What is Isogeometric Analysis?

Carlo Lovadina, Alessandro Reali, Giancarlo Sangalli University of Pavia and IMATI-CNR of Pavia

Milan, June 30, 2014

TERRIFIC European Community's Seventh Framework Programme Grant Agreement 284981 Call FP7-2011-NMP-ICT-FoF

Isogeometric Analysis (IGA):

RECENT EMERGING technology for Scientifc Computing, stemming from OLD ideas

IGA timeline and diffusion (from SCOPUS)

Two fundamental steps in Virtual Manufacturing:

CAD (1970's - 1980's) – Engineering Design Process:

- ✓ engineering designs are encapsulated in CAD systems;
- ✓ CAD geometry is *exact*;
- ✓ hundreds of thousands analyses of CAD designs are performed in engineering offices throughout the world every day

FEM (1950's - 1960's) – Engineering Analysis Process:

- ✓ CAD geometry is replaced by FEM geometry ("mesh");
- ✓ mesh generation accounts for more than 80% of overall analysis time and is the major *bottleneck*;
- ✓ mesh refinement requires interaction with CAD geometry;
- ✓ the mesh is an *approximate* geometry

Two fundamental steps in Virtual Manufacturing:

CAD (1970's - 1980's) – Engineering Design Process:

- ✓ engineering designs are encapsulated in CAD systems;
- ✓ CAD geometry is *exact*;
- hundreds of thousands analyses of CAD designs are performed in engineering offices throughout the world every day

FEM (1950's - 1960's) – Engineering Analysis Process:

- ✓ CAD geometry is replaced by FEM geometry ("mesh");
- mesh generation accounts for more than 80% of overall analysis time and is the major *bottleneck*;
- ✓ mesh refinement requires interaction with CAD geometry;
- ✓ the mesh is an *approximate* geometry

Critical issues

IDEA (Hughes et al., 2005): Isogeometric Analysis

In the Analysis framework, employ the same functions used to describe the geometry of the computational domain, i.e., typically, use B-Splines and Non-Uniform B-Splines (NURBS).

IDEA (Hughes et al., 2005): Isogeometric Analysis

In the Analysis framework, employ the same functions used to describe the geometry of the computational domain, i.e., typically, use B-Splines and Non-Uniform B-Splines (NURBS).

Alternative to standard FE analysis, *including isoparametric FEA as a special case*, but offering other features and possibilities:

- CAD geometry is exactly and efficiently represented
- ✓ simplified mesh refinement
- ✓ smooth basis functions with compact support
- ✓ superior approximation properties
- ✓ integration of design and analysis

Starting point: Univariate B-Spline functions

Given a *non-uniform knot vector* $\mathcal{M} = \{\xi_1, ..., \xi_{n+p+1}\}$, in the parametric domain, B-spline functions are iteratively defined as:

$$B_{i,0}(\xi) = \begin{cases} 1 ext{ if } \xi_i \leq \xi < \xi_{i+1} \\ 0 ext{ otherwise.} \end{cases}$$

$$B_{i,p}(\xi) = \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} B_{i,p-1}(\xi) + \frac{\xi_{i+p+1} - \xi}{\xi_{i+p+1} - \xi_{i+1}} B_{i+1,p-1}(\xi).$$

The spline space is: $S_{p}(\mathcal{M}) = \operatorname{span}\{B_{i,p}(\cdot)\}_{i=1,...,n}$

TERRIFIC Enhancing Interoperability

A spline curve

The image of $\mathbf{F}(\xi) = \sum_{i} \mathbf{C}_{i} B_{i}(\xi)$ is the B-spline curve:

A NURBS curve

A NURBS curve in \mathbb{R}^2 is the projection of a B-spline in \mathbb{R}^3

$$C(\xi) = \frac{[C_x^w(\xi), C_y^w(\xi)]}{C_z^w(\xi)} = \sum_{i=1}^n \mathbf{C}_i \frac{w_i B_{i,p}(\xi)}{\sum_{i=1}^n w_i B_{i,p}(\xi)} = \sum_{i=1}^n \mathbf{C}_i \frac{R_{i,p}(\xi)}{R_{i,p}(\xi)}.$$

