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Preface

The work in this thesis has been done as part of a PhD program at the Department
of Mathematics, University of Bergen, Norway.

The thesis has been organized in three parts: Part I discusses background ma-
terial and a general framework that explains the connection between the included
papers, Part II includes submitted and published research papers, and Part III in-
cludes two additional supporting co-authored research papers.

All the papers are related to the field of streamline simulation within reservoir
simulation. Papers A-E are concerned with streamline tracing, whereas Paper F
considers the porous media single phase flow equation in a discretely fractured
media.

The included papers in Part II are summarized as follows:

Paper A: Hægland, H., Dahle, H.K., Eigestad, G.T., Lie, K.-A., Aavatsmark, I.
Improved streamlines and time-of-flight for streamline simulation on irreg-
ular grids. Advances in Water Resources, 30(4), 1027-1045, 2007.

We develop a new interpolation scheme on general hexahedral grids. The
main advantage of this method is that it can reproduce a uniform flow field,
and allows accurate streamlines to be traced. In fact, as far as we know, this
method is the method with the lowest degrees of freedom with this prop-
erty. A disadvantage is that the method not generally produce divergence
free velocity fields, see Paper B.

Paper B: Nordbotten, J.M., Hægland, H. On reproducing uniform flow exactly
on general hexahedral cells using one degree of freedom per surface. Ad-
vances in Water Resources, doi:10.1016/j.advwatres.2008.11.005, 2008.

We recognize that an interpolation method that both reproduces uniform
flow and is divergence free and only uses one degree of freedom per face
does not exist for a general hexahedron. This means that the method de-
veloped in Paper A is not divergence free. A fix is suggested in Chapter
5.1.

Paper C: Hægland, H., Dahle, H.K., Lie, K.-A., Eigestad, G.T. Adaptive stream-



line tracing for streamline simulation on irregular grids. Proceedings of
the XVI International Conference on Computational Methods in Water Re-
sources, 2006.

A fast method is proposed for tracing streamlines using the velocity field
derived in Paper A.

Paper D: Hægland, H., Dahle, H.K., Eigestad, G.T., Nordbotten, J.M., Celia,
M.A., Assteerawatt, A. Streamline methods on fault adapted grids for risk
assessment of storage of CO2 in geological formations. Proceedings of
the XVI International Conference on Computational Methods in Water Re-
sources, 2006.

In this paper, methods for streamline tracing on faulted and fractured grids
are proposed.

Paper E: Hægland, H., Assteerawatt, A., Helmig, R., Dahle, H.K. Simulation of
flow and transport in discrete fracture-matrix system II. Efficient and accu-
rate streamline approach. Submitted to Water Resources Research, 2008.

A flux post-processing technique is developed that allows streamlines to be
traced when a lower-dimensional method is used to solve the flow equation.

Paper F: Hægland, H., Assteerawatt, A., Dahle, H.K., Eigestad, G.T., Helmig, R.
Comparison of discretization methods for flow in a fracture-matrix system.
Submitted to Advances in Water Resources, 2009.

A comparison of different discretization methods for flow is done in the
context of a 2D discrete fracture model.

As all the papers are collaborative work, some remarks about my contribution
are necessary. For Papers A, C, D, and F, I was the first author and my contri-
butions were correspondingly. In particular, in Paper A, I came up with the CVI
interpolation scheme. In general, my contribution in the previous mentioned pa-
pers were development, implementation and numerical testing of the methods. In
Paper B, we prove a theorem that is relevant for both streamline tracing and mixed
finite-element methods. In this paper, I was responsible for placing the result in a
general setting including the literature review. In Paper E, I was involved in the
development, implementation and numerical testing of the methods.

Further, this thesis contain the following coauthored supporting papers, (not
considered as the main part of the thesis):

Paper G: Kippe, V., Hægland, H., Lie, K.-A. A method to improve the mass
balance in streamline simulation, SPE 106250. Presented at the SPE
Reservoir Simulation Symposium, 2007



Paper H: Assteerawatt, A., Helmig, R., Hægland, H., Bárdossy, A. Dahle, H.K.
Simulation of flow and transport processes in a discrete fracture-matrix
system I. geostatistical generation of fractures on an aquifer analogue scale.
Submitted to Water Resources Research, 2008.

The relation of these papers to the main part of the thesis is further discussed in
Chapter 6.
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Chapter 1

Introduction

The main theme of this thesis is fast and accurate simulation of fluid flow and
transport in porous media. In particular, we focus on problems leading to irregu-
lar grids including fractures. Flow simulations are carried out by a finite volume
method that ensures proper treatment of heterogeneities. The velocity recovered
from the flow simulations are then used to trace streamlines that are used to obtain
fast and accurate transport simulations. Transport simulations are used for un-
derstanding and predicting the geological system under consideration, using tools
like break-through curves, arrival time and storage behavior. The outcome of
transport simulations strongly depends on the distribution of velocities in discon-
tinuous features like fractures [51]. Hence, the success of a transport simulation
is closely related and linked to the efficiency and accuracy of a) the numerical
scheme for the flow equation, and b) the method used to trace streamlines. In
particular, we consider streamline tracing for irregular hexahedral grid cells in 3D
and for discrete fractures in 2D.

Important application areas are groundwater pollution, improved oil recovery,
and geological sequestration of CO2. Groundwater is used as drinking water, and
it is used in agriculture and industry. The supply of groundwater is being limited
by an increasing human population, by pollution, and by climate change. Contam-
ination may arise from, e.g., radioactive waste in repositories in deep geological
formations, or from leakage from landfills. The understanding of the flow of water
in the subsurface is important for decision making and risk analysis.

An ever expanding supply of oil and natural gas has been vital to continued
economic growth. Enhanced recovery techniques are used to increase the amount
of oil that can be extracted from a reservoir, and are becoming increasingly impor-
tant as the world’s oil reserves are diminishing. It is important to understand the
fluid flow processes in petroleum reservoirs sufficiently well to be able to optimize
the recovery of hydrocarbon.

Environmental concerns is also becoming more important in the oil industry.
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Over the past century, human activities such as the burning of fossil fuels, have
contributed to a large increase in the amounts of carbon dioxide (CO2) in the
atmosphere. It is now commonly accepted that this rapid increase in atmospheric
CO2 has resulted in a global warming and a following climate change. A variety
of strategies have been proposed to reduce CO2 emissions and remove carbon
from the atmosphere in order to mitigate the potential effects of climate change.
One option is CO2 sequestration, where the CO2 produced from a power plant
is separated, captured and then stored in a deep underground geologic formation
in such a way that the CO2 will remain permanently deposited. The potential
environmental consequences and risks to public safety with such a procedure are
currently insufficiently studied through systematic research. Leakage of CO2 from
underground fractures or abandoned wells can be a risk to human health, and make
the CO2 sequestration inefficient.

The aim of this thesis is to help to better understand these problems, by build-
ing a numerical model for fluid flow in porous medium that can be solved on a
computer, and subsequently be used to predict, e.g., the performance of an oil
reservoir, the risk associated with a CO2 injection, or the spreading of pollution
in an aquifer, given certain initial and boundary conditions. A common feature of
these application areas is that they share (more or less) the same physics, and can
be formulated mathematically using the same balance laws.

Geological heterogeneity that controls flow is present in all rocks [59]. The
depositional characteristics that give rise to permeable formations, and the com-
plex diagenetic processes taking place afterwards, create important heterogeneous
features such as bedding planes, fractures, and faults [118].

Fractures are mechanical breaks in rocks involving discontinuities in displace-
ment across surfaces. Fractures occur on many scales, with different aperture and
permeability. They may be open channels in the rock, or they may be filled with
clay or debris. Open fractures are often preferential flow paths [88].

Rock heterogeneities have strong impact on fluid displacement patterns be-
cause they define preferential flow paths in underground permeable formations.
The efficiency and accuracy of a numerical simulation model is greatly controlled
by the ability to understand and represent this heterogeneity [51].

Since the pore geometry of a reservoir is commonly inaccessible to direct in-
vestigation, a continuum approach is used where rock and flow properties are
transformed from a microscopic level to a macroscopic one [23]. The trans-
formation involves an average over a representative elementary volume (REV)
[23, 26, 27]. With this description, the pore structure is replaced by continuous
properties like porosity and permeability. The permeability tensor is function of
the position in the medium, and quantifies the ability of the rock to transmit fluid.

To deal with different fracture distributions, matrix properties and limited
computing resources, a number of modeling approaches have been developed for
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fracture-matrix systems. These modeling approaches can be formulated in deter-
ministic and stochastic frameworks, and are traditionally divided into two rough
classes: discrete fracture models and continuum models [29].

Continuum models are based on the spatial averaging approach [25] assuming
the REV to cover both fractures and matrix. Hence, individual fractures are not
explicitly treated, but expressed through volume averaged behavior of many frac-
tures. The REV concept can be used if a formation contains a dense network of
highly interconnected fractures. If a REV can only be defined at a scale similar to
the problem of interest, as is the case for poorly connected networks, or if a net-
work consists of fractures with no characteristic size limit, then the REV approach
is inappropriate [29].

Discrete fracture models allow quantification of many flow and transport phe-
nomena that are not adequately captured by continuum models [57]. An advantage
of the discrete fracture approach is that it can account explicitly for the effects of
individual fractures on fluid flow and transport. Applications of the discrete frac-
ture model to field scale problems have been limited due to insufficient access
to accurate data and computational constraints due to the huge amount of data
required to represent the discrete features. However, the discrete fracture model
have gradually become more practical, as a consequence of increased computer
power and improved simulation and characterization techniques.

On the basis of the conceptual model for the reservoir heterogeneity, a math-
ematical model for flow and transport is developed. The mathematical model of
the physical behavior of the system describes how the fluid distributes itself in the
porous medium given certain initial and boundary conditions [70]. The model is
based on the continuum approach (REV). It consists of a set of partial differential
equations derived from the principle of mass conservation in combination with
the momentum equations, known as Darcy’s laws [15].

When more than one fluid is present, e.g., oil and water, the different fluids
are considered separate phases, each of which occupy a fraction of the REV. The
fraction of a given phase at a given point is called the saturation of the phase.
The coefficients of the flow equations depend on the porosity, permeability of
the porous medium, and among others, the densities and viscosities of the fluids.
The unknowns in the flow equations are the pressures and the saturations. When
pressure is known, the fluid velocities can be calculated from Darcy’s law.

With general initial and boundary conditions, the flow equations cannot be
solved analytically. Instead, a discrete form (numerical model) of the equations is
developed that can be solved on a computer. The flow equations may be formu-
lated in different ways, giving rise to different numerical solution methods. For
the flow of two immiscible phases, assuming incompressible fluids and rocks and
neglecting capillary pressure, one such formulation is given by an elliptic equa-
tion for the pressure and a hyperbolic equation for the saturation. An efficient
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numerical solution procedure for these equations is the implicit pressure explicit
saturation (IMPES) method [128]. The IMPES method can be further speeded
up by a coordinate transformation in terms of the time-of-flight coordinate along
streamlines. In this way, the saturation equation is reduced to a set of 1D hyper-
bolic equations along streamlines [22].

The numerical model involves a discretization of the flow equations. The
reservoir is subdivided into grid of grid cells corresponding to regions of con-
stant material properties. For a rectangular domain, with heterogeneities aligned
with the grid boundaries, the grid cells can be rectangular parallelepipeds. Such a
grid is called a logical Cartesian grid. However, the usual case is that the domain
boundary is irregular and internal layers or fractures are not aligned with each
other or with the boundary. Irregular and unstructured grids may then be used to
better fit the grids cells to the boundaries of the reservoir and to the internal media
discontinuities.

1.1 Structure of the thesis

In Chapter 2, we describe the conceptual model for a porous medium, a fracture-
matrix system, and a fracture. In Chapter 3, we develop the mathematical model
for flow and transport in porous medium, that may or may not contain fractures.
Then, Chapter 4 describes the numerical methods we have used to solve the math-
ematical models for certain initial and boundary conditions. Further, Chapter 5
outline some ongoing and further work, and Chapter 6 gives a brief introduction
to the supporting material. Part II includes the research papers that constitutes the
main part of this thesis, whereas Part III includes the supporting papers.



Chapter 2

Conceptual model

With a model we mean a simplified version of the real system that approximately
simulates its behavior [26]. The first step in the modeling process is the construc-
tion of a conceptual model of the system and of its behavior. This step includes a
verbal description of the system’s composition, the physical phenomena that take
place and the mechanisms that govern them, as well as the relevant properties of
the medium in which they occur, all subject to the required output of the model.

The description takes the form of a set of assumptions, subjectively selected
by the modeler, to express his understanding and approximation of the real system
and processes taking place within it [26].

2.1 Models for a porous medium

Phenomena of transport in porous media are encountered in many engineering dis-
ciplines. Civil engineering deals, for example, with the flow of water in aquifers,
the movement of moisture through and under engineering structures, and transport
of pollutants in aquifers. Reservoir engineers deal with the flow of oil, water and
gas in petroleum reservoirs.

A porous media is occupied by a persistent solid face, called matrix, and a
void space occupied by a single fluid, or by a number of fluid phases, e.g., gas,
water and oil. A phase is defined as a chemically homogeneous portion of a
system. There can be only one gaseous phase in the system, as all gaseous phases
are completely miscible. We may however have more than one liquid phase in a
system. Such liquid phases are referred to as immiscible fluids. A component is
part of a phase that is composed of an identifiable homogeneous chemical species
[82].

The outcome of any given phenomenon in a porous system depends on several
length scales over which the system may or may not be homogeneous. In general,
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Figure 2.1: Different scales, modified after Assteerawatt [14]. Top left: the gi-
gascopic scale, bottom left: the megascopic scale, bottom right: the macroscopic
scale, top right: the microscopic scale.

the heterogeneities of a porous medium can be described at mainly four different
length scales [79, 142] :

• The microscopic heterogeneities are at the level of the pores or the grains.

• The macroscopic heterogeneities are at the level of core plugs. Such hetero-
geneities are found in every well with property values varying widely from
core to core.

• The megascopic heterogeneities are at the level of the entire reservoirs
which may have large fractures and faults. They can be modeled as a col-
lection of thousands, perhaps millions, of cores, oriented and organized in
some fashion, each having a average effective property.

• The gigascopic heterogeneities are encountered in landscapes that may con-
tain many megascopic reservoirs, along with mountains, rivers, etc.

