
The GPU as a high performance computational resource
Tor Dokken

SINTEF ICT, Applied Mathematics
P.O. Box 124 Blindern

0314 Oslo, Norway
Phone: +47 22 06 73 00

tor.dokken@sintef.no

Trond R. Hagen
SINTEF ICT, Applied Mathematics

P.O. Box 124 Blindern
0314 Oslo, Norway

Phone: +47 22 06 73 00

Trond.R.Hagen@sintef.no

Jon M. Hjelmervik
SINTEF ICT, Applied Mathematics

P.O. Box 124 Blindern
0314 Oslo, Norway

Phone: +47 22 06 73 00

Jon.A.Mikkelsen@sintef.no

ABSTRACT
With the introduction in 2003 of standard GPUs with 32 bit
floating point numbers and programmable Vertex and Fragment
processors, the processing power of the GPU was made available
to non-graphics applications. As the GPU is aimed at computer
graphics, the concepts in GPU-programming are based on
computer graphics terminology, and the strategies for
programming have to be based on the architecture of the graphics
pipeline. At SINTEF in Norway a 4-year strategic institute project
(2004-2007) "Graphics hardware as a high-end computational
resource", http://www.math.sintef.no/gpu/ aims at making GPUs
available as a computational resource both to academia and
industry. This paper addresses the challenges of GPU-
programming and results of the project's first year.

Categories and Subject Descriptors
G.4 MATHEMATICAL SOFTWARE, Parallel and vector
implementations.

General Terms
Algorithms, Performance, Experimentation.

Keywords
GPU, Geometry, Partial Differential Equations, Linear Algebra.

1. INTRODUCTION
Since the early days of computers, computer graphics has been
essential for presenting results from classes of computer
programs. While some applications only need a 3D graphics
pipeline using CPU resources, other applications demand a
hardware accelerated 3D graphics pipeline. During recent years
advanced 3D computer graphics has become an integral part of
many computer games, resulting in a huge market for affordable
3D graphics cards. Currently programmable 3D graphics cards for
PC are priced between 200€ and 500€.

Within SINTEF ICT, Department of Applied Mathematics, 3D
graphics has been an important support tool both for the activities
within Computer Aided Geometric Design (CAGD) and Partial

Differential Equations (PDEs). When GPUs with 32bit floating
point arithmetic and programmable vertex and fragments shaders
were introduced in 2003, we realized that these GPUs could be an
important computational resource both within CAGD and PDE
based simulation. Consequently we applied for support from the
Norwegian Research Council to investigate these possibilities.
Our application was successful, and we were awarded a Strategic
Research Project “Graphics hardware as a high-end comput-
ational resource”, http://www.math.sintef.no/gpu/, for the period
2004-2007.

The project is now into its second year, and our knowledge on
GPU programming is growing. As the origin of the GPU is from
computer graphics the terminology related to GPU programming
has a strong computer graphics flavor. One of the ambitions of the
project is to open GPU-programming to those outside of computer
graphics. We hope that this paper is a step in this direction.

We will tell more about the Norwegian GPU-project in Section 2,
and in Section 3 we address some of the project results. Then in
Section 4 we will look at the graphics pipeline and a give short
introduction to concepts and languages of GPU-programming.
Section 5 will look into fragment shaders and how these can be
used for executing “loop” structures. Some examples of GPU-
applications will be given in Section 6.

2. The Norwegian GPU-project
The total budget for the project is approximately 1.5 M€, with
63% allocated for work by SINTEF employed scientists, and 37%
allocated to two Ph.D. fellowships and one post doc. Fellowship.
The project is not a university type project, but a project
combining the industrial R&D institute SINTEF
http://www.sintef.no/ , and fellowship with an industrial focus.
The project focuses on algorithms for applications of GPUs within

• Image processing

• Partial differential equations

• Geometry

• Linear algebra
The project uses standard PCs with commercially available
graphics card. Until the middle of 2005 only PCs with AGP bus
have been used. However, we expect soon to start using PCs with
PCI-Express bus.

