workshop

Federico Ustolin

03.05.2022

Content

- 1. Introduction on BLEVE
- 2. Consequence analysis
 - 3.1 Before loss of containment (fire test)
 - 3.2 After loss of containment (BLEVE)
- 3. Discussion and conclusions

Boiling Liquid Expanding Vapour Explosion

BLEVE is a physical explosion might result from the catastrophic rupture of a tank containing a superheated liquid due to the rapid depressurization

Chain of events leading to the tank rupture

Valid for cryogenic substances

Hot liquid undergoing sudden depressurization in a tank (adapted from [Casal, 2008])

*Fireball if substance is flammable and ignition source is present 5

BMW safety programme

SH₂IFT LH₂ experiment has been delayed, therefore the results from the BMW tests were exploited.

Fire tests: double walled vessel filled at 50% fully engulfed in propane fire.

Bursting tank scenario test: ten vessels (0.120 m³) filled with different amount of LH2 ($1.8 \div 5.4 \text{ kg}$) were wrecked by means of cutting charges.

[Pehr K. Aspects of safety and acceptance of LH2 tank systems in passenger cars. Int J Hydrogen Energy 1996;21:387–95]

Figure 11: Bonfire test of a liquid hydrogen fuel tank (Source: BAM)

Development of a fireball. (a) Ignition; (b) 250 ms after ignition

Consequence analysis (CA)

Modelling of loss of integrity and containment of an LH2 tank

7

Fire test modelling

Focus: LH2 tank with multi-layer vacuum insulation (MLVI)

Credit: ESA-SJM Photography

<complex-block>MULTI LAYER INSULATING BLANKET

Source: chemfab.com

Lumped model - Methodology

Figure 1: Schematization of thermal nodes discretization. L = liquid phase, V = vapour phase, S = shell, I =insulant, $J = jacket, A_L = liquid wetted area, A_V = vapour$ wetted area, $A_{LV} = liquid-vapour$ interface area. SH₂IFT