Note that the scale below the microscopic one is commonly called molecular scale,
but it will not be important for this work since we will consider a continuum
approach, see the next section.

Any realistic modeling of flow and transport phenomena in a porous medium
has to include a realistic model of the medium itself. The model should depend on
the type of porous media we deal with, and the given computational limitations.
We must use models that are simple enough to allow for simulation of various
flow and transport phenomena with reasonable computation time, while they also
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contain the essential features of the porous medium of interest. We refer to [142]
for a review of different models for porous media.

In principle, the mathematical model that describes the transport of an exten-
sive quantity of a fluid phase through a porous medium domain, can be stated for
every point within the considered phase. This description is said to be at the mi-
croscopic level, as the focus is on what happens at a mathematical point within a
phase in the domain [25]. Although the transport problem can be stated as a well
posed model, it cannot be solved at this level, since the detailed geometry of the
surface that bounds the phase is not known and is too complex to be described.
As a consequence, the description and solution of a flow and transport problem at
the microscopic level is impossible.

To circumvent these difficulties, the transport problem is transformed from
the microscopic level to a macroscopic one, at which the transport problem is
reformulated in terms of averages of the microscopic values [23]. The average
values are measurable quantities. We refer to this approach as the continuum
approach.

In the continuum approach, the real porous medium domain, consisting of two
or more phases, is replaced by a model in which each phase is assumed to be
present at every point within the entire domain. Each phase, thus, behaves as a
continuum that fills up the entire domain. We speak of overlapping continua, each
corresponding to one of the phases, or components [23].

For every point within each of these continua, average values of phase and
component variables are taken over an elementary volume centered at the point.
The average values are referred to as macroscopic values of the considered vari-
ables.

In order to avoid that the averaged values depends on the averaging volume,
we need a criterion that determines a range of volumes where the averaged values
remain, more or less, constant. An averaging volume which belongs to that range
is considered a representative elementary volume (REV).

If such a REV cannot be found for a given domain it cannot qualify as porous
medium domain. A conceptual determination of the size of an REV for a domain
is shown in Fig 2.2. The determination is based on porosity as a geometrical
property of the porous medium.

2.2 Models for fractured reservoirs

Rocks in the earth’s crust are in general fractured, i.e., broken up by joints and
faults. Pressurized fluid is frequently present both in open fractures and in the
pores of the rock itself [88]. Fractures may form in response to stress due to,
e.g., the weight of the earth’s crust, high fluid pressure, tectonic forces, or thermal
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Figure 2.2: Definition of porosity and representative elementary volume. After
Bear [23].

loading. Fractures also occur at many scales, from microscopic to continental.
They may be “filled” with various minerals, such as calcite, dolomite, quartz of
clay minerals, or they may be “open”, in which case they may be filled with fluids
under pressure.

Fractures are important in engineering, geotechnical, and hydrogeological
practice. They can act as hydraulic conductors, providing pathways for fluid flow
or barriers that prevent flow across them. In many rock masses, field-scale fluid
flow takes place predominantly through fractures, rather than through the matrix
rock itself. In some cases most of the flow may take place through a single frac-
ture, whereas in other cases the flow occurs through an interconnected network
of fractures. Many petroleum, gas, geothermal, and water supply reservoirs form
in fractured rocks. Fractures can control the transport of chemical contaminants
into and through the subsurface. Nearly half of all known hydrocarbon reserves
are located in naturally fractured formations [117], as are most geothermal reser-
voirs [32]. Fracture flow is of importance in understanding and predicting the
performance of underground radioactive waste repositories [158].

The choice of a model concept for the description of fractured media strongly
depends on the scale of the problem, the geological characteristics of the area
of investigation, and the purpose of the simulation. Bear [25] classifies various
problems of flow and transport in fractured porous media as follows:

• Zone 1: The very near field. Interest is focused on flow and transport
processes within a single, well-defined fracture, possibly with transport into
the porous blocks that bound it.

• Zone 2: The near field. Flow and transport processes are considered in
a relatively small domain, which contains a small number of well-defined
fractures. The location and shape of the individual fractures are either deter-
ministically defined or can be generated stochastically, based on statistical
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information from the real system.

• Zone 3: The far field. On this scale, the flow and transport processes
are regarded as taking place, simultaneously, in at least two continua. One
continuum is composed by a network of large scale fractures and the other
one by the porous rock. Mass of the fluid phase and its components may be
exchanged between the two continua.

• Zone 4: The very far field. The entire fractured medium is considered as
one single continuum, possibly heterogeneous and anisotropic in order to
account for large scale geological layers and fault zones.

Hence, to set up models of systems with such varying characteristics, different
model concepts are necessary. These concepts are also illustrated in Figure 2.3.
The models can be classified into 1) continuum models, or 2) discrete fracture
models, or 3) hybrid models, see e.g. [10, 20, 29, 51, 57, 93, 115, 119, 129,
141, 142]. The models differ in their representation of the heterogeneity of the
fractured media, and whether they are formulated in a deterministic or a stochastic
framework.

Continuum models [19, 25, 30, 45, 51, 93, 119, 141, 155] are based on the
spatial averaging approach. The REV concept [23] is justified if a formation con-
tains a dense network of highly interconnected fractures. If a REV can only be
defined at a scale similar to the problem of interest, as is the case for poorly con-
nected networks, or if a network consists of fractures with no characteristic size
limit, then the REV approach is inappropriate [29]. Continuum models include the
dual-porosity model (DPM) [19, 45], which has been widely used for large-scale
simulations, especially in the oil industry. In this case the rock matrix form one
continuum and the fracture network another, overlapping continuum [19, 155].
If one of these overlapping continua dominates all relevant aspects of flow and
transport, the system acts as a single matrix- or fracture-dominated continuum.
Otherwise, the model accounts for possible fluid and solute migration from one
continuum to the other under a pressure and/or concentration difference between
the two. If the fluid and mass transfer between the two is fast in comparison to
flow and transport through the rock, one may consider the two continua to be at
equilibrium and treat the rock as an equivalent effective (single) matrix-fracture
continuum. In the absence of such equilibrium, it is common to adopt a dual
porosity model in which the matrix acts as non-conducting storage reservoir; the
fractures form a conducting medium with negligible storage capacity; and the
transfer of fluids (or solutes) between these two overlapping continua is linearly
proportional to the pressure (or concentration) differential between them at each
point in space-time.
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Figure 2.3: Model concepts for the description of fractured porous media (based
on Kröhn (1991) and Helmig (1993))
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Discrete fracture models [10, 51, 57, 142] allow quantification of many flow
and transport phenomena that are not adequately captured by continuum models.
An advantage of the discrete fracture approach is that it can account explicitly
for the effects of individual fractures on fluid flow and transport. In cases where
the matrix is almost impermeable and only interconnected fractures contribute to
flow, network models (DFNs) [10, 51] have been used, where the matrix is ne-
glected and the fractures are modeled by line segments in 2D and pipes or planes
in 3D. When both fractures and the matrix play a significant role for the flow
and transport processes and the model domain cannot be homogenized a single-
porosity model concept has been used [57], where both matrix and fractures are
explicitly modeled. DFMs are essentially stochastic in that one cannot hope to
characterize all fractures accurately [39], and they are best treated in a stochastic
framework, by considering Monte Carlo analysis based on multiple realizations
of a fracture system. One application of DFN models has has been to generate
numerous random DFNs for the purpose of ascribing random effective parameters
to subdomains of the rock mass, which would then be treated as a random het-
erogeneous stochastic continuum, also called stochastic continuum model (SC)
[161].

Continuum models may offer advantages over DFMs regarding model size,
speed, and modeling of multiphase flow, on the other hand, they may miss local
dominant phenomena, regrading network connectivity [56]. A hybrid model (see
[10, 29, 51, 103, 119], and references therein) is a usually implemented as a DFM
with upscaled matrix properties accounting for some of the fractures. The hybrid
model aims at being more computational efficient than the full DFM, and more
accurate than the continuum model. Such models can also be used when a fracture
system do not possess any homogenization scale and it is difficult to define a
REV in the continuum model. They have also been used in cases where site
characterization only enables partial delineation of discrete fractures and assigns
bulk properties to other regions [29].

In both the continuum and the hybrid models, parameters such as permeability
and the transfer function must be determined. Discrete fracture models have been
used to determine improved local transfer functions between the matrix and the
fractures [92] in dual-porosity models.

2.3 Models for a fracture

An important factor that dictates fracture porosity and permeability is the mor-
phology of the fracture planes [118]. This morphology can be observed observed
in core and outcrop and inferred from some well logs. There are four basic types
of natural fracture plane morphology [118]:
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b

aperture
Fracture

Local parallel platesNatural single fracture Parallel plates

Figure 2.4: Parallel plate concept, after Reichenberger et al. [136]

• open fractures,

• deformed fractures,

• mineral-filled fractures or

• vuggy fractures.

A natural fracture is bounded on both sides by the rock surface. The rough
fracture walls do not have an identical profile and the normal tension is carried by
contact zones between walls [57].

Fluid flow in a filled fracture can be treated by Darcy’s law, since a filled frac-
ture is a porous medium. For open fractures, a different situation arises, which has
been addressed by many researchers. A model concept frequently used for open
fractures consists of two parallel plates, representing the fracture walls. As illus-
trated in Figure 2.4, it can be applied locally maintaining a variation in fracture
aperture throughout the fracture, or globally, assuming one constant aperture for
the total fracture. It is a well-known fact that especially the latter approach is a
strong simplification of nature. However, other methods proposed in the literature
have not yet found general acceptance [29].

When the parallel-plate concept is applied, it is assumed that the length scale
l of the plates is much larger than the distance between them b (l� b). Further-
more, hydraulically smooth walls and laminar flow are assumed, corresponding to
the Poiseuille fluid model. Figure 2.5 shows two parallel plates and the parabola-
shaped velocity profile, indicating laminar flow. From the Navier-Stokes equation
for laminar single-phase flow of an incompressible Newtonian fluid, it can be
shown [25] that the permeability K of the fracture, approximated by the parallel
model, is given by

K =
b2

12
, (2.1)

where b is the aperture of the fracture.



2.3 Models for a fracture 15

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

b = 2H
x

y
z v(z)

z = +H

z = -H

l >> b

Figure 2.5: Parallel plates, after Reichenberger et al. [136]





Chapter 3

Mathematical model

In the previous chapter we described the development of a conceptual model for
a (fractured) porous medium. Having developed a conceptual model for the sys-
tem, the next step is the representation of the conceptual model in the form of a
mathematical model. In principle, a mathematical model can be stated and solved
at the microscopic level, as discussed in the previous chapter. However, this ap-
proach is not possible, since we cannot describe the geometry and observe and
measure quantities at this level. Therefore, the mathematical model is simplified
by transforming it from the microscopic level, to a macroscopic, or continuum
level, where it is formulated in terms of measurable variables that are averages of
microscopic quantities, as described in the previous chapter.

The mathematical models developed in this chapter can be applied to problems
including water flow and transport of pollutants in aquifers, flow of hydrocar-
bons in petroleum reservoirs, and carbon sequestration in geological formations.
They consists of sets of partial differential equations which express conservation
of mass.

By using local averaging techniques [157] it can be shown that under appro-
priate assumptions the momentum conservation of the Navier-Stokes equation re-
duces to Darcy’s law on the macroscopic level. The Darcy equation for laminar
flow in porous media, developed by Henry Darcy in 1856, gives a relationship
between the flow rate and the pressure gradient. It can be written as

q = −
K

µ
(∇P −ρg), (3.1)

where q is the specific discharge vector (commonly denoted the Darcy velocity),
K is the permeability tensor µ is the viscosity, ρ is the density, g is the gravity
vector, and P is the pressure of the fluid. The permeability tensor is function of
the position in the medium, and quantifies the ability of the rock to transmit fluid.
The permeability can vary with direction, in which case the porous medium is
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called anisotropic, otherwise it is called isotropic.
Since flow only takes place through a part of a cross-sectional area of a porous

media, the Darcy velocity q is related to the average (particle) velocity v through

q = φv, (3.2)

as shown by Bear [23]. Here φ is the porosity which is a measure of the fraction
of void space within an REV. Darcy’s law is valid for slow flow of a Newtonian
fluid through a porous medium with rigid solid matrix, see [23, 144].

3.1 Single phase flow

The equation governing single phase flow in a porous medium is derived by com-
bining: 1) conservation of mass, 2) Darcy’s law, and 3) an equation of state.
Consider a typical volume element (control volume), Ω, then conservation of
mass implies that the rate of mass accumulated within Ω equals the rate of mass
flow across the boundary of Ω plus the amount of mass injected into Ω via wells
(sources or sinks). If ∂Ω is the boundary of Ω with normal vector n and f is the
mass flow rate per unit volume injected into Ω, then conservation of mass can be
described by

d

dt

∫

Ω
φρdV = −

∫

∂Ω
ρq ·ndS+

∫

Ω
fdV. (3.3)

By applying the theorem of Gauss, and using that Equation (3.3) is valid for any
volume Ω, we get the parabolic partial differential equation

∂(φρ)
∂t

+∇· (ρq) = f. (3.4)

If the fluid is incompressible, i.e., ρ is constant, and if the rock is nonde-
formable, i.e., φ is constant in time, we obtain from Equation (3.4) the elliptic
partial differential equation

∇·q =
f

ρ
, (3.5)

which is also the form of Equation (3.4) for steady state flow.

3.2 Single phase, tracer transport

We now consider the transport of a component, e.g., solute or tracer, contained
in a fluid phase. The mass of the tracer per unit volume of fluid is denoted the
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concentration, c, of the solute. We consider an ideal tracer that does not affect the
fluid’s density and viscosity.

Mass conservation for the tracer derived similarly as Equation (3.4) gives,

∂(φc)
∂t

+∇·J = qt, (3.6)

where J is the total mass flux of the tracer, and qt is the source term. The total
mass flux is composed of advective, dispersive and diffusive fluxes [27], given by

J = cq−D∇c, (3.7)

where D is the tensor of hydrodynamic dispersion. It can be composed of two
terms describing molecular diffusion and mechanical dispersion, see e.g. Bear
and Verruijt [27].

