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ABSTRACT 
With the introduction in 2003 of standard GPUs with 32 bit 
floating point numbers and programmable Vertex and Fragment 
processors, the processing power of the GPU was made available 
to non-graphics applications. As the GPU is aimed at computer 
graphics, the concepts in GPU-programming are based on 
computer graphics terminology, and the strategies for 
programming have to be based on the architecture of the graphics 
pipeline. At SINTEF in Norway a 4-year strategic institute project 
(2004-2007) "Graphics hardware as a high-end computational 
resource", http://www.math.sintef.no/gpu/ aims at making GPUs 
available as a computational resource both to academia and 
industry. This paper addresses the challenges of GPU-
programming and results of the project's first year. 

Categories and Subject Descriptors 
G.4 MATHEMATICAL SOFTWARE, Parallel and vector 
implementations. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
GPU, Geometry, Partial Differential Equations, Linear Algebra. 

1. INTRODUCTION 
Since the early days of computers, computer graphics has been 
essential for presenting results from classes of computer 
programs. While some applications only need a 3D graphics 
pipeline using CPU resources, other applications demand a 
hardware accelerated 3D graphics pipeline. During recent years 
advanced 3D computer graphics has become an integral part of 
many computer games, resulting in a huge market for affordable 
3D graphics cards. Currently programmable 3D graphics cards for 
PC are priced between 200€ and 500€. 

Within SINTEF ICT, Department of Applied Mathematics, 3D 
graphics has been an important support tool both for the activities 
within Computer Aided Geometric Design (CAGD) and Partial 

Differential Equations (PDEs). When GPUs with 32bit floating 
point arithmetic and programmable vertex and fragments shaders 
were introduced in 2003, we realized that these GPUs could be an 
important computational resource both within CAGD and PDE 
based simulation. Consequently we applied for support from the 
Norwegian Research Council to investigate these possibilities. 
Our application was successful, and we were awarded a Strategic 
Research Project “Graphics hardware as a high-end comput-
ational resource”, http://www.math.sintef.no/gpu/, for the period 
2004-2007. 

The project is now into its second year, and our knowledge on 
GPU programming is growing. As the origin of the GPU is from 
computer graphics the terminology related to GPU programming 
has a strong computer graphics flavor. One of the ambitions of the 
project is to open GPU-programming to those outside of computer 
graphics.  We hope that this paper is a step in this direction. 

We will tell more about the Norwegian GPU-project in Section 2, 
and in Section 3 we address some of the project results. Then in 
Section 4 we will look at the graphics pipeline and a give short 
introduction to concepts and languages of GPU-programming. 
Section 5 will look into fragment shaders and how these can be 
used for executing “loop” structures.  Some examples of GPU-
applications will be given in Section 6. 

2. The Norwegian GPU-project 
The total budget for the project is approximately 1.5 M€, with 
63% allocated for work by SINTEF employed scientists, and 37% 
allocated to two Ph.D. fellowships and one post doc. Fellowship. 
The project is not a university type project, but a project 
combining the industrial R&D institute SINTEF 
http://www.sintef.no/ , and fellowship with an industrial focus. 
The project focuses on algorithms for applications of GPUs within 

• Image processing 

• Partial differential equations 

• Geometry 

• Linear algebra 
The project uses standard PCs with commercially available 
graphics card. Until the middle of 2005 only PCs with AGP bus 
have been used. However, we expect soon to start using PCs with 
PCI-Express bus. 

The project is coordinated by SINTEF ICT, Department of 
Applied Mathematics. The other active partners in the project are: 
The Center of Mathematics for Applications at the University of 
Oslo, http://www.cma.uio.no/; Department of Mathematics, the 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SCCG’05, May 12–14, 2005, Budmerice, Slovakia. 
Copyright Comenius University 
 



University of Bergen, http://www.mi.uib.no/; and Narvik 
University College, http://www.hin.no/.  

3. Some project results 
Most visible results so far have been in the solution of partial 
differential equations using explicit finite difference and finite 
volume schemes. For solving partial differential equations we 
have observed a speedup by a factor between 10 and 20 
compared to a Pentium 2.8 GHz CPU. For small computational 
grids the overhead of initializing shaders reduce the speedup. The 
speedup is best for shaders with many floating point instructions, 
while for schemes with few such instructions prefetching of data 
is not fast enough to ensure maximal use of the computational 
power. The best speedup we have observed is for 2. and 3. order 
high-resolution schemes solving the Euler equations that model 
the dynamics of compressible gasses [2]. These shaders are 
considerably more complex than shaders for standard 2. and 3. 
order schemes. 
We have started to look into how the GPU can be used as an 
accelerator for CAD-type intersection algorithms, and filed a 
patent related to this idea. For such algorithms the fragment 
processor can be used for subdividing surfaces to create both a 
tight hull containing the surface, and a tight hull containing the 
normal field of the surface.  

