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P = Prup

BLEVE is a physical explosion might result from the catastrophic 

rupture of a tank containing a superheated liquid due to the rapid 

depressurization

Boiling Liquid Expanding Vapour Explosion

T > Tbp

P > Patm

Time

Valid for 
cryogenic 
substances

Chain of events leading to the tank rupture

T ≈ Tbp

P ≈ Patm

Intro
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Vapor

Liquid

Compressed
BLEVE

Hot liquid undergoing sudden depressurization in a tank 
(adapted from [Casal, 2008])

Time

metastable/unstable

Intro
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Consequences

*Fireball if substance is flammable and ignition source is present

*

Intro

BLEVE
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SH2IFT LH2 experiment has been delayed, 
therefore the results from the BMW tests were 
exploited.

Fire tests: double walled vessel filled at 50% fully 
engulfed in propane fire.

Bursting tank scenario test: ten vessels (0.120 m3) 
filled with different amount of LH2 (1.8 ÷ 5.4 kg) 
were wrecked by means of cutting charges.

BMW safety programme

Development of a fireball. (a) Ignition; (b) 250 ms after ignition 

A 7 Series BMW with hydrogen IC engine and LH2 storage

[Pehr K. Aspects of safety and acceptance of LH2 tank systems in 
passenger cars. Int J Hydrogen Energy 1996;21:387–95]Intro



7

Modelling of loss of integrity and containment of an LH2 tank

LH2 tank LH2 tankTime

Fire test:
• Pressure build up and 

temperature gradient in LH2 tank

Catastrophic rupture (BLEVE):
• Pressure wave
• Fragments
• Fireball

CA

How:
1. Lumped models
2. Numerical models (CFD)

How:
1. Engineering tools
2. Numerical models (CFD)

Consequence analysis (CA)
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Focus: LH2 tank with multi-layer vacuum insulation (MLVI)

Fire test modelling

Fire test

Credit: ESA-SJM Photography Source: chemfab.com
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Figure 1: Schematization of thermal nodes discretization. 

L = liquid phase, V = vapour phase, S = shell, I =

insulant, J = jacket, AL = liquid wetted area, AV = vapour

wetted area, ALV = liquid-vapour interface area.

[Scarponi GE, Landucci G, Ovidi F, Cozzani V. Lumped Model for the Assessment of the Thermal 
and Mechanical Response of LNG Tanks Exposed to Fire. Chem Eng Trans 2016;53:307–12]Fire test

Lumped model - Methodology
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Known: tank volume (0.120 m3), insulation thickness (35 mm)

Test duration: 14 min (1st PRV opening after 6 min)

➢ PRV diameter (ISO 21013-3:2016): 9.6 mm

Lumped model - Assumptions

Fire test

➢ MLVI thermal conductivity changed 
to 0.110 W m-1 K-1 at t=115 s

➢ Tank dimensions:

o diameter: 460 mm

o length: 722 mm

[Pehr, K., 1996. Experimental examinations on the worst-case behaviour of LH2/LNG tanks for passenger cars, in: 
Proceedings of the 11th World Hydrogen Energy Conference, Stuttgart 23–28 June 1996. Stuttgart, pp. 2169–87]
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Lumped model - Results

• Tank pressure approximate well the measurements
• LH2 GH2 temp. do not agree with experimental (thermal nodes approach)

Fire test
[Ustolin, F., Iannaccone, T., Cozzani, V., Jafarzadeh, S., Paltrinieri, N., 2021. Time to Failure Estimation of Cryogenic 
Liquefied Tanks Exposed to a Fire, in: 31st European Safety and Reliability Conference. pp. 935–942]
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• Type: 2D

• Software: Ansys Fluent

• Multiphase model: Volume of Fluid

• Turbulence model: k-omega SST

• Evaporation-condensation model: Lee (Hertz-Knudsen)

• Pressure-velocity coupling algorithm: SIMPLEC

• Thermodynamic properties: implemented from NIST database

• Symmetry: axial

CFD analysis - Methodology

Fire test
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CFD analysis - Results