If dispersion is neglected, and incompressible fluid and porous medium is as-
sumed, Equation (3.6) reduces to

φ
∂c

∂t
+q ·∇c = qt. (3.8)

3.3 Two phase flow

At last, we consider the flow of two immiscible phases, typically oil and water
(o,w), with a single component in a porous media. The extended Darcy’s law [82]
for each phase α is given by:

qα = −
krα
µα
K (∇Pα −ραg), α = o,w (3.9)

here qα are the specific discharge vectors (commonly denoted the Darcy veloci-
ties), K is the permeability tensor krα are the relative permeabilities, µα are the
viscosities, ρα are the densities, g is the gravity vector, and Pα are the phase pres-
sures.

Let Sα denote the fraction of the volume occupied by phase α at a given point
in the reservoir. Conservation of mass over a control volume Ω gives,

d

dt

∫

Ω
(φραSα)dV +

∫

∂Ω
(ραqα) ·ndS =

∫

Ω
Qα. (3.10)

By standard arguments we get the local form:

∂

∂t
(φραSα)+∇· (ραqα) =Qα, (3.11)
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where Qα is the source term for phase α. In addition, we will assume the consti-
tutive relations (equations of state):

Sw +So = 1 (3.12)
Po−Pw = Pc(Sw) (3.13)
ρα = ρα(Pw) (3.14)
µα = µα(Pw) (3.15)
krα = krα(Sw), (3.16)

and we assume that the porosity and the permeability are known:

φ = φ(x, t) (3.17)
K =K (x, t). (3.18)

By inserting the Darcy velocity in (3.11), we obtain the the flow equations for
the flow of two phases with a single component in a porous medium:

∂

∂t
(φραSα)+∇· (−ρα

krα
µα
K (∇Pα −ραg)) =Qα, α = o,w (3.19)

This is a system of two nonlinear equations in two unknowns, e.g., Pw and Sw.
We will reformulate the last equations into one pressure equation (elliptic) and

one saturation equation (hyperbolic). To obtain the pressure equation, we expand
the time derivatives in (3.19), and add the two resulting equations, giving

∂φ

∂t
+φ
(

Swcw
∂Pw
∂t

+Soco
∂Po
∂t

)

+

1
ρw
∇· (ρwqw)+

1
ρo
∇· (ρoqo) =

Qw
ρw

+
Qo
ρo
, (3.20)

where we have used (3.12) and

cα =
1
ρα

∂ρα
∂Pα

(3.21)

Equation (3.20) is called the pressure equation.
The water velocity can be expressed in terms of the total velocity as

qw = fwq+hwK (∇Pc+ (ρw −ρo)g), (3.22)

where we have used Equation (3.13) and

λα =
krα
µα

(3.23)

hw(Sw) =
λoλw
λo+λw

(3.24)

fw(Sw) =
λw

λo+λw
, (3.25)
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and the total velocity q is given by

q = qw +qo. (3.26)

By inserting (3.22) into Equation (3.11) we get the saturation equation

∂

∂t
(φρwSw)+∇· (ρw(fwq+hwK (∇Pc+ (ρw −ρo)g))) =Qw (3.27)

We will now simplify the the problem by assuming: incompressible fluids,
time independent porosity, no capillary pressure, and no gravity. The flow equa-
tions (3.20) and (3.27) then simplifies to

∇· (−λtK∇P ) =
Qw
ρw

+
Qo
ρo

(3.28)

φ
∂Sw
∂t

+∇· (fwq) =
Qw
ρw

(3.29)

where λt = λw +λo.

3.3.1 Streamline formulation

Within streamline simulation, the streamline parameter τ is denoted the time-of-
flight (TOF). Since arrival times of particles along streamlines will be important,
we relate the time-of-flight to the average particle velocity and not the Darcy ve-
locity. Hence a streamline s(τ) = x(τ) is defined by

dx

dτ
=
q(x, t)
φ

, x(0) = x0 (3.30)

We also have:

‖
dx

dτ
‖ =

ds

dτ
, (3.31)

where s = ‖s‖. Hence,

ds

dτ
=
‖q‖
φ
. (3.32)

Integrating the last equation gives an expression for the time-of-flight as a function
of arc length:

τ(s) =
∫ s

0

φ

‖q‖
ds′. (3.33)
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From Equation (3.32), we derive the differential form

‖q‖
∂

∂s
= φ

∂

∂τ
, (3.34)

It follows from (3.28) that ∇·q = 0, away from sources and sinks. In this case the
saturation equation (3.29) becomes

φ
∂Sw
∂t

+q ·∇fw = 0 (3.35)

The last term on the left hand side can be rewritten using the time-of-flight coor-
dinate, using Equation (3.32), as

q ·∇fw = ‖q‖
∂fw
∂s

= φ
∂fw
∂τ

(3.36)

Hence, by using streamlines and time-of-flight, we can simplify the saturation
equation (3.35) to a set of 1D hyperbolic equations along streamlines:

∂Sw
∂t

+
∂fw(Sw)
∂τ

= 0 (3.37)

Note the two different meanings of t and τ in the last equation.



Chapter 4

Numerical model

In the previous chapter, we described simple flow and transport problems in
porous media using mathematical models. The description was made up of a
partial differential equation, or a system of partial differential equations, together
with initial and boundary conditions. In order to solve a given flow problem, this
system of equations must be solved for the specific data of the problem. This can
be done using analytical methods, or numerical techniques. For most problems
of practical interest, because of the irregular shape of the boundaries, the spatial
variability of the coefficients appearing in the equations and in the boundary con-
ditions, the nonuniformity of the initial conditions, and the nonanalytic form of
the various source and sink terms, analytical solutions are impossible, except for
relatively simple problems. Solution of most problems can be obtained only by
numerical methods [27].

The main features of the various numerical methods are:

• The solution is sought for the numerical values of the state variables only
at specified points in the space and time domains defined for the problem
(rather than their continuous variation in these domains).

• The partial differential equations that represent balances of the considered
quantities are replaced by a set of algebraic equations written in terms of the
sought, discrete values of the state variables at the discrete points in space
and time mentioned above.

• The solution is obtained for a specified set of numerical values of various
model coefficients (rather than as general relationships in terms of these
coefficients).

• Because of the very large number of equations that have to be solved simul-
taneously, a computer code has to be prepared in order to obtain a solution,
using a computer.
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Sometimes, the term numerical model is used, rather than speaking of a “nu-
merical method of solution” (of the mathematical model). This is justified on the
grounds that a number of assumptions are introduced, in addition to those under-
lying the mathematical model. This makes the numerical model a model in its
own right [27].

In this chapter, we will describe three different numerical techniques all related
to efficient and accurate simulation of flow and transport in a possibly fractured
porous medium.

In the next section, we consider the numerical solution of the porous medium
pressure equation. Discrete fracture models, as discussed in Chapter 2, can be for-
mulated in a lower-dimensional framework, where the fractures are modeled in a
lower dimension than the matrix, or in an equi-dimensional form, where the frac-
tures and the matrix have the same dimension. When the velocity of the flow field
is needed explicitly, as in streamline simulation of advective transport, only the
equi-dimensional approach can be used directly. The velocity field for the lower-
dimensional model can then be recovered by post-processing which involves ex-
pansion of the lower-dimensional fractures to equi-dimensional ones. We compare
two different discretization methods for the pressure equation; one vertex-centered
approach which can be implemented as either a lower- or an equi-dimensional
method, and a cell-centered method using the equi-dimensional formulation.

In Section 4.2 we consider post processing of the velocity field obtained from
the pressure solution. For streamline tracing, post-processing is required for a
vertex-centered method in general. This is due to the way fluxes are defined. For
cell-centered methods fluxes are computed at the boundaries of the original mesh
cells, which are typically triangles or quadrilaterals in 2D. For the vertex-centered
methods, however, the fluxes are related to the boundaries of control-volumes that
coincides with the cells of the dual mesh. These cells are in general polygons
in 2D. Since streamline methods requires fluxes on triangles or quadrilaterals,
the fluxes of the vertex-centered solution is post-processed using a flux recovery
method to obtain new mass conservative flux on a new mesh consisting of quadri-
laterals. In addition, when lower dimensional fractures are considered, a fracture
expansion must be included in the recovery procedure.

Finally, in Section 4.3 we describe methods for tracing streamlines on irreg-
ular grids. A streamline tracing algorithm should satisfy certain tracing quality
criteria, e.g., no crossing of streamlines, independence of starting point, reproduc-
tion of a uniform flow field, reproduction of symmetry, no premature termination
of streamlines in cells or at cell boundaries, good approximation to the true solu-
tion, and computational efficiency. We consider grids of quadrilaterals in 2D and
of hexahedrons in 3D. The tracing is based on a mapping of an irregular grids cell
into a unit square in 2D or a unit cube in 3D. We propose a new method that can
reproduce uniform flow in 3D.
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4.1 Finite volume methods for elliptic equations

The contrast in permeability between fractures and the porous matrix may span
many orders of magnitude and can vary highly in space [57], which is a major
difficulty in modeling fluid flow in fractured rock [51]. Due to the complex ge-
ometry of the system, unstructured grids are required for the discretization of the
domain. Also, the heterogeneous and anisotropic behavior of the permeability is
challenging for the numerical modeling of the system, and proper averaging of
permeability between the computational cells is crucial [65].

Transport models are used for for understanding and predicting the geological
system using results like break-through curves, arrival time and storage behav-
ior. The outcome of transport simulations strongly depends on the distribution of
velocities in the fractures [51]. The velocity distribution cannot, in general, be
determined analytically, and must be obtained numerically from the solution of a
flow (pressure) equation.

Thus, the success of a transport simulation is closely related and linked to the
efficiency and accuracy of the numerical scheme for the flow equation. In this
thesis, we consider, among others, different numerical schemes for the solution
of the flow equation in the presence of fractures. In the following, we present a
short literature review over discretization methods for the porous media pressure
equation [15, 128] with focus on finite volume methods.

We begin by considering the following equation modeling flow of a single
phase in a porous medium,

−∇·K∇P = f, (4.1)

where K is the permeability tensor, P is the pressure, and f is the source term.
There has been extensive research on developing numerical schemes for Equation
(4.1). Desirable properties of the discretization beyond the classical stability and
accuracy, include local mass conservation, proper averaging of transmissibilities,
discrete maximum principle, and cost-efficiency. These properties are crucial in
capturing the important details of the solutions of complicated problems on rel-
atively coarse grids. Methods dealing with discretization of Equation (4.1) can
be broadly classified as a) finite difference methods, b) finite element methods,
and c) finite volume methods. A further classification is into locally conservative
methods [97], and non-conservative methods. Finite volume methods are by defi-
nition locally (mass) conservative, whereas the standard Galerkin methods are in
general not [159].

Locally conservative finite element methods include the discontinuous
Galerkin methods [40], and the mixed finite element methods [13]. Mixed fi-
nite elements are attractive due to their accurate approximation of the velocity,
and proper treatment of discontinuous coefficients. However, an algebraic system
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Figure 4.1: Cell-centered and vertex-centered finite volume methods. Left: cell-
centered. Right: vertex-centered. Solid lines: primal grid; dashed lines: dual grid;
black dots: location of unknowns

of saddle point type [42] must be solved, resulting in a large linear system with
a non positive definite matrix. To circumvent these problems, a hybrid form of
the MFE method has been used [34]. In this case, the method can be reduced
to a symmetric positive definite system for the pressure Lagrange multipliers on
the element faces. Advantages of the discontinuous Galerkin method is handling
of non-matching grids and an increased order of accuracy. However, the method
introduces further degrees of freedom which increase the size of the global matrix.

In the following, we will only consider finite volume methods. Finite volume
methods is well suited for simulation of various types of conservation laws [72].
The finite volume method is based on a “balance” approach: a local balance is
written for each discretization cell which is often called “control volume”; by
the divergence theorem, an integral formulation of the fluxes over the boundary
of the control volume is obtained. The fluxes over the boundary are discretized
with respect to the discrete unknowns. The most common schemes are either cell-
centered (block-centered), in which the primal grid cells are used to define the
control volumes, or vertex-centered (point-distributed), in which control volumes
are constructed around the primal grid vertices, see Figure 4.1. In this thesis,
we consider both vertex-centered and cell-centered approaches. In particular, we
will compare a vertex-centered box method with a cell-centered multi-point flux
method for a discrete fracture model. The next two sub sections present a short
review of the literature on these methods.

4.1.1 Vertex-centered methods

For the vertex-centered methods we will focus on the box methods, also called
finite-volume element methods (FVE) [36], control-volume finite element method
(CVFEM) [16], generalized difference methods [105], and subdomain collocation
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method [87, 163].
The vertex-centered finite volume method has been widely used in computa-

tional fluid dynamics, heat transfer, and porous media flow. We consider vertex-
centered FVMs that can be formulated as a finite element method, which is char-
acteristic for the box type methods. Generally, a finite element method involves
two spaces, the test- and the trial-space. The box method can be cast in the fi-
nite element setting with a trial space of piecewise polynomials over the primary
grid, and a test space over the dual grid. In the box method, the trial functions
will be different from the test functions, hence the box scheme can be treated as
a Petrov-Galerkin finite element method [44]. We consider box schemes where
the test functions are piecewise constant, and the trial functions are conforming
piecewise linear polynomials.

Note that most papers are concerned with theoretical studies of error estimates,
due the close connection to the finite element method. The papers often differs in
their requirements on the mesh, and in the type of proof used. Papers dealing with
applications commonly consider multiphase flow.

For early and non-English literature, we refer to the books of Heinrich [81]
and Li et al. [105]. Also Ewing et al. [71] mention some early Russian FVE
literature from the 1960ies.

Baliga and Patankar [16, 17] develops the control volume finite-element
method. In those papers the method was applied to a convection-diffusion prob-
lem. Ramadhyani and Patankar [134] compares the control-volume finite element
method with the Galerkin method for the Poisson equation.

For papers on error estimates, see, e.g., [37, 41, 48, 71]. For superconvergence
results see [31, 86].

The PhD-thesis of Trujillo [153] investigates high-order FVE methods and
also gives a nice introduction to FVE method. Li et al. [105] give a comprehensive
overview of generalized difference methods for second order elliptic equations.
They describe both first-order and higher-order methods on triangles and quadri-
laterals. Rui [138] develops a symmetric FVE method for general self-adjoint
elliptic problems. For other types of box schemes, see [54, 112].

There are few applications to single phase flow in the literature, most ap-
plications of the vertex-centered approach is to multi-phase flow, see, e.g,
[21, 44, 73, 83, 113, 127, 135].