NURBS are able to exactly represent a vast set of geometrical objects, e.g. all the conic sections

Spline/NURBS volumes

A spline space on a tensor product mesh $\mathcal{M} = \mathcal{M}_1 \otimes \mathcal{M}_2 \otimes \mathcal{M}_3$ is constructed by tensor product of univariate spaces:

$$S_{p_1,p_2,p_3}(\mathcal{M})=S_{p_1}(\mathcal{M}_1)\otimes S_{p_2}(\mathcal{M}_2)\otimes S_{p_3}(\mathcal{M}_3)$$

A single-patch spline geometry is parametrized by $\mathbf{F} \in (S_{p_1,p_2,p_3}(\mathcal{M}))^3$:

Spline/NURBS multi-patch volumes

Multi-patch geometries are typical in real-world applications

FEM and IGA on a toy problem

✓ Exact geometry provides more accurate results (computational domain is not altered)

 ✓ Exact geometry provides more accurate results (computational domain is not altered)

✓ Sometimes the perturbed geometry causes wrong models (Babuska-Pitkaranta paradox 1990)

Refinement strategies (1D case): strategies to improve accuracy, acting on the mesh and/or on the approximation space.

The *parametric space* is mapped into the *physical space*, constructed as the linear combination of the basis functions and the control points: the analogues of the *elements* are the *images of the knot sequence* and *3 refinement strategies* can be adopted: h-p-k refinements.

Example of *h*-refinement: mesh refinement

Example of *h*-refinement: mesh refinement

Example of *p*-refinement: enlarge approximation space, same mesh

Example of *p*-refinement: enlarge approximation space, same mesh

Example of *p*-refinement: enlarge approximation space, same mesh

A third refinement strategy: *k*-refinement [no analogue in FEM]

- Procedure in which the polynomial order and smoothness (differentiability) of the B-Spline basis functions are simultaneously increased
- •No analogues in FEM
- Leads to possibilities previously unavailable in FEM:
 - Discretization of higher-order PDEs
 - Continuous stresses
 - Collocation methods

•Gives a sequence of "non-nested" spaces...

2D and 3D versions of h-p-k refinement procedures are available.

Implementation

Flowchart of a classical finite element code. Such a code can be converted to a single-patch isogeometric analysis code by replacing the routines shown in green.

[Cottrell et al., 2009]

IGA for Navier-Stokes

$$\begin{cases} \rho \left(\partial_t \mathbf{u} + \left(\mathbf{u} \cdot \nabla\right) \mathbf{u}\right) - \mu \Delta \mathbf{u} + \nabla p = \mathbf{f} & \text{on } \Omega \times (0, T) \\ \nabla \cdot \mathbf{u} = 0 & \text{on } \Omega \times (0, T), \end{cases}$$

Pressure profile: IGA

Pressure profile: FEM

IGA for patient-specific structural analysis of aortic valve closure

PROGRAMME

SEVENTH FRAMEWORK PROGRAMME

a) IGA (762 nodes)

b) FEA (153646 nodes)

z-displacement contour map [mm]:

Comparison of computational time (IGA vs FEA)

Analysis	# nodes	$\# \mathrm{cpus}$	time step	# increments	total analysis time $time$
IgA	762	12	2.30e-07	4347490	1h 15m
FEA	153646	12	2.65e-08	37787314	550h 23m
				23 full days (24 hours)	

Morganti S. et al., ICES Report 14-10, and submitted to "*Computer Methods in Applied Mechanics and Engineering*"

CONCLUSIONS

Isogeometric Analysis is an emerging technology capable of:

Directly interacting wtih the CAD systems
Greatly simplifying the refinement processes
Improving the solution accuracy
Reducing the computational costs

CONCLUSIONS

Isogeometric Analysis is an emerging technology capable of:

Directly interacting wtih the CAD systems
Greatly simplifying the refinement processes
Improving the solution accuracy
Reducing the computational costs

If your applications demand high level quality...

CONCLUSIONS

Isogeometric Analysis is an emerging technology capable of:

Directly interacting wtih the CAD systems
Greatly simplifying the refinement processes
Improving the solution accuracy
Reducing the computational costs

If your applications demand high level quality...