The project is coordinated by SINTEF ICT, Department of
Applied Mathematics. The other active partners in the project are:
The Center of Mathematics for Applications at the University of
Oslo, http://www.cma.uio.no/; Department of Mathematics, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SCCG’05, May 12–14, 2005, Budmerice, Slovakia.
Copyright Comenius University

University of Bergen, http://www.mi.uib.no/; and Narvik
University College, http://www.hin.no/.

3. Some project results
Most visible results so far have been in the solution of partial
differential equations using explicit finite difference and finite
volume schemes. For solving partial differential equations we
have observed a speedup by a factor between 10 and 20
compared to a Pentium 2.8 GHz CPU. For small computational
grids the overhead of initializing shaders reduce the speedup. The
speedup is best for shaders with many floating point instructions,
while for schemes with few such instructions prefetching of data
is not fast enough to ensure maximal use of the computational
power. The best speedup we have observed is for 2. and 3. order
high-resolution schemes solving the Euler equations that model
the dynamics of compressible gasses [2]. These shaders are
considerably more complex than shaders for standard 2. and 3.
order schemes.
We have started to look into how the GPU can be used as an
accelerator for CAD-type intersection algorithms, and filed a
patent related to this idea. For such algorithms the fragment
processor can be used for subdividing surfaces to create both a
tight hull containing the surface, and a tight hull containing the
normal field of the surface.

• The depth buffer of the GPU is a tool for testing for
overlap of the extent of the hulls containing the
surfaces. If no overlap, no intersection is possible.

• For two surfaces to intersect in a closed loop, the
normal fields have to overlap. Thus using the depth
buffer to determine that the hulls containing the normal
field of surfaces do not intersect will rule out the
possibility of closed intersection curves.

• As the shaders can also return information of the
regions of possible overlap, important information on
the actual intersection can be produced by the GPU.

The integration of shaders into intersection algorithms, and the
use of shaders for intersection algorithm acceleration, are
considerably more complex than the examples shaders for partial
differential equations in Sections 6.1 and 6.2.

4. Programmable part of graphics pipeline
The programmable parts of recent GPUs are:

• The vertex processor, executing programs denoted
vertex shaders.

• The fragment processor, executing programs denoted
fragment shaders.

The basic data types of both the vertex and the fragment shaders
are vectors of length 4 and 4x4 matrices. Standard operations on
these are efficiently implemented in hardware. Depending on the
actual GPU many other functions can also be hardware
accelerated, e.g., elementwise logarithmic and trigonometric
functions. A major advantage of such functions is that they allow
the GPU to do the operations in parallel since the result in one
vector element is independent of the other elements.

4.1 The fragment processor
Most of the programmable computational power of GPUs is
available in the fragment processor. As an example, the nVidia

GeForce 6 Series GPUs, introduced in 2004, have up to 16
pipelines in the fragment processor. Each pipeline can handle 4
floating point operations in parallel running at a maximum of
450MHz. Synthetic tests (programs made only for demonstrating
computational power) show a total computational power of up to
50GFlops for the GeForce 6 Series GPUs. It is expected that
performance will continue to grow by increasing the number of
pipelines as well as the clock frequency, both in GPUs from
nVidia and ATI.
Newer generations of GPUs support dynamic branching both in
the vertex and the fragment processors. The fragment pipelines
are handled synchronously in the GPU, and each of the fragment
pipelines execute the same path. In an “if/else structure” we risk
that both branches are executed, thus not saving execution time.
The handling of “if/else structures” depends on the actual GPU
and is expected to change with new generation of GPUs. The
potential bottlenecks introduced by dynamic branching can be
avoided as follows:

• In many cases it is possible to rewrite the shader to use
arithmetic expressions instead of dynamic branching.
This is especially advantageous when combined with
the vector capabilities of the GPU.

• Early exit. If parts of the shader can be omitted for
large parts of the primitive being rendered, dynamic
branching can increase the performance. An example is
that parts of light calculations that can be omitted for
points far from the light source.

These strategies are valid for the current GPU generation, and are
expected to be valid also in the future.