A different type of vertex-centered method is the vertex-centered MPFA-
methods, which is different from the box methods presented here, in the sense
that rock properties are not constant over the cells of the primal grid, but instead
it is constant over the (polygonal) cells (or control-volumes) of the dual grid, see
[3, 65]. Since the vertex-centered MPFA methods have very similar formulation as
the cell-centered MPFA methods, and papers often discuss both methods in a gen-
eral framework, we refer to the next section for discussion of the vertex-centered
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MPFA method.

4.1.2 Cell-centered methods

In cell-centered methods the control-volumes are associated with the primary grid.
This is convenient compared to vertex-centered methods, when considering dis-
continuous media properties combined with a quadrilateral or triangular primary
mesh. In this case it is easy to align the grid edges, and hence, the control-volume
boundaries with media discontinuities. This is important considering multi-phase
flow, and a reason why many existing petroleum reservoir simulators are based on
cell-centered discretizations.

Many types of cell-centered formulations for irregular grids have been pro-
posed in the literature, e.g., integrated finite differences [116], mimetic finite dif-
ference methods [146], enhanced finite differences [12], control-volume mixed
finite element methods [35], and multi-point flux approximation methods [1].

The integrated finite difference methods has the disadvantage that it is based
on the criteria that cell faces are perpendicular to the connections between the cell-
midpoints [137], the mimetic finite difference method has many desirable prop-
erties like applications to general grids and a symmetric positive definite matrix;
however, the method introduces additional cell-edge unknowns. The enhanced
finite difference method is very accurate for smooth grids and coefficients, but
loses accuracy near discontinuities [156]. The control-volume mixed finite el-
ement method solve for both velocity and pressure, similar to the mixed finite
element method. Hence, the method can give an accurate approximation of the
velocity at cell-edges, but it also introduces additional unknowns compared to
methods only solving for the cell-center pressures.

In this review we focus on the multi-point-flux approximation (MPFA)
method, also called flux-continuous scheme. Rapid variation in permeability is
common for flow in porous media, and for oil reservoirs in particular. For a dis-
crete model, the computational grid and the geology will, in general, interact to
produce a full permeability tensor. Early work in the 1970ies and 1980ies as-
sumed either an isotropic permeability tensor or a diagonal tensor such that the
discretization could employ a minimal five-point operator, or alternatively, a two-
point flux [116, 80]. However, this assumption is only true if the computational
grid is aligned with the principal axis of the tensor. The multi-point flux ap-
proximation methods were developed as an improvement to the two-point flux
approximation when considering irregular grids and a full permeability tensor.

Different research group developed similar methods starting in the beginning
of the 1990ies. Most notably among these are the multi-point flux approximations
(MPFA) of Aavatsmark et al. [1] and the flux-continuous (FC) schemes of Ed-
wards et al. [65]. The schemes are control-volume distributed, meaning that the
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rock properties are assumed constant over control-volumes, and they maintain a
single degree of freedom per control-volume. The schemes can be formulated as
either vertex-centered or cell-centered [3, 65].

The vertex-centered formulation of the MPFA-methods are different from the
box methods discussed in the previous section, in the sense that rock properties
are not constant over the cells of the primal grid, but instead it is constant over
the (polygonal) cells (or control-volumes) of the dual grid, see [3, 65]. A possi-
ble disadvantage of this approach is that it is difficult to align the grid cells with
discontinuities in permeability; see Edwards and Pal [64] for an overview of the
methods.

A central issue have been if the descretization is symmetric and positive defi-
nite (SPD). An SPD formulation is favored theoretically for proving convergence
and practically for using simpler and more robust solvers. Methods derived in
the physical space is commonly not symmetric, whereas methods derived in the
transform space are. However, the latter methods may experience a reduced order
of convergence. For papers related to the physical-space based methods, see, e.g,
[3, 64, 67, 104, 154], and for papers related to the transform-space based methods,
see, e.g., [2, 1, 61, 62, 98, 126].

Different types of MPFA-methods have been developed with different con-
vergence and monotonicity properties. The most popular method has been the
O-method. In this method, transmissibility are calculated by requiring continuity
of potential and flux at the interfaces of cells in an interaction region. The po-
tential is only required to be continuous at a point of the interfaces, and different
locations of the continuity point yield different methods. Let η ∈ [0,1] be the frac-
tion of the cell half-edge from the edge midpoint to the continuity point and term
for each η the resulting method for O(η). The O(η) method have been considered
by, e.g., [60, 61, 65, 126], whereas the specific case of η = 0, also called just the
O-method, is considered by, e.g., [2, 7, 8, 11, 67, 68, 101, 102, 104]. Other meth-
ods include the U-method [2, 3, 5, 6], the L-method [9, 38], and the Z-method
[123].

Due to the non-variational form of these methods, it has been difficult to obtain
analytical error estimates, and numerical convergence rates has been presented
in many papers, see, e.g., [6, 7, 68]. However, recently a connection between
the mixed-finite element method and the MPFA methods have been established,
which have allowed rigorous error estimates to be developed for these methods
[11, 96, 98, 156, 160].

Monotonicity issues have been considered by [4, 43, 120, 121, 123]. and the
3D case have been considered by, e.g., [1, 5, 63]. For other MPFA methods, see
[43, 147, 154].
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4.1.3 The box method

The box methods [18] are vertex-centered FVMs that can be formulated as a finite
element method. Generally, a finite element method involves two spaces, the test-
and the trial-space. The box method can be cast in the finite element setting with
a trial space of piecewise polynomials over the primary grid, and a test space over
the dual grid [105]. Since the trial functions will be different from the test func-
tions, the box scheme can be treated as a Petrov-Galerkin finite element method
[44].

For the box-scheme considered herein, the test functions are piecewise con-
stant, and the trial functions are conforming piecewise linear polynomials. This
kind of box scheme has also been called control-volume finite element method
[16], finite volume element method [36], generalized difference method [105],
and subdomain collocation method [87, 163].

Consider first the case of no fractures. The domain is discretized with triangu-
lar and/or quadrilateral elements Ej, j = 1, . . . ,Ne, and vertices V i, i = 1, . . . ,Nv.
In the box method, one algebraic equation corresponds to every vertex in the pri-
mary mesh. The boxes are usually constructed as a dual mesh of an underlying
grid. There are various ways to introduce the dual mesh, e.g., the Voronoi mesh
based on the circumcenter [36, 105], or the Donald-mesh, based on the barycenter
[18, 44, 71].

For the Donal-mesh the secondary dual mesh is defined by connecting the
barycenter (centroid) of each element Ej with edge midpoints. The dual mesh
divides each element into three or four sub quadrilaterals depending on the type
of element (triangle/quadrilateral). The union of all sub quadrilaterals adjacent
adjacent to a vertex V i is denoted ΩBi , or the control volume associated with V i,
see Figure 4.2 (left).

As for the finite element method, the unknown in Equation (4.1), P = P (x,y)
is approximated using basis functions φi, i = 1, . . . ,Nv, weighted by discrete val-
ues P̂i ≡ P (V i), i.e., P ≈ P̃ =

∑

φiP̂i. A basis function is a piecewise continuous
function such that its restriction to a triangular element will be a linear function,
whereas its restriction to a quadrilateral is an isoparametric mapping of a bilinear
function on a reference element [49, 150]. As usual, the basis functions φi are
local functions, meaning that they are identically zero outside ΩBi .

The approximation of P with P̃ now leads to a residual in Equation (4.1),
∇ · q̃−∇ ·q = ∇ · q̃−f , where q̃ = −K∇P̃ . In the method of weighted residual
[163], the weighted integral of the residual over the whole domain is set to zero,

∫

Ω
Wi(∇· q̃−f )dV = 0, i = 1, . . . ,Nv, (4.2)



4.1 Finite volume methods for elliptic equations 31

VI

VJ

Figure 4.2: Left: Sample grid with no fractures consisting of a primary grid of
two quadrilaterals and four triangles. The dual grid is indicated by dashed lines.
The control volume associated with the central vertex (black circle) is indicated
by the heavy dashed line. Right: Grid with fractures; intersection points indicated
with red circles. A fracture intersects the dual mesh at its midpoint. The vertices
VI and VJ are the end points of a fracture segment.

for each weight functionWi, i= 1, . . . ,Nv. The Box-method uses the simple form,

Wi(x) =

{

1 x ∈ΩBi
0 x 6∈ΩBi .

(4.3)

The application of the divergence theorem to (4.2) now leads to a set ofNv surface
integrals over the boundaries of each control volume ΩBi . For triangular elements,
these integrals can be evaluated analytically, whereas for quadrilateral elements
the gradient of the pressure is not constant on each element, and numerical inte-
gration is required. In the numerical experiments in this paper we used a midpoint
rule to evaluate the fluxes for quadrilateral elements.

Assuming an element-wise constant permeability, the Nv integrals can be ex-
pressed as

Nt,i
∑

j=1

3
∑

k=1

γi,j,kP̂i,j,k = fi i = 1, . . . ,Nv. (4.4)

Here, we have assumed a grid of only triangular elements, and the sum on k is
running over the three vertices of each triangle j contributing to the control volume
ΩBi . There are Nt,i triangles contributing to ΩBi , and P̂i,j,k refers to the pressure at
local corner number k of triangle j. Furthermore, fi is the integral of the source
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term f over ΩBi , and γi,j,k can be expressed as

γi,j,k =
[

K i,j

2Ti,j
νi,j,k

]

· (n1
i,j +n

2
i,j). (4.5)

Here n1
i,j and n2

i,j are the two outward normal vectors (having length equal to the
length of the interface) associated with the part of ∂ΩBi lying within triangle j,
K i,j and Ti,j are the permeability tensor and the area of triangle j, respectively.
The vectors νi,j,k and the area Ti,j results from taking the gradient of the linear
pressure variation in triangle j as shown in, e.g., [6].

The last part of the box method consists of the assembly of the coefficient ma-
trix and the right hand side of the linear system for the discrete (vertex) pressures
giving Nv linear equations for the Nv unknown vertex pressures P̂i. Note that,
for Dirichlét boundary conditions, the number of Dirichlét boundary nodes must
be subtracted from Nv, see below for a discussion of boundary conditions.

The linear system can be written in matrix form as

Au = b, (4.6)

where A is the Nv ×Nv coefficient matrix, u is an Nv ×1 vector of the unknown
vertex pressures, and b is anNv×1 vector representing the source terms or bound-
ary conditions. Since the linear system is symmetric positive definite, it can be
solved rapidly using, e.g., the preconditioned conjugate gradient method.

Discrete fractures

In n-dimensional space, fractures are often modeled as (n−1)-dimensional objects
[57, 135]. In 2D, this means that fractures are associated with the edges of the
finite element mesh. Hence, edges are either matrix edges (edges containing no
fractures), or fracture edges (edges containing a fracture), see Figure 4.2 (right).
The fracture edges are denoted by Fk, k = 1, . . . ,Nf , where Nf is the number of
fracture edges. A fracture edge intersects a control volume boundary of the dual
mesh at its midpoint, see Figure 4.2 (right).

Each fracture edge Fk will also have an associated aperture ak, permeability
kk, and length lk. Refer to Chapter 2.3 for a discussion of how to determine the
permeability for open fractures.

The length lk is the length of the fracture edge, the permeability kk is assumed
to be isotropic such that a two-point flux can be applied inside the fracture and the
aperture ak is not resolved explicitly in the grid, but used for computing fracture
fluxes, as discussed next.

Consider a fracture edge Fk with end points at nodes VI , 1 ≤ I ≤ Nv, and
VJ , 1 ≤ J ≤ Nv, as in Figure 4.2 (right). Then the flux Qi,j,k out of ΩBI at the
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midpoint of Fk is approximated as a two-point flux

Qk =
kkak
lk

(P̂I − P̂J ). (4.7)

The above fluxes are then taken into account when evaluating the surface integrals
resulting from Equation (4.2), and when assembling the linear system (4.6).

Boundary conditions

V i

Figure 4.3: A boundary control volume is indicated by the heavy dashed line.

Mass conservation for interior control volumes, i.e. those not having common
boundary with ∂Ω, is always enforced through Equation (4.4). A control-volume
next to the boundary ∂Ω can be associated with either a Neumann or a Dirichlét
condition. Mass conservation is enforced for Neumann control-volumes. In order
to keep the number of equations equal to the number of unknowns, mass conser-
vation can, however, not be enforced for Dirichlét control volumes. Consider the
node V i in Figure 4.3. Assume ΩBi is a Neumann control-volume, then there will
be given fluxes (the boundary conditions) gLi and gRi as indicated with the red
arrows in the figure. Let gi = gLi +gRi , then mass conservation for ΩBi is obtained
by adding gi to the left hand side of Equation (4.4).

For interior control volumes, where Equation (4.4) involves some pressures
on a Dirichlét boundary, the exact pressure is inserted and the resulting terms are
moved to the right hand side.

4.1.4 The MPFA O-method

The lower-dimensional treatment of fractures in the box methods has been popu-
lar since it allows for easy mesh generation and a well-conditioned linear systems.
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However, streamlines cannot be traced directly for this approach, since there is
no transversal flow information in the lower-dimensional fractures (see also the
discussion of flux-recovery in the next section). It is therefore of interest to con-
sider equi-dimensional methods. In this section we consider the cell-centered
MPFA method for equi-dimensional fractures. Note that the MPFA method also
has been used with lower-dimensional fractures [85], however this approach can
only be used for low-permeable fractures.

In cell-centered finite volume methods the control-volumes are associated with
the primary grid. This is convenient compared to vertex-centered methods, when
considering discontinuous media properties combined with a quadrilateral or tri-
angular primary mesh. In this case it is easy to align the grid edges, and hence,
the control-volume boundaries with media discontinuities.

Here we use a multi-point flux O-method (MPFA O-method), briefly de-
scribed below. For an overview of different MPFA schemes see, e.g., [3, 1, 6, 64,
154], and references therein. The letter “O” comes from the shape of the polylines
connecting the involved grid points in a cell-stensil [3]. The MPFA O-method is
based on full flux continuity across cell edges, continuity of the pressure at the
midpoint of the cell edges, and mass conservation for each cell. The pressures
at cell edges is eliminated locally using the flux continuity constraints, and the
global system is expressed in terms of the cell center pressures.