• The depth buffer of the GPU is a tool for testing for 
overlap of the extent of the hulls containing the 
surfaces. If no overlap, no intersection is possible.  

• For two surfaces to intersect in a closed loop, the 
normal fields have to overlap. Thus using the depth 
buffer to determine that the hulls containing the normal 
field of surfaces do not intersect will rule out the 
possibility of closed intersection curves.  

• As the shaders can also return information of the 
regions of possible overlap, important information on 
the actual intersection can be produced by the GPU. 

The integration of shaders into intersection algorithms, and the 
use of shaders for intersection algorithm acceleration, are 
considerably more complex than the examples shaders for partial 
differential equations in Sections 6.1 and 6.2. 

4. Programmable part of graphics pipeline 
The programmable parts of recent GPUs are: 

• The vertex processor, executing programs denoted 
vertex shaders. 

• The fragment processor, executing programs denoted 
fragment shaders.  

The basic data types of both the vertex and the fragment shaders 
are vectors of length 4 and 4x4 matrices. Standard operations on 
these are efficiently implemented in hardware. Depending on the 
actual GPU many other functions can also be hardware 
accelerated, e.g., elementwise logarithmic and trigonometric 
functions. A major advantage of such functions is that they allow 
the GPU to do the operations in parallel since the result in one 
vector element is independent of the other elements.  

4.1 The fragment processor 
Most of the programmable computational power of GPUs is 
available in the fragment processor. As an example, the nVidia 

GeForce 6 Series GPUs, introduced in 2004, have up to 16 
pipelines in the fragment processor. Each pipeline can handle 4 
floating point operations in parallel running at a maximum of 
450MHz. Synthetic tests (programs made only for demonstrating 
computational power) show a total computational power of up to 
50GFlops for the GeForce 6 Series GPUs. It is expected that 
performance will continue to grow by increasing the number of 
pipelines as well as the clock frequency, both in GPUs from 
nVidia and ATI. 
Newer generations of GPUs support dynamic branching both in 
the vertex and the fragment processors. The fragment pipelines 
are handled synchronously in the GPU, and each of the fragment 
pipelines execute the same path. In an “if/else structure” we risk 
that both branches are executed, thus not saving execution time. 
The handling of “if/else structures” depends on the actual GPU 
and is expected to change with new generation of GPUs. The 
potential bottlenecks introduced by dynamic branching can be 
avoided as follows: 

• In many cases it is possible to rewrite the shader to use 
arithmetic expressions instead of dynamic branching. 
This is especially advantageous when combined with 
the vector capabilities of the GPU. 

• Early exit. If parts of the shader can be omitted for 
large parts of the primitive being rendered, dynamic 
branching can increase the performance. An example is 
that parts of light calculations that can be omitted for 
points far from the light source. 

These strategies are valid for the current GPU generation, and are 
expected to be valid also in the future. 

4.2 High level languages and drivers 
On microprocessors high-level programs are compiled to 
assembly code closely related to the instruction set of the 
microprocessor family. The microprocessor instruction sets are 
valid for many years, and can be extended in later generations of 
the microprocessor family. 
As current GPUs are targeted at the game market, the need for 
backward compatibility is different from microprocessors. GPUs 
are programmed in high level languages, and the GPU 
manufacturers supply drivers that map the shader program on to 
the hardware. Although assembly-like languages exist for families 
of GPUs, they are not recommended to be used for programming. 
However, they are a good tool for understanding how compiled 
shader code is mapped onto hardware resources. By studying the 
assembly-like code generated, one can learn how to restructure 
the fragment shader for more optimized use of resources. As an 
example we used this approach when more registers than 
necessary were allocated in a fragment shader. By looking at the 
assembly-like code, we realized how to restructure the fragment 
shader to reduce the number of registers allocated. 

4.2.1 GPU high level languages 
GPUs have the great advantage that there exist widespread, 
platform- and system-independent graphics APIs: DirectX and 
OpenGL. The parallel processing power of GPUs can be accessed 
via corresponding high-level languages: 

• HLSL (DirectX High-Level Shading Language), a C-
like language that is part of DirectX from Microsoft, 
developed in cooperation with nVidia. Microsoft is 



actively influencing GPU development by requiring 
new generations of GPUs to be compliant with the 
evolution of DirectX [4].  