	Equation $m_{cm} \frac{dT_L}{dt_L} = 4 \cdot h_{c} (T_L - T_L) + 4 \cdot h_{c} (T_L - T_L) + a_{c} + m_{c} (\hat{H}_{c} (T_L) - \hat{H}_{c} (T_L)) - m_{c} (\hat{H}_{c} (T_L) - \hat{H}_{c} (T_L))$	Eq.
Т	$m cm \frac{dT_L}{dT_L} = A h (T_L - T_L) + A h (T_L - T_L) + a + m (\hat{H}_L(T_L) - \hat{H}_L(T_L)) - m (\hat{H}_L(T_L) - \hat{H}_L(T_L))$	
	$\frac{m_{L}c_{PL}}{dt} = \frac{A_{L}n_{L}(r_{SL} - r_{L}) + A_{L}v_{R}v_{R}v_{R}v_{R}}{dt} = \frac{A_{L}n_{L}(r_{SL} - r_{L}) + A_{L}v_{R}v_{R}v_{R}v_{R}}{dt} = \frac{A_{L}n_{L}(r_{SL} - r_{L}) + A_{L}v_{R}v_{R}v_{R}v_{R}}{dt} = \frac{A_{L}n_{L}(r_{SL} - r_{L}) + A_{L}v_{R}v_{R}v_{R}v_{R}}{dt}$	(1)
L — . ML	$\frac{dm_L}{dt} = m_C - m_E$	(2)
T _V	$m_{V}cv_{V}\frac{dT_{V}}{dt} = A_{V}h_{V}(T_{SV} - T_{V}) - A_{LV}h_{LV}(T_{V} - T_{L}) - m_{E}\left(\widehat{H}_{V}(T_{L}) - \widehat{H}_{V}(T_{L})\right) + \frac{RT_{V}}{M}\frac{dm_{V}}{dt}$	(3)
v m _V	$\frac{dm_V}{dt} = -m_C + m_E - m_{PSV}$	(4)
S _L T _{SL}	$\delta_{S}\rho_{SL}cp_{SL}\frac{dT_{SL}}{dt} = -h_{L}(T_{SL} - T_{L}) + \frac{k_{S-I}}{\delta_{S-I}}(T_{IL} - T_{SL})$	(5)
S _V T _{SV}	$\delta_{S}\rho_{SV}cp_{SV}\frac{dT_{SV}}{dt} = -h_{V}(T_{SV}-T_{V}) - q_{R} + \frac{k_{S-I}}{\delta_{S-I}}(T_{IV}-T_{SV})$	(6)
	$\delta_I \rho_{IL} c p_{IL} \frac{dT_{IL}}{dt} = -\frac{k_{S-I}}{\delta_{S-I}} (T_{IL} - T_{SL}) + \frac{k_{I-J}}{\delta_{I-J}} (T_{JL} - T_{IL})$	(7)
I _V T _{IV}	$\delta_{I} \rho_{IV} c p_{IV} \frac{dT_{IV}}{dt} = -\frac{k_{S-I}}{\delta_{S-I}} (T_{IV} - T_{SV}) + \frac{k_{I-J}}{\delta_{I-J}} (T_{JV} - T_{IV})$	(8)
J _L T _{JL}	$\delta_J \rho_{JL} c p_{JL} \frac{dT_{JL}}{dt} = -\frac{k_{I-J}}{\delta_{I-J}} (T_{JL} - T_{IL}) + A_L q_{FIRE}$	(9)
$J_V = T_{JV}$	$\delta_J \rho_{JV} c p_{JV} \frac{dT_{JV}}{dt} = -\frac{k_{I-J}}{\delta_{I-J}} (T_{JV} - T_{IV}) + A_V q_{FIRE}$	(10)
- P	$\frac{dp}{dt} = \frac{\rho_V}{m_V} \left(\frac{P}{\rho_L} \frac{dm_L}{dt} + \frac{RT_V}{M} \frac{dm_V}{dt} + \frac{Rm_V}{M} \frac{dT_V}{dt} \right)$	(11)
- Level	$rac{dLevel}{dt} = rac{1}{ ho_L} \Big(rac{dV_L}{dLevel} \Big)^{-1} rac{dm_L}{dt}$	(12)

Table 1: Thermal and mass balances for the nodes depicted in Figure 1.

T = temperature, *m* = mass, *P* = pressure, *V_L* = liquid volume, *cp* = specific heat capacity at constant pressure, *cv* = specific heat capacity at constant volume, *h* = convective heat transfer coefficient, \hat{H} = specific enthalpy, *R* = *gas constant*, *M* = molecular weight, *m_E* = *evaporation rate*, *m_C* = condensation rate, *m_{PSV}* = PSV discharging rate, ρ = density, δ = thickness, *k* = thermal conductivity, *q* = heat flux

🔥 Fire test

[Scarponi GE, Landucci G, Ovidi F, Cozzani V. Lumped Model for the Assessment of the Thermal and Mechanical Response of LNG Tanks Exposed to Fire. Chem Eng Trans 2016;53:307–12]

Lumped model - Assumptions

Known: tank volume (0.120 m³), insulation thickness (35 mm)[•]

Test duration: 14 min (1st PRV opening after 6 min)

- PRV diameter (ISO 21013-3:2016): 9.6 mm
- MLVI thermal conductivity changed to 0.110 W m⁻¹ K⁻¹ at t=115 s
- > Tank dimensions:
 - o diameter: 460 mm
 - length: 722 mm

[Pehr, K., 1996. Experimental examinations on the worst-case behaviour of LH2/LNG tanks for passenger cars, in: Proceedings of the 11th World Hydrogen Energy Conference, Stuttgart 23–28 June 1996. Stuttgart, pp. 2169–87]

Lumped model - Results

- Tank pressure approximate well the measurements
- LH2 GH2 temp. do not agree with experimental (thermal nodes approach)