For the MPFA O-method the control volumes are associated with the original
mesh, whereas for the box method, control volumes were associated with the dual
mesh. By integrating Equation (4.1) over a control volume ΩMi and applying
Gauss’ theorem we have

−
∫

∂ΩMi

K∇P ·ndS =
∫

ΩMi

fdV, i = 1, . . . ,Ne, (4.8)

where n is the unit outward normal vector to ∂ΩMi . The only unknown in the last
equation is the pressure, which will be approximated at the center of each cell
(cell-centered method), in contrast to the Box-method, where the pressure is ap-
proximated at the vertices of the grid (vertex-centered method). Hence, Equation
(4.8) gives us Ne equations to determine the Ne unknown cell center pressures.
By assuming a constant permeability K i for each control volume, we can write
the integral on the left hand side of Equation (4.8) as

∫

∂ΩMi

−K i∇p ·ndS =
Ne,i
∑

j=1

∫

Γi,j
−K i∇p ·ni,jdS =

Ne,i
∑

j=1

Qi,j, i = 1, . . . ,Ne, (4.9)
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12

3

4 5

6

Figure 4.4: An interaction region, variational triangles, half-edges and pressure
nodes, respectively, for the central vertex of a simple grid. Variational triangles
are cross hatched; the half-edges are the heavy line segments numbered 1-6; solid
circles indicate auxiliary (temporary) pressure nodes, and non-solid circles indi-
cate cell center pressures.

where Ne,i is the number of boundary edges of ΩMi , i.e., Ne,i=3 for a triangle
and Ne,i=4 for a quadrilateral, Γi,j is boundary edge number j of ΩMi , ni,j is the
corresponding outward unit normal vector, and Qi,j is defined by Equation (4.9).
In order to determine the fluxes Qi,j in Equation (4.9) in terms of the cell center
pressures, we use a multi-point flux approximation (MPFA).

The MPFA method is based on dividing the grid into so-called interaction re-
gions Ii, i = 1, . . . ,Nv, associated with each vertex V i of the grid. The interaction
regions are equal to the control-volumes for the box method, see the previous sec-
tion. For each interaction region Ii there is a set of half-edges Ei,j, see Figure
4.4. On each side of a half-edge there will be two grid cells, denoted “L” and “R”.
Furthermore, each interaction region also contains a set of variational triangles
T αi,j, α = L,R, one for each cell α of half-edge Ei,j, see Figure 4.4.

Within each T αi,j, a linear pressure variation is assumed. This is done by fixing
the pressure at the corners of each T αi,j. Thus, in addition to the cell center pres-
sures, we introduce (temporary) pressures at the points indicated with the solid
circles in Figure 4.4. The linear pressure in each T αi,j is now assumed to be valid
also for calculating the flow across each of the two half-edges within Ii that are
closest to T αi,j, i.e., those with a common point with T αi,j.

Hence, the pressure gradient will be constant on each side of a half-edge. From
Equation (4.8) we see that the flow rate q must be given as

q = −K∇P. (4.10)

Substituting the constant pressure gradient into the last equation, we can express
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the flux across each half-edge Ei,j as

qαi,j =
3
∑

k=1

tαi,j,kP (xαi,j,k), (4.11)

where

tαi,j,k =
|Ei,j|
2T αi,j

(

Kα
i,jν

α
i,j,k

)

·ni,j, (4.12)

and P (xαi,j,k) is the pressure at corner k of T αi,j. The sign of the unit normal vector
ni,j to Ei,j is not important, but the same sign must be chosen for each value of
α. In the last equation, |Ei,j| is the length of Ei,j; T αi,j and ναi,j,k are the area and
normal vectors of T αi,j, resulting from taking the gradient of a the linear pressure,
see, e.g., [6].

Flux continuity across edge Ei,j can now be expressed as qLi,j = q
R
i,j, or

Aiui+Bivi = Ciui+Divi, i = 1, . . . ,Ne, (4.13)

where ui is a vector of cell center pressures, and vi contains the auxiliary pressures
(which we want to eliminate), and the matrices Ai, Bi, Ci, and Di, contains the
t-coefficients.

Note that since the pressure is required to be continuous at the auxiliary pres-
sure nodes, i.e., at the solid circles in Figure 4.4, there will be only one unknown
at these points, and hence each vi has exactly NE

i components, where NE
i is the

number of half-edges within Ii. It can also be shown that the matrices Bi and Di

are square NE
i ×N

E
i matrices.

We here assume that the interaction region Ii correspond to an interior corner;
for boundary corners and implementation of boundary conditions, see the next
section. For interior corners, the vectors ui and vi will also contain the same num-
ber (NE

i ) of unknowns, such that Ai and Ci are also square NE
i ×N

E
i matrices.

Due to the continuity condition (4.13) the flux qi,j across edge Ei,j is well
defined as either qLi,j or qRi,j, and can be expressed as, e.g., qi,j = qLi,j, which is
expressed in matrix form as

qi = Aiui+Bivi, (4.14)

where the j-th component qi is qi,j. Finally, we eliminate vi by using (4.13),

qi = (Ai+Bi(Bi−Di)−1(Ci−Ai))ui = Tiui (4.15)

Since the components of qi represents fluxes over half edges adjacent to a given
corner V i, the flux over edge Γk,j of grid cell ΩMk (see Equation (4.9)) can be
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found be combining certain components qi, i = A,B, where VA and VB are the
end points of Γk,j.

In this way, we assemble expressions for each of the Qi,j in Equation (4.9)
and inserting these into (4.8), we obtain Ne linear equations that can be solved
for the Ne unknown cell center pressures. The linear system is expressed as

Au = b, (4.16)

where A is the Ne×Ne coefficient matrix, u is an Ne×1 vector of the unknown
cell center pressures, and b is an Ne×1 vector representing the source terms for
each ΩMk , k = 1, . . . ,Ne, see Equation (4.8).

Boundary conditions

Dirichlét boundary conditions

Dirichlét boundary conditions have been investigated in [66, 68]. First, the easiest
case is when the pressure is known at the cell cent res of the cells closest to the
boundary. The pressure in cell ΩMk can be fixed to, e.g. uk, by redefining row k of
A in (4.16) to be ek, where ek is an 1×Ne vector with zeros everywhere except
for position k, where it is one, and then redefining component k of b to be uk.

Second, if the pressure are known at the midpoints of boundary edges, the
auxiliary pressures vi, see Figure 4.4 (right), can be used. For a boundary edge,
either qi,j,1 or qi,j,2 in Equation (4.13) does not exist. We can choose to define the
k-index in qi,j,k such that qi,j,1 is always defined. Then Equation (4.14) is also
always defined, even for boundary corners. However, Equation (4.13) is not well
defined for a boundary corner. We rewrite this system for a boundary corner as

Ãiui+ B̃ivi = C̃iui+ D̃ivi+γi, i=boundary corners (4.17)

where Ãi = Ai, B̃i = Bi, C̃i = Ci, and D̃i = Di, for rows corresponding to non-
boundary edges. For rows corresponding to boundary edges, the rows of Ãi, C̃i,
and D̃i, are set to zero, whereas the rows of B̃i is set to zero, except for the diagonal
element, which is set to one. The NEi × 1-vector γi is zero everywhere, except
for components corresponding to boundary edges, where it is equal to the fixed
pressure at this edge.

Now vi can be expressed as

vi = (B̃i− D̃i)−1(C̃i− Ãi)ui+ (B̃i− D̃i)−1γi, (4.18)

which is inserted in (4.14), such that the fluxes can be expressed in terms of the
cell center pressures.



38 Numerical model

Neumann boundary conditions

At a boundary edge Ei,j1 , the flux continuity condition (4.13) is rewritten as

qi,j1,1 = βi,j1 , (4.19)

where βi,j1 is a specified flux at the boundary edge. For convenience, we will also
set βi,j = 0 for non-boundary edges Ei,j. Then Equation (4.13), is rewritten as

Aiui+Bivi = Ĉiui+ D̂ivi+βi, (4.20)

where the j-th component of the vector βi is βi,j, and Ĉi = Ci, and D̂i = Di, for
non-boundary edges. For boundary edges, we have set the corresponding row in
Ĉi and D̂i to zero. We can now eliminate vi as in the previous paragraphs.

Some corners may have combined Dirichlét and Neumann boundary edges.
The procedures above are then combined.

4.2 Flux recovery

The precision of streamline tracing strongly depends on the accuracy of the veloc-
ity field [109]. Vertex-centered methods for flow simulation, like the box method,
compute mass conservative discrete fluxes at polygonal control-volume bound-
aries. However, streamline tracing requires fluxes at quadrilateral or triangular
cells. Computing fluxes at the primary mesh by differencing the finite element
representation of the solution, is not an option since it results in discontinuous
fluxes at element boundaries [149].

On the basis of work of Cordes and Kinzelbach [52] and Prévost [133], a
flux recovery for a two-dimensional fracture-matrix system is used to obtain con-
tinuous fluxes on a sub quadrilateral grid. Additionally, lower-dimensional frac-
tures, which are assumed in the flow simulation, have to be extended to equi-
dimensional ones to obtain well-defined velocities in the fractures, see [75]. Frac-
tures are expanded such that the resulting 2D fractures have a width equal to the
associated fracture aperture d and the 1D fracture is the center line.

Figure 4.5 shows the five cases that are most likely to occur in a discretized
fracture-matrix system. The control volumes are classified as: (type 1) no frac-
tures, (type 2) a single crossing fracture, (type 3) two crossing fractures, (type 4)
a single ending fracture, and (type 5) an ending fracture and one passing through.
The flux recovery for control volumes is presented here in detail for type 2, and is
briefly discussed for the other types afterwards. The expansion procedure for the
general case is discussed in [75].
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Type 2
Type 3 Type 5 Type 4 Type 1

Fractures
Dual mesh

Finite element mesh

Figure 4.5: Top: Triangular finite element mesh with fractures. Fractures are
indicated with heavy lines. Bottom: The different types of control-volumes con-
sidered.

4.2.1 Control volumes with single fractures

A simple prototype control volume of type 2 is shown in Figure 4.6(a). The con-
trol volume Ωcv of the central vertex V5, indicated with the dashed line, consists of
the union ofN quadrilateral sub control-volumes denotedQj, where j = 1, . . . ,N ,
(in this simple case N = 4), see Figure 4.6(a). We order Qj counter clock-wise
such that the common edge betweenQ1 andQN coincides with the fracture. Next,
the 1D fracture is expanded to a 2D fracture with aperture d, such that two new
rectangular sub control-volumesQf1 andQf2 are created inside the control volume,
see Figure 4.6(b). Each quadrilateral Qj is split into two triangles, one interior
T intj and one exterior T extj , relative to the central node of the control volume, see
also Figure 4.6(b). Only the part of the control volume composed of the interior
triangles T intj and the fracture sub control-volumes Qf1 and Qf2 is considered in
the flux recovery, see Figure 4.6(c).

From the flow simulation, fluxes are given over the exterior faces of the control
volume Ωcv, as indicated by the dashed line segments in Figure 4.6(b). Hence the
fluxes over the exterior edges Eextj in Figure 4.6(c) are known by mass conserva-
tion. The recovery procedure now proceeds by calculating additional conservative
fluxes on all remaining interior matrix edges, i.e., the edges (Eintj and Eint,fj ) and
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(a) Four elements (triangles) with vertices
V1, . . . ,V5. A control-volume (dashed line) is
associated with V5.
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(b) The control-volume in the left figure.
The fracture has been expanded to a 2D el-
ement with aperture d.
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Figure 4.6: Flux recovery for a control volume with an internal fracture
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the interior fracture edge (Ef ), see Figure 4.6(c). The fluxes are obtained indi-
rectly by computing a constant Darcy velocity qj for each interior triangle T intj .

The constant Darcy velocities qj and the fracture interior fluxes Ff must sat-
isfy the following conditions:

• Flux continuity at the exterior edges T extj , i.e.,

qj ·nj = Fj, j = 1, . . . ,N, (4.21)

where nj is the outward normal vector to Eextj as shown in Figure 4.6(d),
with length equal to the length of Eextj , and Fj are the known fluxes at the
corresponding edges.

• Flux continuity over common interior edges of the triangles T intj :

qj ·νj,j+1 = qj+1 ·νj,j+1, j = 1, . . . ,M −1,M +1, . . . ,N −1, (4.22)

where M is the number such that T intM and T intM+1 have edges in common

with Qf2 , see Figure 4.6(b). In our simple case, M = 2. Furthermore, νj,j+1

is the normal vector to Eintj pointing from T intj to T intj+1 and has length equal
to Eintj .

• Mass conservation for one fracture quadrilateral, e.g., Qf1 :

q1 ·ν
f
1,1−qN ·ν

f
1,1 +F

f +F f1 = 0, (4.23)

where F f is the unknown flux over the fracture interior edge Ef , F f1 is
the given flux over the edge of the expanded fracture quadrilateral Qf1 , see
Figure 4.6(c). The normal vector νf1,1 is shown in Figure 4.6(d). Note that
we consider only mass conservation for one of the fracture quadrilaterals; if
all of Equations (4.21), (4.22), and (4.23) hold, mass conservation for the
other fracture quadrilateral is automatically fulfilled since the total fluxes
out of Ωcv is mass conservative, i.e., is equal to zero.

A system of 2N − 1 linear equations has now been set up. However, a total
number of 2N + 1 (2N from the qj and one from the flux F f ) unknown com-
ponents must be determined. The remaining two conditions needed to close the
system are obtained by requiring the gradient of the pressure field to be irrotational
[52]. Assuming the velocity field to be given by Darcy’s law

q = −
K

µ
∇p, (4.24)
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and rearranging and taking the curl gives

∇×µK−1q = −∇×∇p = 0, (4.25)

since the curl of a gradient is always zero. Assuming the viscosity µ to be constant,
we have from the theorem of Stokes,

∫

Ω
∇×K−1qdV =

∮

Γ
K−1q ·ds = 0. (4.26)

Consider the reduced control volume in Figure 4.6(c). The fracture separates
it into two regions Ω1 and Ω2. The domain Ω1 contains the triangles T intj , j =
1, . . . ,M , and Ω2 contains T intj , j =M +1, . . . ,N . The boundary of Ωi is denoted
Γi, i = 1,2. From Equation (4.26), we then have

∮

Γi
K−1q ·ds = 0, i = 1,2. The

part of these line integrals taken along the boundary between the fracture and the
matrix, are to be evaluated within the fracture. Hence, the Integral equation (4.26)
over Γ1 can expressed as

M
∑

j=1

∫

Eextj

K−1
j qj ·ds+

∫

E
int,f
2

k−1
F q

f
2 ·ds+

∫

E
int,f
1

k−1
F q

f
1 ·ds = 0, (4.27)

where Kj denote the constant permeability in T intj . The permeability in the frac-

ture is assumed to be a scalar, denoted kF . The velocities qfi , i = 1,2, in the
fracture quadrilaterals Qfi , are generally not constant, but assumed to be given by
linear interpolation of the edge fluxes using Pollock’s method [131].