4.2 High level languages and drivers
On microprocessors high-level programs are compiled to
assembly code closely related to the instruction set of the
microprocessor family. The microprocessor instruction sets are
valid for many years, and can be extended in later generations of
the microprocessor family.
As current GPUs are targeted at the game market, the need for
backward compatibility is different from microprocessors. GPUs
are programmed in high level languages, and the GPU
manufacturers supply drivers that map the shader program on to
the hardware. Although assembly-like languages exist for families
of GPUs, they are not recommended to be used for programming.
However, they are a good tool for understanding how compiled
shader code is mapped onto hardware resources. By studying the
assembly-like code generated, one can learn how to restructure
the fragment shader for more optimized use of resources. As an
example we used this approach when more registers than
necessary were allocated in a fragment shader. By looking at the
assembly-like code, we realized how to restructure the fragment
shader to reduce the number of registers allocated.

4.2.1 GPU high level languages
GPUs have the great advantage that there exist widespread,
platform- and system-independent graphics APIs: DirectX and
OpenGL. The parallel processing power of GPUs can be accessed
via corresponding high-level languages:

• HLSL (DirectX High-Level Shading Language), a C-
like language that is part of DirectX from Microsoft,
developed in cooperation with nVidia. Microsoft is

actively influencing GPU development by requiring
new generations of GPUs to be compliant with the
evolution of DirectX [4].

• GLSL (OpenGL Shading Language), a C-like
programming language independent of the operating
system. The major GPU manufacturers make their
innovations available through OpenGL extensions to
promote their innovation for the OpenGL standard [5].

• Cg (C for graphics), another C-like high-level language
developed by nVidia for nVidia GPUs. Cg is
independent of the graphics API and the compiler can
generate shader code for OpenGL and DirectX. This
independence has allowed a faster introduction of
higher abstractions into the language [1].

4.3 Writing and debugging shaders
For those who have limited experience in graphics programming,
and limited knowledge on the graphics pipeline, writing shaders
just based on documentation is currently hard. Our experience is
that the best for novices is to start from an existing application
that is proved to be working correctly and gradually modify this
to reflect the functionality you want your new application to have.
When you detect that a modification to an existing shader does
not work as you expect, the reasons can be numerous:

• You may have an error in your algorithm.

• You may have misunderstood the functionality of the
shader language.

• The driver for the GPU is not working properly.
As there are currently no normal debuggers for GPUs, debugging
has to be based on reading values from textures and analyzing
these. To assist in such manual debugging, visualizing the values
of computational grid as an image can be helpful for
understanding the behavior of the shader. When the GPU is used
as a “for loop” accelerator as addressed in Section 5.4, comparing
the combined CPU/GPU implementation and a CPU-
implementation can be of great value, both for debugging and for
documenting the speedup achieved.

4.4 GPU-information on the web
To get an overview of what is going on world-wide with respect
to use of the GPU as a computational resource, consult the
GPGPU-pages, “General-Purpose Computation Using Graphics
Hardware”, http://www.gpgpu.org/.
When we started our GPU-project these pages were a central
resource for information. These web-pages are frequently
updated, thus the general evolution of GPU-technology and
applications can be followed in these pages.

5. Programming the fragment processor
To understand how the GPU can be used as a computational
resource we have to understand how the graphics pipeline is used
for rendering. A simplified view of the programmable graphics
pipeline is depicted in Figure 1:

• First geometry has to be defined and the information to
be processed attached to the geometry.

• The geometric structures are assembled to primitives.

• The primitives are then clipped to remove segments
outside of the defined window.

• The geometric primitives are then rasterized according
to the resolution of the render target. In this process the
fragments to be processed by the fragment processor are
produced.

• Then for each fragment the fragment shader can be
executed.

Another important key to GPU-programming is the role of
textures. A 2D texture is a rectangular image of dimension n×m.
The graphics card offers two ways of accessing a texture, either
through integer indices, or through normalized texture
coordinates. To avoid knowing the exact dimensions of a texture
when reading information from it, normalized floating point
texture coordinates [0,1]× [0,1] have been introduced.