• GLSL (OpenGL Shading Language), a C-like 
programming language independent of the operating 
system. The major GPU manufacturers make their 
innovations available through OpenGL extensions to 
promote their innovation for the OpenGL standard [5]. 

• Cg (C for graphics), another C-like high-level language 
developed by nVidia for nVidia GPUs. Cg is 
independent of the graphics API and the compiler can 
generate shader code for OpenGL and DirectX. This 
independence has allowed a faster introduction of 
higher abstractions into the language [1]. 

4.3 Writing and debugging shaders 
For those who have limited experience in graphics programming, 
and limited knowledge on the graphics pipeline, writing shaders 
just based on documentation is currently hard. Our experience is 
that the best for novices is to start from an existing application 
that is proved to be working correctly and gradually modify this 
to reflect the functionality you want your new application to have. 
When you detect that a modification to an existing shader does 
not work as you expect, the reasons can be numerous: 

• You may have an error in your algorithm. 

• You may have misunderstood the functionality of the 
shader language. 

• The driver for the GPU is not working properly. 
As there are currently no normal debuggers for GPUs, debugging 
has to be based on reading values from textures and analyzing 
these. To assist in such manual debugging, visualizing the values 
of computational grid as an image can be helpful for 
understanding the behavior of the shader. When the GPU is used 
as a “for loop” accelerator as addressed in Section 5.4, comparing 
the combined CPU/GPU implementation and a CPU-
implementation can be of great value, both for debugging and for 
documenting the speedup achieved. 

4.4 GPU-information on the web 
To get an overview of what is going on world-wide with respect 
to use of the GPU as a computational resource, consult the 
GPGPU-pages, “General-Purpose Computation Using Graphics 
Hardware”,  http://www.gpgpu.org/.  
When we started our GPU-project these pages were a central 
resource for information. These web-pages are frequently 
updated, thus the general evolution of GPU-technology and 
applications can be followed in these pages.  

5. Programming the fragment processor 
To understand how the GPU can be used as a computational 
resource we have to understand how the graphics pipeline is used 
for rendering. A simplified view of the programmable graphics 
pipeline is depicted in Figure 1: 

• First geometry has to be defined and the information to 
be processed attached to the geometry. 

• The geometric structures are assembled to primitives.  

• The primitives are then clipped to remove segments 
outside of the defined window. 

• The geometric primitives are then rasterized according 
to the resolution of the render target. In this process the 
fragments to be processed by the fragment processor are 
produced. 

• Then for each fragment the fragment shader can be 
executed. 

Another important key to GPU-programming is the role of 
textures. A 2D texture is a rectangular image of dimension n×m. 
The graphics card offers two ways of accessing a texture, either 
through integer indices, or through normalized texture 
coordinates. To avoid knowing the exact dimensions of a texture 
when reading information from it, normalized floating point 
texture coordinates [0,1]× [0,1] have been introduced. 
 

Figure 1. A simplified view of the graphics pipeline and the programmable vertex and fragment processors.  Note that for the 
fragment processor to be triggered, all the steps before the fragment processor in the rendering pipeline have to be executed. 

Thus a geometry has to “own” the data to be executed on the fragment processor; this geometry has to survive the clipping and 
culling, and the rasterizer has to produce the  proper fragments. 
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5.1 Default geometry and texture coordinates 
To be able to execute programs aiming at non graphical problems 
on the fragment processor, default geometry and the visible region 
of space has to be defined. The following definition ensures that 
we get a match between the (x,y) coordinates of the geometry and 
the texture coordinates: 

• Define a rectangle (quad) with corners: (0,0,0), (1,0,0), 
(1,1,0) and (0,1,0). 

• Assign texture coordinates (0,0), (1,0), (1,1) and (0,1) to 
the respective corners of the rectangle. 

• Define the viewing volume such that the quad defined 
above just covers the window. 

This will trigger execution of all fragments with texture 
coordinates in the rectangle (0,0), (1,0), (1,1) and (0,1). 
    The above set up is conceptually the simplest. However, a 
rectangle is broken into two triangles in the primitive assembly 
process. The GPU prefetches texture data close to the current 
fragment to speedup fragment execution. However, this prefetch 
is only from the current geometric primitive being rasterized. If 
the fragment program needs to access texture data not associated 
with the current primitive, the program will have to wait for the 
texture data to be fetched. By making one larger triangle this 
latency can be avoided: 

• Define a triangle with corners: (0,0,0), (2,0,0), (0,2,0). 