In the first two integrals in (4.27), both Kj and qj are constant, j = 1, . . . ,M .
Hence,

M
∑

j=1

∫

Eextj

K−1
j qj ·ds =

M
∑

j=1

K−1
j qj · tj =

M
∑

j=1

K−Tj tj ·qj, (4.28)

where the tangent vectors tj corresponds to a 90 degrees counter-clockwise rota-
tion of nj.

Using Pollock’s method for the velocity qfi , i = 1,2, in the fracture quadrilat-
erals, it can be shown that the last two integrals in (4.27) can be written,

∫

E
int,f
2

k−1
F q

f
2 ·ds =

(−F f2 −F
f )|Eint,f2 |

2kF |E
f
2 |

(4.29)

∫

E
int,f
1

k−1
F q

f
1 ·ds =

(F f1 −F
f )|Eint,f1 |

2kF |E
f
1 |

, (4.30)
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Figure 4.7: Five fractures meeting. Left: Unexpanded fractures. Right: Expanded
fractures.

where | · | denotes length of edge, e.g., |Ef1 | is the length of edge Ef1 . Note that the
fracture flux F f over the edge Ef is positive for flow out of Qf1 , and the fluxes
F
f
1 and F f2 are positive for flow out of the corresponding fracture quadrilateral.

As a result Equation (4.27) can be written

M
∑

j=1

K−Tj tj ·qj +
(−F f2 −F

f )|Eint,f2 |

2kF |E
f
2 |

+
(F f1 −F

f )|Eint,f1 |

2kF |E
f
1 |

= 0. (4.31)

A similar similar argument can be used to show that the zero curl condition for Ω2
can be written

N
∑

j=M+1

K−Tj tj ·qj −
(−F f2 −F

f )|Eint,f2 |

2kF |E
f
2 |

−
(F f1 −F

f )|Eint,f1 |

2kF |E
f
1 |

= 0. (4.32)

Equations (4.21), (4.22), (4.23), (4.31), and (4.32) now constitutes a set of
linear equations that can be solved for the unknown velocities qj and the fracture
flux F f .

The general case of a fracture-matrix control volume with % fractures meeting
at a vertex is now described briefly. A new mesh of expanded fractures is con-
structed by introducing a polygonM with % edges at the overlapping area of the
% expanded fractures. The % fractures now become % trapezoidal elements and the
central polygonM is divided into % triangles, each having one vertex at the cen-
troid of the polygon. A sketch of a case for % = 5 is shown in Figure 4.7. The flux
recovery method for two fractures described previously can now be extended to
the case of % fractures. The exterior flux continuity conditions in Equation (4.21)
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remain the same. However, the interior continuity equations in Equation (4.22)
are reduced from N − 2 to N − % due to the presence of more fractures within
the control volume. Furthermore, there are now % fractures for which Equation
(4.23) has to be imposed. Note that we do not impose mass conservation for the
central polygonM for the same reason as discussed after Equation (4.23). These
increased number of constraints are counterbalanced by an increased number of
unknown fracture fluxes. Next, Equations (4.31) and (4.32) have to be extended
to % curl relations, instead of two. Finally, after the system of equations have been
solved, the computed solution for the % fracture fluxes are used to compute the
interior fluxes for a triangulation of the central polygonM by following the orig-
inal method of Cordes and Kinzelbach [52]. For other types of control volumes, a
similar concept of fracture expansion and flux recovery is applied.

We do not consider the 3D case, however extensions of the flux recovery pro-
cedure to the 3D case without fractures has been considered by Prévost [132]. A
difficulty with the 3D case compared to the 2D case is that in 3D there are more
faces connected to a vertex than there are elements. In 2D, the number of edges
and the number of elements connected to a vertex were the same, which allow
a straight forward derivation of the linear system. In 3D, additional constraints
must be devised to close the system, or the system can be solved in a least-square
sense, see [132]. The expansion of fractures for the 3D case is discussed in [75].

4.3 Streamline tracing

Streamlines, pathlines, and streaklines are convenient tools for describing and
visualizing flow given by an external velocity field q = (qx, qy, qz). Streamlines
are a family of curves x = s(τ) that are instantaneously tangent to the velocity
vector q at every point

ds

dτ
= q.

Streamlines can be traced for any vector field, although the most common is that
q represents a velocity obtained from the solution of a set of flow equations. For
incompressible flow, streamlines defined at a single instant do not intersect and
cannot begin or end inside the fluid. Streamtubes are regions bounded by stream-
lines. Because streamlines are tangent to the velocity field, fluid that is inside a
streamtube must remain forever within the same streamtube.

A pathline x = p(t) is the trajectory traced out by an imaginary massless par-
ticle following the flow of the fluid from a given starting point,

dp

dt
= q(x, t), p(t0) = x0. (4.33)
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A streakline is the locus at a given instance of the positions of all fluid particles
that have gone through a fixed spatial point in the past. In steady flow streamlines,
streaklines, and pathlines coincide; in unsteady flow they can be different.

The integration of (4.33) to obtain particle paths and/or travel times, is known
as particle tracking, for which there exists a rich literature. The particle tracking
literature is primarily concerned with problems where the velocity field is only
known at a finite set of points, either measured or calculated from a flow model,
and interpolation is needed to integrate pathlines. In computational fluid dynam-
ics, particle tracking has been used for visualization [95, 99, 140, 148, 151]. Ve-
locity interpolation in control-volume mixed finite-element methods is a related
subject to particle tracking and has been considered in [114]. Within ground-
water flow simulation, particle tracking is used to model contaminant transport
[28, 52, 125, 139, 143, 145]. In visualization, the integration of (4.33) is usually
done numerically using a Runge–Kutta type solver, whereas in groundwater flow,
semi-analytical integration is the most common.

In the following we regard streamline tracing as a subset of particle track-
ing, since streamlines may be computed by particle tracking if we introduce the
streamline parameter τ as an artificial time variable for which the instantaneous
velocity field q(x, t) is steady. In this work we consider streamline tracing in the
context of streamline simulation of flow in hydrocarbon reservoirs [22, 33, 94].
In this case, the fluid velocity q is typically given as the numerical solution of a
set of flow equations for q and the fluid pressure, e.g., Equation (3.5) or Equation
(3.28).

How the corresponding discrete velocity approximation is defined, depends on
the numerical method:

• For finite-difference methods, the pressure is usually computed at cell cen-
ters, and fluxes can be obtained at cell edges by application of a discrete
form of Darcy’s law [162].

• For finite-element methods, the numerical solution gives a continuously de-
fined pressure approximation given as the sum of the basis functions for all
elements weighted by the corresponding node values. Although a continu-
ously defined velocity can be obtained from Darcy’s law, a better strategy is
given in [52, 58], where continuous fluxes are obtained at cell edges.

• Mixed finite-element methods solve for velocity and pressure simultane-
ously, resulting in a more accurate velocity field than for finite differences
and standard finite elements. The continuously defined velocity is given by
the degrees of freedom at the edges and the corresponding basis functions
[58, 91]; see also [90, 111, 109].
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• Finite-volume methods include multi-point flux approximations [1, 62] and
control-volume finite-element methods [35, 154]. In these methods fluxes
are computed at cell edges.

In other words, a continuously defined velocity field is obtained only for the
mixed finite-element method. For the other methods one must use an interpo-
lation scheme to determine the velocity from the discrete fluxes at the cell edges.

In reservoir simulation and groundwater flow, the predominant way of com-
puting streamlines is by use of a semi-analytical technique. In semi-analytical
methods [74, 106, 131, 143], the interpolation of the velocity is simple enough
that analytical integration is possible within each grid cell. As an example, let us
consider the popular method of Pollock [131]. Given an entry point of a stream-
line into a grid cell, Pollock’s method starts by mapping the grid cell onto the
unit square (or unit cube in 3D). Each component of the velocity field is then ap-
proximated in reference space by a linear function, in which case the streamline
path in each direction is given as an exponential function of the travel time. To
trace the streamline, Pollock’s method determines the travel time through the grid
block as the minimum time to exit in each spatial direction, which is given by a
logarithmic expression. Then the travel time is used to compute the exit point and
the exit point is mapped back into physical space to give the entry point into the
next cell, and so on. In groundwater flow and visualization, more complicated in-
terpolation schemes have been used, where numerical integration is needed, using
Euler’s method or higher-order Runge-Kutta methods [28, 47, 125, 130, 145].

Tracing of streamlines for use in flow simulations has been investigated in
[89, 90, 94, 107, 108, 111, 109, 132, 133]. In this work we focus on irregular
grids in three spatial dimensions consisting of hexahedral grid cells with curved
surfaces. Streamline tracing may then be performed by a method due to Prévost
et al. [133]. This method is a simplification of work done by Cordes and Kinzel-
bach [52], where Pollock’s method is extended to irregular grids. Each grid cell
in physical space P is transformed to a unit cube in a reference space R using
a standard isoparametric trilinear transformation [49]. Next, the velocity in R
is approximated by a linear flux interpolation scaled by an approximation of the
Jacobian determinant of the transformation. Finally, the streamline segments pass-
ing through each cell can be integrated in R and mapped back to P . Henceforth,
we will call this method standard flux mapping, SFM.

As we shall see, the standard flux mapping cannot reproduce a uniform flow
field on irregular hexahedrons. Uniform flow or almost uniform flow are important
cases to consider, since such flow patterns are likely to occur in large parts of
a hydrocarbon reservoir. For example, if the driving force for the flow in the
reservoir is gravity, and the permeability of the medium is almost homogeneous,
the flow locally is almost uniform in the z-direction of the reservoir. Reproduction
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of uniform flow is important if the grid cells are small compared to the variation
of the velocity. Also, the failure to reproduce uniform flow will produce errors in
the interpolated velocity for the SFM even for nonuniform flow. The error will
increase with the irregularity of the grid cells.

To handle the difficulty associated with the standard flux mapping, we consider
an alternative method, which we call corner velocity interpolation (CVI). Instead
of interpolating the velocity field based on discrete fluxes at cell edges, we inter-
polate directly from point velocities given at the corner points in the grid. This
allows for reproduction of uniform flow, and eliminates the influence of the cell
geometry on the velocity field. In streamline simulation, we usually only know
fluxes, so we also present a method for reconstructing the corner-point velocities
in each grid cell from fluxes.

4.3.1 Short literature review

The origin of the literature for streamline tracing for streamline simulation comes
from early developments in the field of groundwater simulation. In the paper
of Pollock (1988) [131], the flow equations are solved by finite differences on a
Cartesian grid. Mass conservative fluxes are obtained at the grid cell boundaries
by differencing the discrete pressure solution. Within each grid cell, each compo-
nent of the velocity was assumed to vary linearly in the one direction, and to be
piecewise constant in the other directions. This enabled an analytical integration
of the velocity to obtain streamlines and time-of-flight within each cell.

Goode (1990) [74] summarizes the advantages and disadvantages of different
interpolation methods on Cartesian grids. The first contribution for unstructured
grids and for the finite element method come from Cordes and Kinzelbach (1992)
[52]. It is recognized that the finite element method results in discontinuous fluxes,
and hence poor-quality streamlines. A flux post-processing is devised that recov-
ers continuous fluxes on a sub grid. The post-processing is relatively cheap and
gives improved streamlines in 2D. The extension to hexahedral elements in 3D is
discussed, and found to be considerably more complex.

King and Datta-Gupta (1998) [94] discuss the extension of the streamline
method to corner-point grids in 3D. Prévost et al. (2002) [133] considered two
types of vertex-centered finite volume methods, i.e., where the permeability is
constant over each element (the control-volume finite element method), and where
the permeability is constant over each polygon in the dual mesh (flux continuous
scheme) for the solution of the flow equations. For such a method, fluxes are
computed at the edges polygons. However, streamline generation requires mesh
elements that are triangles or quadrilaterals (tetrahedrons or hexahedrons in 3D).
The post-processing of Cordes and Kinzelbach was now further developed as a
method to generate fluxes on a sub grid consisting of triangles or quadrilaterals.
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For the tracing in 3D it was proposed that the Jacobian of the trilinear transfor-
mation of a hexahedron to a unit cube was evaluated at the midpoint of the cell in
order to avoid a numerical integration of the velocity field.

Prévost (2003) [132] further develops the flux recovery in [133]. The recovery
for the 3D case is shown to be considerably more complex than for the 2D case.
Matringe et al. (2004) [108] considers the effect of the launching location on the
accuracy of streamlines. An adaptive mesh refinement procedure on Cartesian
grids is proposed for improving the accuracy of the velocity.

Since the topic of flux recovery is closely related to streamline tracing, we
mention three recent papers on this topic. Sun and Wheeler (2006) [152] con-
sidered flux recovery for non-conservative methods, like the continuous Garlerkin
method and Correa and Loula (2007) [53] and Cockburn et al. (2007) [50] also
considered flux recovery for the continuous Galerkin method.

Matringe et al. (2006) [109], Matringe et al. (2007) [111] and Matringe et
al. (2006) [110] considers the mixed finite element method on triangular and
quadrilateral grids. The divergence free BDM1 elements are investigated. The
method is applicable when solving for two unknowns per edge in addition to the
pressure in the mixed finite element method, or when using the MPFA method.
In the latter case, only the cell-center pressures are solved for, but still two fluxes
can be computed for each edge in terms of the pressures. The streamlines are
given analytically by a streamfunction within each cell. However, the exit point
and time-of-flight must be computed numerically.

Jimenez et al. (2007) [89] considered how to improve the time-of-flight cal-
culations in streamline tracing. By reformulating the streamline differential equa-
tion, they were able to integrate the equations analytically without approximating
the Jacobian for irregular grid cells. This enabled exact reproduction of uniform
flow on irregular grids in 2D.

Hægland et al. (2007) [77] considered the problem of reproducing uniform
flow on three dimensional irregular hexahedral grids. The new interpolation
scheme could reproduce uniform flow, but the velocity had to be integrated nu-
merically and point-wise continuity of the normal component of the velocity at
the grid cell faces was lost.

Juanes and Matringe (2008) [90] considers the mixed finite element method
on unstructured grids in 2D. They identify high-order (BDM) velocity spaces that
induce a stream function, and show the potential improvements to be expected
using such a high-order method.