Figure 1. A simplified view of the graphics pipeline and the programmable vertex and fragment processors. Note that for the
fragment processor to be triggered, all the steps before the fragment processor in the rendering pipeline have to be executed.

Thus a geometry has to “own” the data to be executed on the fragment processor; this geometry has to survive the clipping and
culling, and the rasterizer has to produce the proper fragments.

CPU

Application

Memory

Programable
Vertex

Processor

Primitive
Assembly Rasterize

Clip
Project

Viewport
Cull

Geometry

Programable
Fragment
Processor

Render
Target
(Frame
Buffer)

Texture memory Render to texture

Copy to vertex array

Fixed part of pipeline

Textures

5.1 Default geometry and texture coordinates
To be able to execute programs aiming at non graphical problems
on the fragment processor, default geometry and the visible region
of space has to be defined. The following definition ensures that
we get a match between the (x,y) coordinates of the geometry and
the texture coordinates:

• Define a rectangle (quad) with corners: (0,0,0), (1,0,0),
(1,1,0) and (0,1,0).

• Assign texture coordinates (0,0), (1,0), (1,1) and (0,1) to
the respective corners of the rectangle.

• Define the viewing volume such that the quad defined
above just covers the window.

This will trigger execution of all fragments with texture
coordinates in the rectangle (0,0), (1,0), (1,1) and (0,1).
 The above set up is conceptually the simplest. However, a
rectangle is broken into two triangles in the primitive assembly
process. The GPU prefetches texture data close to the current
fragment to speedup fragment execution. However, this prefetch
is only from the current geometric primitive being rasterized. If
the fragment program needs to access texture data not associated
with the current primitive, the program will have to wait for the
texture data to be fetched. By making one larger triangle this
latency can be avoided:

• Define a triangle with corners: (0,0,0), (2,0,0), (0,2,0).

• Assign texture coordinates (0,0), (2,0), and (0,2) to the
respective corners of the triangle.

• Define the viewing volume as described above, as in the
case of the quad.

The fragments outside the rectangle (0,0), (1,0), (1,1) and (0,1)
will be removed by the clipping stage in the graphics pipeline,
and the fragments in the rectangle (0,0), (1,0), (1,1) and (0,1) will
be executed by the fragment processor. The fragment processing
will be associated with only one triangle and not two triangles.
This setup makes textures and render targets similar to two
dimensional arrays, however, with the exception that the elements
are addressed with floating point numbers in the interval [0,1]
rather than integer indices.

5.2 Fragment shaders: Read only from
textures; Write only to render targets
On current GPUs fragment programs can read from many textures
but write to currently a maximum of 4 render targets. As we do
not have control of the sequence in which the fragments are
executed, algorithms such as Gaussian elimination, which
combine writing of temporary data and final data in one matrix,
will have to be executed as a series of shaders. The execution of a
new shader is initiated by a new default geometry followed by the
other steps in the graphics pipeline. At the start of 2005 typically
8000 shaders a second can be executed on a GeForce Series 6
GPU.
To benefit from the computing power of the fragment shader each
fragment shader has to be computational heavy, or else the
initiation process for new shaders will take too much time, and
possibly also be slowed down by the maximum of shaders that
can be executed in a second.

5.3 Using results from a fragment shader
The arrows in Figures 1 and 2 illustrate that the results of a
fragment program can be:

• Copied to a vertex array and input to a subsequent
vertex shader.

• Converted to a texture and used as input to a subsequent
fragment shader.

• Be returned to the application.

• Visualized.
Although the application has to initiate a new shader for the next
step of processing of results from a shader, the actual results can
reside in the GPU. The execution of a series of shaders to perform
a given task will not be slowed down by bandwidth between the
CPU and GPU provided that the results can reside in the GPU.
However, if the CPU has to process the data before the next
shader can be initiated, the bandwidth will soon become a
bottleneck.

Figure 2. Loop structure implemented on the fragment processor.