• Assign texture coordinates (0,0), (2,0), and (0,2) to the 
respective corners of the triangle. 

• Define the viewing volume as described above, as in the 
case of the quad. 

The fragments outside the rectangle (0,0), (1,0), (1,1) and (0,1) 
will be removed by the clipping stage in the graphics pipeline, 
and the fragments in the rectangle (0,0), (1,0), (1,1) and (0,1) will 
be executed by the fragment processor. The fragment processing 
will be associated with only one triangle and not two triangles. 
This setup makes textures and render targets similar to two 
dimensional arrays, however, with the exception that the elements 
are addressed with floating point numbers in the interval [0,1] 
rather than integer indices. 

5.2 Fragment shaders: Read only from 
textures; Write only to render targets  
On current GPUs fragment programs can read from many textures 
but write to currently a maximum of 4 render targets. As we do 
not have control of the sequence in which the fragments are 
executed, algorithms such as Gaussian elimination, which 
combine writing of temporary data and final data in one matrix, 
will have to be executed as a series of shaders. The execution of a 
new shader is initiated by a new default geometry followed by the 
other steps in the graphics pipeline. At the start of 2005 typically 
8000 shaders a second can be executed on a GeForce Series 6 
GPU.  
To benefit from the computing power of the fragment shader each 
fragment shader has to be computational heavy, or else the 
initiation process for new shaders will take too much time, and 
possibly also be slowed down by the maximum of shaders that 
can be executed in a second. 

5.3 Using results from a fragment shader  
The arrows in Figures 1 and 2 illustrate that the results of a 
fragment program can be: 

• Copied to a vertex array and input to a subsequent 
vertex shader. 

• Converted to a texture and used as input to a subsequent 
fragment shader. 

• Be returned to the application. 

• Visualized. 
Although the application has to initiate a new shader for the next 
step of processing of results from a shader, the actual results can 
reside in the GPU. The execution of a series of shaders to perform 
a given task will not be slowed down by bandwidth between the 
CPU and GPU provided that the results can reside in the GPU. 
However, if the CPU has to process the data before the next 
shader can be initiated, the bandwidth will soon become a 
bottleneck.  

Figure 2. Loop structure implemented on  the fragment processor. 
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5.4 “For loops” and the fragment processor 
With the setup for addressing textures described in Section 5.1 the 
implementation of two nested “for loops” on the fragment 
processor is straightforward.  
Looking at Figure 2 we see that the control structure of the loop: 

For i=1,…,n; 

 For j=1,…,m; 

is replaced by calls to the graphics package. For OpenGL this can 
look like : 

• Initiation of a viewport 
   glViewport( 0, 0, n, m); 

• Initiation of a quad 
   glBegin(GL_QUADS); 
 glTexCoord2f(0.0f, 0.0f); 
 glVertex3f(0.0f, 0.0f, 0.0f); 
 glTexCoord2f(1.0f, 0.0f); 
 glVertex3f(1.0f, 0.0f, 0.0f);  
 glTexCoord2f(1.0f, 1.0f); 
 glVertex3f(1.0f, 1.0f, 0.0f);  
 glTexCoord2f(0.0f, 1.0f); 
 glVertex3f(0.0f, 1.0f, 0.0f); 
  glEnd(); 

• Definition of the clipping volume such that the quad is 
just inside the viewing volume. 

This setup will ensure that the rasterizer makes n×m fragments 
with texture coordinates in the domain [0,1]×[0,1]. 
The body of the loop will be the fragment shader, while input data 
is read from texture memory and results are written to the render 
target. 

6. Examples of GPU implementations 
We illustrate in Sections 6.1 and 6.2 how simple the 
implementation of shaders for the solution of finite difference 
methods for partial differential equations can be. More advanced 
equations are addressed in [2]. Section 6.3 addresses adaptive 
tessellation of parametric surfaces, where a complex algorithm is 
split between the CPU and the GPU. 

 

6.1 Heat equation 
The 2D heat equation describes transport of heat in a body 

yyxxt uuu += . 

It is an example of a simple partial differential equation. 
Discretication of the equation by finite differences over a regular 
grid gives the following scheme 
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The values at a given time step are calculated by combining five 
values at the previous time step, see Figure 3. This is well suited 
as a fragment program, see Listing 1, as each time step can be 
performed by a shader, and the results of one time step is the basis 
for calculating the values at the next time step.  
 