4.3.2 Introduction: Tracing on Cartesian Grids

To motivate the description of streamline tracing on irregular grids, we start now
by discussing the basic version on Cartesian grids, which is commonly referred
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Figure 4.8: Streamline tracing on a unit square.

to as Pollock’s method in the literature. As we saw in the introduction, Pollock’s
method builds a streamline as a series of (small) line segments that each cross
a grid cell in physical space. The segments are constructed such that the exit
point of the streamline in one cell is the entrance point in the next cell. For the
development in herein, it is sufficient to consider the method in the unit square (or
unit cube in 3D).

Pollock’s Method

The method will be presented for 2D; the extension to 3D is straightforward. Lin-
ear interpolation of the edge fluxes is then used to define a velocity field (see
Figure 4.8)

qI(x,y) ≡
[

Fx0(1−x)+Fx1x
Fy0(1−y)+Fy1y

]

, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. (4.34)

Here the superscript I refers to the fact that the velocity field is interpolated based
on fluxes given at the edges, as shown in Figure 4.8.

Having defined a velocity field, the streamline s(t) = x(t) = [x(t),y(t)] is
found by integrating the system of ODEs in (4.33):











dx

dt
= qI

x(x), x(0) = x0,

dy

dt
= qI

y(y), y(0) = y0,
(4.35)

where qI
x and qI

y are the x- and y-components of qI. Since qIx depends only on x,
and qI

y depends only on y, the streamline can be found analytically [131]: Assum-
ing Fx0 6= Fx1 and Fy0 6= Fy1, integration of each of the equations in (4.35) yields
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two separate expressions for the travel time along the streamline as a function of
x and y, respectively,

tx =
1

Fx1−Fx0
ln
(

qI
x(x)

qI
x(x0)

)

, (4.36)

ty =
1

Fy1−Fy0
ln

(

qI
y(y)

qI
y(y0)

)

. (4.37)

By inserting x = 0 and x = 1 in (4.36) and y = 0 and y = 1 in (4.37), we deter-
mine the times tx0, tx1, ty0, and ty1, respectively, when the streamline crosses the
corresponding straight lines. (Notice that these times may be negative or infinite).
From these four travel times we can easily determine the exit time te when the
streamline leaves the unit square. The exit point xe is then found by inserting te
in (4.36) and (4.37).

Applying Pollock’s Method in Reservoir Simulation

For flow in porous media, the flow velocity q is obtained by solving, e.g., Equation
(3.28) using, e.g., a flux continuous scheme [1] to provide fluxes on each grid cell
edge. In order to obtain particle velocities, these fluxes should be divided by the
porosity. We assume for the moment that the grid cells can be any quadrilateral.
The fluxes will be used to define a velocity field qI that approximates q.

The flux is the integral of the normal component of the velocity field across an
edge. We will require that qI reproduces the given fluxes,

FE =
∫

E
qI ·νEds, (4.38)

where the subscript E refers to the edge, FE is the flux over the edge, and νE is
a unit normal to the edge. At the common edge between two adjacent grid cells,
the absolute value of the flux is the same seen from both cells. By defining νE
suitably, we can assure that the sign of the flux is also the same. Thus only one
flux is needed per cell edge.

We next assume that the normal component (qI ·νE ) is constant along a given
edge. Then (4.38) becomes

FEi = (qI|Ei ·νEi) |Ei|, i = 1,2,3,4, (4.39)

where Ei is one of the four edges, qI|Ei denotes qI evaluated at a point on the
edge, and |Ei| is the length of the edge. Using this, combined with (4.38) for a
unit square, gives

qI
x(0,y) = Fx0, qI

y(x,0) = Fy0,

qI
x(1,y) = Fx1, qI

y(x,1) = Fy1,
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where qI
x and qI

y are the x- and y-components of qI, respectively. We are now in
a position to introduce the velocity interpolation (4.34) and use Pollock’s method
to obtain the streamlines, as described above.

Finally, note that the interpolation step is not always necessary since (4.34)
can be obtained directly when solving the pressure equation with a mixed finite-
element method using the lowest-order Raviart-Thomas (RT0) elements [34].

4.3.3 Streamline and Velocity in Curvilinear Coordinates

Streamline tracing on irregular grid cells involves introducing a curvilinear coor-
dinate system [100] for each grid cell. In this section we describe the coordinate
transformation and how to express the velocity in curvilinear coordinates. This
transformation of coordinates and velocity will be fundamental for the develop-
ment of the CVI method. Additionally, it will be used to derive the SFM and EFM
methods.

Consider a quadrilateral grid cell in physical space P given by the four corner
points xi = [xi,yi], i = 1, . . .4. By using the bilinear isoparametric transformation
[49, 52, 133]

x(x̂) ≡
4
∑

i=1

xiφi(x̂, ŷ), (4.40)

each grid cell is transformed into a unit square in the reference space R. Here
x̂ = [x̂, ŷ] is a point in R; x(x̂) = [x(x̂, ŷ),y(x̂, ŷ)] is a point in physical space
P; and φi(x̂, ŷ), i = 1, . . .4, are the standard bilinear shape functions on the unit
square.

Later we will compute normal vectors to the cell edges. In order to obtain a
well-defined direction of these normals we require that xi, i= 1, . . . ,4, are the log-
ically bottom-left, bottom-right, top-left, and top-right corner of the quadrilateral,
respectively.

A Velocity Transformation

If we can describe the velocity in bilinear coordinates, the streamline can be in-
tegrated in bilinear coordinates, and since each grid cell is a unit square in R,
Pollock’s method is applicable. To obtain the streamline s(t) in P , the bilinear
transformation is applied to the streamline ŝ(t) inR; see Figure 4.9. From this we
can use the chain rule to deduce the velocity inR,

q ≡
ds

dt
=
dx(ŝ(t))
dt

=
dx

dx̂

dŝ

dt
= Jq̂. (4.41)
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Figure 4.9: Transformation of a streamline and velocity from reference space R
to physical space P .

Here q̂ = dŝ/dt is the velocity in R, q is the velocity in P , and J = dx/dx̂ is the
Jacobian matrix of the transformation. Thus, the transformed velocity is given by

q̂ = J−1q. (4.42)

Note that the Piola transformation [34, 90] of a vector field given by

q̂P = (detJ )J−1q (4.43)

is constructed so that fluxes are preserved in reference space. By comparing (4.42)
and (4.43) we see that q̂P = (detJ )q̂.

4.3.4 Extending Pollock’s Method to Irregular Grids

Tracing on irregular grids is done in reference spaceR using (4.42). The Jacobian
matrix is given by

J =









∂x

∂x̂

∂x

∂ŷ

∂y

∂x̂

∂y

∂ŷ









=
[

ux uy
]

, (4.44)

where ux and uy are the base vectors of the bilinear coordinates. Thus, the inverse
of the Jacobian matrix can be expressed in terms of contravariant vectors, nx and
ny, as

J−1 =
1

detJ

[

nT
x

nT
y

]

, (4.45)

where

nx = [∂y/∂ŷ,−∂x/∂ŷ]T, and ny = [−∂y/∂x̂,∂x/∂x̂]T. (4.46)
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The contravariant vectors, nx and ny, are normal vectors to edges of the quadri-
lateral in physical space P . These vectors are generally not constant, but when
evaluated at a particular edge of the quadrilateral, they are constant; and the length
of these vectors is then equal to the length of the edge. It follows from (4.42) and
(4.45) that,

q̂ =
1

detJ

[

q ·nx
q ·ny

]

. (4.47)

Next, we approximate q and q̂ by qI and q̂I, respectively, based on the given
fluxes in P . Still using (4.39) for qI, and recognizing the dot products in (4.47) as
fluxes since nE = νE |E|, we can define q̂I by the use of a linear flux interpolation,

q̂I =
1

detJ

[

Fx0(1− x̂)+Fx1x̂
Fy0(1− ŷ)+Fy1ŷ

]

. (4.48)

This expression is the basis for the standard flux-mapping (SFM) method [133]
and the extended flux-mapping (EFM) method of Jimenez et al. [89]. In the SFM
method [133], the bilinear Jacobian determinant is replaced by a constant value in
order to make analytical integration possible. Hence,

q̂I
SFM =

1
detJm

[

Fx0(1− x̂)+Fx1x̂
Fy0(1− ŷ)+Fy1ŷ

]

, (4.49)

where Jm = J (0.5,0.5) is the Jacobian matrix evaluated at the midpoint of the
reference element. In [114] it was shown that (4.48) is exact for uniform flow in
2D. Since the Jacobian determinant only scales the absolute value of the velocity
in (4.49), SFM reproduces the shape of the streamlines exactly for uniform flow.
However, approximating the Jacobian determinant by a constant introduces errors
in computing time-of-flight, as noted by Jimenez et al. [89]. They demonstrated
that by using a pseudo time-of-flight τ, the velocity in (4.48) can be integrated
analytically by rewriting (4.48) as















dx̂

Fx0(1− x̂)+Fx1x̂
=

dt

detJ
= dτ,

dŷ

Fy0(1− ŷ)+Fy1ŷ
=

dt

detJ
= dτ.

(4.50)

Then Pollock’s method is used to find x̂(τ) and ŷ(τ) and the exit pseudo time τe.
To find the real exit time, te, we integrate the determinant of the Jacobian

te =
∫ t(τe)

0
dt =

∫ τe

0
detJ (x̂(τ), ŷ(τ))dτ. (4.51)

Thus, the EFM method is characterized by the velocity field q̂I
EFM given in (4.48),

where the Jacobian determinant is evaluated exactly.
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4.3.5 Extending the SFM and EFM Methods to 3D

We consider an irregular grid consisting of hexahedral grid cells with fluxes com-
puted on the faces of each cell. Each hexahedron in physical space P will be
defined as a one-to-one trilinear map [49, 52, 133] of a unit cube in a reference
spaceR. The trilinear map is given by

x(x̂) =
8
∑

i=1

xiφi(x̂, ŷ, ẑ), (4.52)

where xi, i = 1, . . . ,8 are the coordinates of the eight corners defining the grid
cell, and φi(x̂, ŷ, ẑ), i = 1, . . . ,8 are the standard trilinear shape functions on the
unit cube. Note that these hexahedrons generally have curved surfaces.

We remark that the mapping gives a natural definition of the faces of the hex-
ahedron in physical space. We define general x-, y-, and z-surfaces in P by

sx(x̂) = {x(x̂, ŷ, ẑ) : 0 ≤ ŷ ≤ 1,0 ≤ ẑ ≤ 1} ,
sy(ŷ) = {x(x̂, ŷ, ẑ) : 0 ≤ x̂ ≤ 1,0 ≤ ẑ ≤ 1} ,
sz(ẑ) = {x(x̂, ŷ, ẑ) : 0 ≤ x̂ ≤ 1,0 ≤ ŷ ≤ 1} .

(4.53)

For the primary faces, sx(0), sx(1), etc., we will also use the notation Sx0, Sx1,
respectively.

The velocity in physical space P is related to the velocity in reference space
R by (4.41). The Jacobian matrix of the transformation is written,

J =

















∂x

∂x̂

∂x

∂ŷ

∂x

∂ẑ

∂y

∂x̂

∂y

∂ŷ

∂y

∂ẑ

∂z

∂x̂

∂z

∂ŷ

∂z

∂ẑ

















=
[

ux uy uz
]

. (4.54)

Here ux, uy, and uz are the covariant base vectors of the trilinear coordinates. It
follows that the inverse of J can be expressed in terms of contravariant vectors
nx, ny, and nz such that

J−1 =
1

detJ





nT
x

nT
y

nT
z



 , (4.55)

where

nx = uy ×uz, ny = uz×ux, nz = ux×uy. (4.56)
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Therefore,

q̂ = J−1q =
1

detJ





q ·nx
q ·ny
q ·nz



 . (4.57)

As in the 2D case, the EFM method of Jimenez et al. [89] is based on (4.57) in
combination with a linear flux interpolation,

q̂I
EFM =

1
detJ





Fx0(1− x̂)+Fx1x̂
Fy0(1− ŷ)+Fy1ŷ
Fz0(1− ẑ)+Fz1ẑ



 , (4.58)

where Fx0 is the given flux over the face Sx0 in P corresponding to x̂=0, etc. We
will later use the normal vectors at the six primary faces defined as,

nx0(ŷ, ẑ) ≡ nx(0, ŷ, ẑ), nx1(ŷ, ẑ) ≡ nx(1, ŷ, ẑ), (4.59)
ny0(x̂, ẑ) ≡ ny(x̂,0, ẑ), ny1(x̂, ẑ) ≡ ny(x̂,1, ẑ), (4.60)
nz0(x̂, ŷ) ≡ nz(x̂, ŷ,0), nz1(x̂, ŷ) ≡ nz(x̂, ŷ,1), (4.61)

where (x̂, ŷ, ẑ) ∈ [0,1]× [0,1]× [0,1].
In the SFM method by Prévost et al. [133], the Jacobian in (4.58) is evaluated

at the midpoint of the unit cube.

4.3.6 Reproduction of Uniform Flow

By uniform flow we refer to flow given by a constant velocity field q. Obviously,
uniform flow leads to straight and parallel streamlines, and therefore the time-of-
flight is equal at all points having the same distance from the inflow boundary.

In 2D, the linear flux interpolation used by EFM is exact for uniform flow, as
shown in [114]. However, this is not the case in 3D: in [114] it was shown that the
flux of a uniform flow field will vary quadratically. This might lead one to believe
that replacing the linear interpolation in (4.58) with a quadratic, would solve the
problem.

The difficulty with any flux interpolation can be seen from the following ar-
gument: Consider for instance the surface Sx0. A normal vector nx0 to this face
at x(0, ŷ, ẑ) is given in (4.59). The absolute value of nx0 equals the surface Ja-
cobian, which in the case of planar faces is constant only for parallelograms. For
non-planar faces the direction of the normal vector is not constant either. By in-
serting x̂=0 in (4.57) and (4.58) we see that both SFM and EFM use the following
approximation

q ·nx0 = Fx0. (4.62)
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For uniform flow, q is constant but nx0 will generally not be a constant, as noted
above. The normal vector in (4.62) cannot change at a fixed point, so in effect
we will trace the streamline using a velocity q̃ such that q̃ · nx0 = Fx0, and q̃
compensates for the fact that nx0 is not constant. Hence, the tracing velocity q̃
will depend on the normal vector nx0, or in other words, depend on the geometry
of the cell. Therefore uniform flow cannot be reproduced.