CPU

Application

Memory

Programable
Vertex

Processor

Primitive
Assembly Rasterize

Clip
Project

Viewport
Cull

Geometry

Programable
Fragment
Processor

Render
Target
(Frame
Buffer)

Texture memory Render to texture

Copy to vertex array

Fixed part of pipeline

Textures

For i=1,…,n
For j=1,…,m

Body of ”for loop”

Input data to ”for loop”

Control
structur of
”for loop”

5.4 “For loops” and the fragment processor
With the setup for addressing textures described in Section 5.1 the
implementation of two nested “for loops” on the fragment
processor is straightforward.
Looking at Figure 2 we see that the control structure of the loop:

For i=1,…,n;

 For j=1,…,m;

is replaced by calls to the graphics package. For OpenGL this can
look like :

• Initiation of a viewport
 glViewport(0, 0, n, m);

• Initiation of a quad
 glBegin(GL_QUADS);
 glTexCoord2f(0.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glTexCoord2f(1.0f, 0.0f);
 glVertex3f(1.0f, 0.0f, 0.0f);
 glTexCoord2f(1.0f, 1.0f);
 glVertex3f(1.0f, 1.0f, 0.0f);
 glTexCoord2f(0.0f, 1.0f);
 glVertex3f(0.0f, 1.0f, 0.0f);
 glEnd();

• Definition of the clipping volume such that the quad is
just inside the viewing volume.

This setup will ensure that the rasterizer makes n×m fragments
with texture coordinates in the domain [0,1]×[0,1].
The body of the loop will be the fragment shader, while input data
is read from texture memory and results are written to the render
target.

6. Examples of GPU implementations
We illustrate in Sections 6.1 and 6.2 how simple the
implementation of shaders for the solution of finite difference
methods for partial differential equations can be. More advanced
equations are addressed in [2]. Section 6.3 addresses adaptive
tessellation of parametric surfaces, where a complex algorithm is
split between the CPU and the GPU.

6.1 Heat equation
The 2D heat equation describes transport of heat in a body

yyxxt uuu += .

It is an example of a simple partial differential equation.
Discretication of the equation by finite differences over a regular
grid gives the following scheme

().4 ,1,1,,1,12,
1

,
n

ji
n

ji
n

ji
n

ji
n

ji
n

ji
n

ji UUUUU
h
kUU −++++= +−−+

+

The values at a given time step are calculated by combining five
values at the previous time step, see Figure 3. This is well suited
as a fragment program, see Listing 1, as each time step can be
performed by a shader, and the results of one time step is the basis
for calculating the values at the next time step.

Figure 3. Then next fragment uses 5 values from the
texture representing the previous time when solving the

heat equation using a forward difference scheme.

Listing 1. Fragment and vertex shaders for solving the heat equation using a forward difference scheme.

[Heat Equation Fragment shader]

varying vec4 texXcoord;
varying vec4 texYcoord;

uniform sampler2D heatTex;
uniform float r;

void main(void)
{
 vec4 col;
 vec4 tex = texture2D(heatTex, texXcoord.yx);
 vec4 tex0 = texture2D(heatTex, texXcoord.zx);
 vec4 tex1 = texture2D(heatTex, texXcoord.wx);
 vec4 tex2 = texture2D(heatTex, texYcoord.xz);
 vec4 tex3 = texture2D(heatTex, texYcoord.xw);

 col = tex + r*(tex0+tex1-4.0*tex+tex2+tex3);
 gl_FragColor = vec4(col);
}

[Heat Equation Vertex shader]

varying vec4 texXcoord;
varying vec4 texYcoord;
uniform vec2 dXY;

void main(void)
{
 texXcoord=gl_MultiTexCoord0.yxxx +
 vec4(0.0,0.0,-1.0,1.0)*dXY.x;

texYcoord=gl_MultiTexCoord0.xyyy +
vec4(0.0,0.0,-1.0,1.0)*dXY.y;

gl_Position = gl_ModelViewProjectionMatrix

*gl_Vertex;
}

6.2 Linear Wave Equation

The partial differential equation for linear waves is described by

yyxxtt uuu += .