[Ustolin, F., Iannaccone, T., Cozzani, V., Jafarzadeh, S., Paltrinieri, N., 2021. Time to Failure Estimation of Cryogenic Liquefied Tanks Exposed to a Fire, in: 31st European Safety and Reliability Conference. pp. 935–942] ¹¹

CFD analysis - Methodology

- **Type**: 2D
- Software: Ansys Fluent
- Multiphase model: Volume of Fluid
- Turbulence model: k-omega SST

- Evaporation-condensation model: Lee (Hertz-Knudsen)
- Pressure-velocity coupling algorithm: SIMPLEC
- Thermodynamic properties: implemented from NIST database
- Symmetry: axial

CFD analysis - Results

Case A: 1.5 mW/m K Case B: 239.0 mW/m K Case C: 160.0 mW/m K Case D: 1.5 mW/m K if t<115 s; 160.0 mW/m K if t>115 s

CFD analysis - Results

Case D: 1.5 mW/m K if t<115 s; 160.0 mW/m K if t>115 s

Consequences of an LH₂ BLEVE

Two approaches were selected to carry out the BLEVE consequences analysis (blast wave):

- 1. Integral models
- Mechanical energy
- Overpressure and impulse

- 2. Numerical model (CFD)
- Blast wave (no combustion)

Integral models - Methodology

 BLEVE

Integral models - Assumptions

Ten LH2 vessels with different H2 content and initial pressure and temperatures were tested by BMW

- **Tank volume:** 0.120 m³
- Rupture pressure: 2, 4, 11 and 15 bar

Uncertainties

- Temperature (LH2, GH2): saturation
- Hydrogen mass: 1.8, 5.4 kg

Integral models - Results

TNT equivalent mass method

Integral models (combustion)

- **1. Mechanical energy**: real gas behaviour model (van den Bosch and Weterings, 2005) $E_{mech} = m_V (u_V - u_{V_{is}}) + m_L (u_L - u_{L_{is}})$
- **2.** Chemical energy (combustion process): methodology proposed by Molkov and Kashkarov (2015) for pressurized H2 tanks:

$$E_{ch} = \beta \cdot \left(\frac{r_{sh}}{r_b}\right)^3 \cdot LHV$$

$$\beta = 0.052$$
$$\alpha = 2.00$$

$$E_{TOT} = \alpha \cdot E_{mech} + E_{ch}$$

3. Scaling law: curves proposed by Baker (1983) to convert total energy [BLEVE] (mechanical + chemical) in overpressure

Integral models (combustion) - Results

TNO: most conservative model

Overestimation at low pressure (2, 4 bar)

CFD analysis

Main finding dynamic of pressure wave Influence on the overpressure and impulse of:

- hydrogen liquid and gaseous phase
- hydrogen mass
- initial temperature and pressure

Federico Ustolin^{a,b,*}, Ilias C. Tolias^a, Stella G. Giannissi^b, Alexandros G. Venetsanos^b, Nicola Paltrinieri^{a,c}

LH₂ BLEVE CFD analysis

Speculation: the difference in overpressure is caused by the

combustion (not simulated)

Discussion

Fire test

- material behaviour (e.g. tank insulation) exposed to fire must be investigated
- outdoor conditions in mediumscale tests are difficult to control and affect the simulations
- initial conditions (e.g. mass and temp.) affect the simulation outcomes

Temperatures measured in different positions on the outer LH2 tank shell during the SH2IFT fire test 23

Discussion

Catastrophic rupture (BLEVE)

- correlation between initial conditions (e.g. LH2 and GH2 mass, temperature) and blast wave yield
- combustion process should be considered to estimate the LH2 BLEVE pressure wave to avoid underpredictions

Conclusions

Despite the uncertainties and highlighted knowledge gap:

- ✓ developed models show good agreement with experiments
- ✓ physical, lumped and CFD models are good starting points for developing more accurate models
- ✓ Currently, the models are used to simulate the SH2IFT experiments

Thank you for your attention