Case A: 1.5 mW/m K

Case D: 1.5 mW/m K if t<115 s; 160.0 mW/m K if t>115 s

Case B: 239.0 mW/m K Case C: 160.0 mW/m K

Fire test
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CFD analysis - Results

Case D: 1.5 mW/m K if t<115 s; 160.0 mW/m K if t>115 s
Fire test



15

Two approaches were selected to carry out the BLEVE 
consequences analysis (blast wave): 

Consequences of an LH2 BLEVE

1. Integral models

• Mechanical energy
• Overpressure and 

impulse

2. Numerical model 
(CFD)

• Blast wave (no 
combustion)

BLEVE
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Integral models - Methodology
Methods: theoretical models for mechanical energy

Ideal gas 
behaviour 
models

Real gas 
behaviour 
models

BLEVE

Blast wave overpressure 

and impulse (far field):

➢ TNT equivalent mass 

➢ Sachs scaling law 

(Baker curves)

Safety distance → P < 1.35 kPa
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Ten LH2 vessels with different H2 content and initial pressure 
and temperatures were tested by BMW

• Tank volume: 0.120 m3

• Rupture pressure: 2, 4, 11 and 15 bar

Uncertainties 

• Temperature (LH2, GH2): saturation

• Hydrogen mass: 1.8, 5.4 kg

BLEVE

Integral models - Assumptions

[Pehr, K., 1996. Aspects of safety and acceptance of LH2 tank systems in passenger cars. Int. J. Hydrogen Energy 21, 387–395]
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Integral models - Results

BLEVE

TNT equivalent 
mass method
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Integral models (combustion)

1. Mechanical energy: real gas behaviour model (van den Bosch and 
Weterings, 2005) 

2. Chemical energy (combustion process): methodology proposed by 
Molkov and Kashkarov (2015) for pressurized H2 tanks:

3. Scaling law: curves proposed by Baker (1983) to convert total energy 
(mechanical + chemical) in overpressure

𝐸𝑐ℎ=𝛽∙
𝑟𝑠ℎ
𝑟𝑏

3

∙𝐿𝐻𝑉
𝛽 = 0.052

𝐸𝑇𝑂𝑇=α∙𝐸𝑚𝑒𝑐ℎ+𝐸𝑐ℎ

BLEVE

α = 2.00

𝐸𝑚𝑒𝑐ℎ
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Integral models (combustion) - Results

TNO: most conservative model

Overestimation at low pressure (2, 4 bar)BLEVE

Large overprediction 

at low pressure
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Main finding dynamic of pressure wave
Influence on the overpressure and impulse 
of:
• hydrogen liquid and gaseous phase
• hydrogen mass
• initial temperature and pressure

BLEVE

CFD analysis
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LH2 BLEVE CFD analysis

Speculation: the difference in overpressure is caused by the 

combustion (not simulated)

• BMW (considered)

o BMW (neglected)

+ CFD

BLEVE
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Discussion
Fire test 

➢ material behaviour (e.g. tank 
insulation) exposed to fire must be 
investigated

➢ outdoor conditions in medium-
scale tests are difficult to control 
and affect the simulations

➢ initial conditions (e.g. mass and 
temp.) affect the simulation 
outcomes 

Temperatures measured in different positions 
on the outer LH2 tank shell during the SH2IFT 
fire test
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Discussion
Catastrophic rupture (BLEVE)

➢ correlation between initial 
conditions (e.g. LH2 and GH2 
mass, temperature) and blast 
wave yield 

➢ combustion process should 
be considered to estimate 
the LH2 BLEVE pressure wave 
to avoid underpredictions

With combustion contribution

Without combustion contribution
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Conclusions
Despite the uncertainties and highlighted knowledge gap:

✓ developed models show good agreement with 
experiments

✓ physical, lumped and CFD models are good starting 
points for developing more accurate models

✓ Currently, the models are used to simulate the SH2IFT 
experiments
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Thank you for your attention

Contact:
federico.ustolin@ntnu.no

mailto:federico.ustolin@ntnu.no