Since there are second derivatives also in time, the centered
difference scheme will use values from two previous time steps.

().4

2

,1,1,,1,12

1
,,

1
,

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

UUUUU
h
k

UUU

−++++

−=

+−−+

−+

Here the values at time steps (n+1) are calculated from 5 values of
the nth time step, and one value of (n-1) th time step, see Figure 4,
The implementation is well suited by implementation as a
fragment shader, see Listing 2.

6.3 Adaptive tessellation of parametric
surfaces
The above examples show fairly simple schemes for solving
partial differential equations on a rectangular domain. We have

also addressed real time surface visualization aiming at display
qualities enabled by sharing the work load of the algorithm
between the CPU and programmable GPU.

In [3] a method for providing high quality view-dependent
tessellations of certain types of parametric surfaces including B-
spline surfaces is described. The objective is to ensure that,
regardless of the camera positions, the rendered triangles will
cover approximately the same number of pixels. In order to do
this efficiently we use the GPU to sample and evaluate the
surfaces.

7. ACKNOWLEDGMENTS
We thank the Research Council of Norway for funding the project
"Graphics hardware as a high-end computational resource",
through the contract 158911/I30.

8. REFERENCES
[1] R. Fernando and M.J. Kilgard. The Cg Tutorial: The

Definitive Guide to Programmable Real-Time Graphics.
Addison-Wesley Longman Publishing Co., Inc., 2003.

[2] T.R. Hagen, Henriksen M.O., Hjelmervik J. M., and Lie
K.A., How to Solve Systems of Conservation Laws
Numerically Using the Graphics Processor as a High-
Performance Computational Engine, submitted for
publication in “Geometric Modelling, Numerical Simulation
and Optimization: Industrial Mathematics at SINTEF”,
Springer

[3] J. M. Hjelmervik and Hagen T. R., GPU-Based Screen Space
Tessellation, in Mathematical Methods for Curves and
Surfaces: Tromsø, 2004, M. Dæhlen, K. Mørken, and L. L.
Schumaker (eds.), Nashboro Press, 2005.

[4] Microsoft, DirectX: multimedia application programming
interfaces.
http://www.microsoft.com/windows/directx/default.aspx.

[5] R.J. Rost, OpenGL(R) Shading Language, Addison-Wesley,
2004.

Listing 2. Fragment and vertex shaders for solving the linear wave equation using a forward difference scheme.

[Linear Wave Equation Fragment shader]

varying vec4 texXcoord;
varying vec4 texYcoord;

uniform sampler2D texCurrent;
uniform sampler2D texLast;

void main(void)
{
 vec4 col;
 vec4 tex = texture2D(texCurrent, texXcoord.yx);
 vec4 tex0 = texture2D(texCurrent,texXcoord.wx);
 vec4 tex1 = texture2D(texCurrent,texXcoord.zx);
 vec4 tex2 = texture2D(texCurrent,texYcoord.xw);
 vec4 tex3 = texture2D(texCurrent,texYcoord.xz);
 vec4 texL = texture2D(texLast, texXcoord.yx);

 gl_FragColor = (2.0 * tex - texL + (0.5)*(tex0
 + tex1 + tex2 + tex3 - 4.0*tex))*0.92;
}

[Linear Wave Equation Vertex shader]

varying vec4 texXcoord;
varying vec4 texYcoord;
uniform vec2 dXY;

void main(void)
{
texXcoord=gl_MultiTexCoord0.yxxx +

 vec4(0.0,0.0,-1.0,1.0)*dXY.x;
texYcoord=gl_MultiTexCoord0.xyyy +

 vec4(0.0,0.0,-1.0,1.0)*dXY.y;

gl_Position = gl_ModelViewProjectionMatrix *
 gl_Vertex;

}

Figure 4. The fragment at time step (n+1) uses five
values from the texture representing the nth time step
and one value from the texture for the (n-1)th time step
when solving the linear wave equation using an explicit
difference scheme.