 

Figure 3.  Then next fragment uses 5 values from the 
texture representing the previous time when solving the 

heat equation using a forward difference scheme. 

Listing 1. Fragment and vertex shaders for solving the heat equation using a forward difference scheme. 

[Heat Equation Fragment shader] 
 
varying vec4 texXcoord; 
varying vec4 texYcoord; 
 
uniform sampler2D heatTex; 
uniform float r;  
 
void main(void) 
{ 
  vec4 col; 
  vec4 tex = texture2D(heatTex, texXcoord.yx); 
  vec4 tex0 = texture2D(heatTex, texXcoord.zx); 
  vec4 tex1 = texture2D(heatTex, texXcoord.wx); 
  vec4 tex2 = texture2D(heatTex, texYcoord.xz); 
  vec4 tex3 = texture2D(heatTex, texYcoord.xw); 
 
  col = tex + r*(tex0+tex1-4.0*tex+tex2+tex3); 
  gl_FragColor = vec4(col); 
} 

[Heat Equation Vertex shader] 
 
varying vec4 texXcoord; 
varying vec4 texYcoord; 
uniform vec2 dXY; 
 
void main(void) 
{ 
  texXcoord=gl_MultiTexCoord0.yxxx +  
        vec4(0.0,0.0,-1.0,1.0)*dXY.x; 

texYcoord=gl_MultiTexCoord0.xyyy +  
vec4(0.0,0.0,-1.0,1.0)*dXY.y; 

 
gl_Position = gl_ModelViewProjectionMatrix  

*gl_Vertex; 
} 



6.2 Linear Wave Equation 

The partial differential equation for linear waves is described by 

yyxxtt uuu += . 

Since there are second derivatives also in time, the centered 
difference scheme will use values from two previous time steps. 
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Here the values at time steps (n+1) are calculated from 5 values of 
the nth time step, and one value of (n-1) th time step, see Figure 4, 
The implementation is well suited by implementation as a 
fragment shader, see Listing 2. 

6.3 Adaptive tessellation of parametric 
surfaces 
The above examples show fairly simple schemes for solving 
partial differential equations on a rectangular domain. We have 

also addressed real time surface visualization aiming at display 
qualities enabled by sharing the work load of the algorithm 
between the CPU and programmable GPU. 

In [3] a method for providing high quality view-dependent 
tessellations of certain types of parametric surfaces including B-
spline surfaces is described. The objective is to ensure that, 
regardless of the camera positions, the rendered triangles will 
cover approximately the same number of pixels. In order to do 
this efficiently we use the GPU to sample and evaluate the 
surfaces.  
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Listing 2. Fragment and vertex shaders for solving the linear wave equation using a forward difference scheme.

[Linear Wave Equation Fragment shader] 

 

varying vec4 texXcoord; 
varying vec4 texYcoord; 
 
uniform sampler2D texCurrent; 
uniform sampler2D texLast; 
 
void main(void) 
{ 
  vec4 col; 
  vec4 tex = texture2D(texCurrent, texXcoord.yx); 
  vec4 tex0 = texture2D(texCurrent,texXcoord.wx); 
  vec4 tex1 = texture2D(texCurrent,texXcoord.zx); 
  vec4 tex2 = texture2D(texCurrent,texYcoord.xw); 
  vec4 tex3 = texture2D(texCurrent,texYcoord.xz); 
  vec4 texL = texture2D(texLast, texXcoord.yx); 
 
  gl_FragColor = (2.0 * tex - texL + (0.5)*(tex0  
      + tex1 + tex2 + tex3 - 4.0*tex))*0.92; 
} 

[Linear Wave Equation Vertex shader] 
 
varying vec4 texXcoord; 
varying vec4 texYcoord; 
uniform vec2 dXY; 
 
void main(void) 
{ 
texXcoord=gl_MultiTexCoord0.yxxx + 

     vec4(0.0,0.0,-1.0,1.0)*dXY.x; 
texYcoord=gl_MultiTexCoord0.xyyy +  

     vec4(0.0,0.0,-1.0,1.0)*dXY.y; 
 

gl_Position = gl_ModelViewProjectionMatrix *  
 gl_Vertex; 

} 

Figure 4. The fragment at time step (n+1) uses five 
values from the texture representing the nth time step 
and one value from the texture for the (n-1)th time step 
when solving the linear wave equation using an explicit 
difference scheme. 



 
 

 
 

 
 
 
 

 