4.4 Corner Velocity Interpolation

In the previous section we described how the SFM and the EFM methods fail
to reproduce uniform flow on e.g., grids with nonplanar faces. To remedy this
problem, we will propose a different velocity interpolation scheme, which we will
denote corner velocity interpolation (CVI). For simplicity, the method will first
be introduced in 2D and then extended to 3D in Section 4.4.2.

4.4.1 Interpolation in 2D

As for the SFM and EFM methods introduced in Section 4.3.4, we will formulate
the CVI method using a cell-by-cell integration in the unit cube in reference space
R. However, the method may also be used to integrate streamlines directly in
physical space; see [76] for more details. To formulate the CVI method, we start
with the relation (4.47) for the velocity in R, where the unknown quantity is the
velocity q in P . We approximate q by a bilinear interpolation of the velocities qi
at the corners xi, i = 1, . . . ,4,

qI
CVI(x(x̂, ŷ)) ≡

4
∑

i=1

qiφi(x̂, ŷ). (4.63)

The corner velocities qi will be reconstructed from the given fluxes, such that qI
CVI

is exact for uniform flow. This means that all qi will be equal if q is constant.
Hence the CVI method is characterized by the following velocity interpolation

inR,
q̂I

CVI ≡ J
−1qI

CVI. (4.64)

Reconstruction of Corner Velocities

We consider the cell shown in Figure 4.10. The four fluxes Fi, will be given on the
edges Ei for i = x0,x1,y0,y1, and the normal vectors are defined in (4.46). Note
that nx(x̂, ŷ) = nx(x̂) and ny(x̂, ŷ) = ny(ŷ). Hence, we can define nx0 = nx(0),
nx1 = nx(1), ny0 = ny(0), and ny1 = ny(1), respectively.



4.4 Corner Velocity Interpolation 57

q
1

q
3

q
2

q
4

Fx0

Fy0

Fx1

Fy1

Figure 4.10: Reconstructing velocities from fluxes in 2D

The corner velocities qi, i = 1, . . . ,4, will be solutions of 2×2 linear systems
on the form

{

qi ·nEx(i) = FEx(i),
qi ·nEy(i) = FEy(i),

i = 1, . . . ,4. (4.65)

Here Ex(i) and Ey(i), i = 1, . . . ,4, refer to edges in the x- and y-direction, re-
spectively, adjacent to corner xi. This means that for q1, we get

{

q1 ·nx0 = Fx0,
q1 ·ny0 = Fy0,

(4.66)

since Ex0 and Ey0 are adjacent to corner x1. The systems (4.65) are well-
conditioned as long as the quadrilateral does not degenerate. If the fluxes have
been computed exactly for a uniform flow field q, then qi = q.

Note that (4.65) implies that

qI
CVI(Ei) ·ni = Fi, i = x0,x1,y0,y1, (4.67)

where qI
CVI(Ei) denotes qI

CVI evaluated at a point on edge Ei. Hence, since the
length of ni is equal to the length of Ei, qI

CVI will reproduce the given edge fluxes.

4.4.2 Extension to 3D

We approximate q in (4.57) by a trilinear interpolation of the velocities qi at the
corners xi, i = 1, . . . ,8,

qI
CVI ≡

8
∑

i=1

qiφi(x̂, ŷ, ẑ). (4.68)

Reconstructing Corner Velocities

Consider the cell in Figure 4.11. The six fluxes Fi will be given on the faces Si
for i = x0,x1,y0,y1, z0, z1, respectively. The corresponding normal vectors ni
are defined in (4.59).
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Figure 4.11: Reconstructing velocities from fluxes in 3D

The flux integral of a velocity field q over the face Si can be transformed to a
double integral on a face of the unit cube inR using the trilinear transformation:

Fi =
∫ 1

0

∫ 1

0
q ·nidαdβ, i = x0,x1,y0,y1, z0, z1, (4.69)

since the norm of ni is equal to the surface Jacobian. If q is constant, we get,

Fi = q ·
∫ 1

0

∫ 1

0
ni(α,β)dαdβ = q · n̄i, i = x0,x1,y0,y1, z0, z1, (4.70)

where n̄i, defined by the above equation, is given by a simple analytic expression,
see e.g., [1]. Thus, in order to reproduce a uniform flow field, the corner velocities
qi, i = 1, . . . ,8, will be solutions of 3×3 linear systems on the form







qi · n̄Sx(i) = FSx(i),
qi · n̄Sy(i) = FSy(i),
qi · n̄Sz(i) = FSz(i),

i = 1, . . . ,8. (4.71)

Here Sx(i), Sy(i), and Sz(i), i = 1, . . . ,8, refer to faces in the x-, y-, and z-
direction, respectively, adjacent to corner xi. That is, for q8 we get







q8 · n̄x1 = Fx1,
q8 · n̄y1 = Fy1,
q8 · n̄z1 = Fz1.

(4.72)

Now, qI
CVI and q̂I

CVI are given by (4.68) and (4.64), respectively. As opposed
to SFM and EFM, each component of the interpolated velocity field q̂I

CVI is a
function of all three variables x̂, ŷ, and ẑ. Therefore, analytical integration of
q̂I

CVI is generally not possible.
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Note that numerical integration of a velocity in R will not give the exact exit
point from the cell, unless the last integration step ends on the cell boundary.
Generally, interpolation is needed to determine the exit point [130].

The CVI-interpolation and reproduction of uniform flow

The main feature of the CVI-interpolation scheme is that it can reproduce uniform
flow. This means that the CVI-interpolation will resolve the constant velocity
fields on irregular hexahedral grids in 3D. We note that this is not the case for
standard interpolation spaces, e.g., used in the mixed finite element setting.

We show that the CVI velocity field qI
CVI given Equation (4.68) reproduces a

uniform flow field v, when the fluxes agree with v. Hence, the fluxes are assumed
to be given as

Fi =
∫ 1

0

∫ 1

0
v ·ni(α,β)dαdβ =

v ·
∫ 1

0

∫ 1

0
ni(α,β)dαdβ = v · n̄i, i = x0,x1,y0,y1, z0, z1. (4.73)

It is sufficient to show that qi ≡ v, i = 1, . . . ,8, for then, according to Equation
(4.68)

qI
CVI ≡

8
∑

i=1

qiφi(x̂, ŷ, ẑ) =
8
∑

i=1

vφi = v
8
∑

i=1

φi = v, (4.74)

since
∑8
i=1φi = 1. We will show that q1 = v, the derivation is similar for the other

corner velocities. By definition (see Equation (4.71)), q1 satisfies the following
equations







q1 · n̄x0 = Fx0,
q1 · n̄y0 = Fy0,
q1 · n̄z0 = Fz0.

(4.75)

From Equation (4.73), v satisfies exactly the same conditions,






v · n̄x0 = Fx0,
v · n̄y0 = Fy0,
v · n̄z0 = Fz0.

(4.76)

The result follows since the normal vectors n̄x0, n̄y0, and n̄z0 are linearly indepen-
dent and constitute a basis for R3.





Chapter 5

Ongoing and further work

In this chapter we will discuss some ongoing work. The first section discusses a
possible extension of the CVI-method (Chapter 4.3 and [77]), to avoid the prob-
lem with discontinuity in the normal component at cell faces, as shown in [124].
The last section consider application of streamline tracing to two-phase flow with
a diffusion term in the transport equation. This problem is relevant to, for exam-
ple, vertically averaged flow of CO2 and water in a CO2 sequestration scenario.
Cross-streamline effects in the transport equation, like capillary pressure, are usu-
ally handled by operator splitting, see [55] and references therein, involving a
mapping from streamlines to a background grid within each operator splitting
time step. We propose here a method that avoids the problems associated with the
mapping and also speeds up the solution, by introducing normal lines, i.e., lines
that are perpendicular to the streamlines.

5.1 Improved CVI method

We consider the point-wise reconstruction of velocity fields on general hexahe-
dral grids based on flux interpolation. In [77] we developed a streamline tracing
method that could reproduce uniform flow on a general hexahedral grid, see also
Chapter 4.3. The method also had point-wise continuity of the normal component
of the velocity across planar cell faces. However, this property is not, in general,
fulfilled across curved cell faces, as shown in [124].

Basically, it is shown in [124] that

• If cell interfaces are nonplanar the CVI method loses point-wise continuity;

• When we do not have point-wise continuity, streamlines may terminate
abruptly;



62 Ongoing and further work

• In general it is not possible to construct a piecewise continuous flow field
based on only six cell fluxes and at the same time reproduce uniform flow
and have a H(div)-conforming velocity field.

A possible way to circumvent this restriction, is to introduce more degrees of
freedom into the velocity field, i.e., we consider not only the six local cell face
fluxes, but also fluxes of neighboring cells. We briefly outline a method to obtain
a reconstructed flow field with the following properties:

• reproduction of uniform flow;

• reproduction of fluxes;

• point-wise continuity of normal component. This guarantees that stream-
lines do not terminate abruptly;

• zero divergence for cells with no sinks or sources,

• rotation invariant velocity space.

In order to achieve this, we introduce a local space for the three normal compo-
nents of the velocity field. The normal components are taken with respect to the
contravariant vectors of the hexahedron, see, e.g., the vector on the right hand
side of Equation (4.57). Each of the three normal components are represented as
a polynomial with 9 degrees of freedom. Hence, there will be a total of 27 degrees
of freedom (DOFs) per hexahedron. It can be shown that 3 DOFs are associated
with each face of the hexahedron, making a total of 18 DOFs associated with
faces, and the remaining 9 DOFs are associated with the interior.

The six available DOFs (the six cell face fluxes) from the pressure solution
are incorporated by requiring that the reconstructed flow field, as given similarly
to Equation (4.57), should reproduce these fluxes. Hence, there remain two DOFs
per face to be determined. The important observation now is that these two con-
ditions, on each face, have to be determined exactly the same way for each of the
two hexahedrons sharing that face, in order to obtain point-wise continuity of the
normal component of the velocity. At the same time, these DOFs should be con-
sistent with a uniform flow field. This lead us to consider the original CVI-velocity
field, as discussed in Chapter 4.3, since this velocity field is known to reproduce
a uniform flow field. Since the CVI-velocity field is locally reconstructed, there
will in general be two different CVI-normal components at a point on the face,
one for each of the two cells sharing that face. By taking the harmonic average of
these two components, we define a new quantity that will be the same seen from
each of the two cells. We will require that the normal component of the improved
velocity (we call this velocity for CVIE to distinguish it from the CVI-velocity)
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is equal to this harmonic average at a set of points on the interface. As there are
only two DOFs left to be determined for the CVIE normal component at the face,
two points will be sufficient. However, it is not possible to choose two point sym-
metrically at the face, so we propose to choose, e.g., four symmetrical points, and
minimize the deviation in a least-square sense, at these points.

The last step is to determine the 9 internal DOFs. By requiring that the CVIE-
velocity should have a constant divergence equal to the sum of the six cell face
fluxes, 7 DOFs are resolved. Note that this means that the velocity is divergence
free for cells with no sources or sinks. The seven conditions on the internal DOFs
are set up such that the divergence associated with the 18 exterior DOFs cancels
the divergence associated with the interior DOFs. The last two internal DOFs can
be determined by minimizing the deviation from a CVI-like velocity field at some
symmetric points in the interior of the hexahedron. We omit the details.

5.2 Vertical averaging and normal lines

In general, flow through a porous medium is three-dimensional. However, since
for many aquifers the geometry is such that they are thin relative to their horizontal
dimensions, a simpler approach may be used where we assume that the flow in the
aquifer is everywhere essential horizontal, neglecting vertical flow components.
Then two-dimensional flow and transport equations are derived by integrating the
three-dimensional equations along the height of the aquifer. This approach have
been used extensively in the groundwater literature, and is called the hydraulic
approach [24].

In Nordbotten and Celia [122] an analytical solution for injection of CO2 into
deep, confined saline aquifers was derived. The analytical solution captured the
system behavior well, under the assumptions of radial horizontal flow in a homo-
geneous aquifer. The purpose of this section is to remove the assumptions of radial
symmetry and a homogeneous aquifer. However, since in this case the resulting
equations cannot be solved analytically, an efficient numerical solution procedure
is important.

We consider incompressible flow of two immiscible fluids in a three-
dimensional domain Ω of constant thickness H . Further, we assume that one
of the fluids is always on top of the other fluid and that there is a sharp interface
between the fluids (no mixing), see [122] for further details.

At any time t the interface between the fluids, h(x,y, t), divides Ω into two
connected domains. By assuming a hydrostatic pressure distribution in the ver-
tical direction and integrating the mass conservation equation for each fluid in
the same direction, we will arrive at a new set of two-dimensional equations with
the pressure of one of the phases and the height of the interface h as unknowns.
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The set of equations consists of one pressure equation of elliptic character and one
parabolic equation for the evolution of the interface height, or the averaged satura-
tion of the bottom fluid S across the vertical. Assuming an isotropic permeability
tensor, the saturation equation can be written

φ
∂S

∂t
+∇· (f (S)v+g(S,x)∇S) = q. (5.1)

In the above equation, φ is the porosity, f (S) is a fractional flow type function
incorporating effects of viscosity differences between the two fluids, v is the sum
of the averaged Darcy velocities of each fluid, g(S,x) is a function incorporating
effects like permeability, density differences, and viscosity differences, and q is
the sum of the averaged source terms from both fluids.

We will assume a sequential solution procedure [55] where the saturation is
assumed fixed when solving the pressure equation, and the total velocity v is as-
sumed fixed when solving the Saturation equation (5.1). For the solution of Equa-
tion (5.1) we will use operator splitting combined with streamlines and normal
lines, that will reduce the dimension of the equations from 2D to 1D. The splitting
will be done such that advective effects will be solved along the streamlines, and
diffusive effects will be solved along both streamlines and normal lines. Alterna-
tive splittings, like dimensional splitting, have been discussed in, e.g., [84].

Hence, the gradient of the saturation ∇S in Equation (5.1), needs to be de-
composed into one component along the streamlines and one component along
lines orthogonal to the streamlines called normal lines. After this decomposition,
Equation (5.1) can be written,

φ
∂S

∂t
+
∂f (S)
∂τ

+
∂

∂τ

(

g(S,x)
‖v‖2

∂S

∂τ

)

+

∂

∂η

(

g(S,x)
‖v‖2

∂S

∂η

)

+
g(S,x)
‖v‖2

∂S

∂η
∇·w = qB, (5.2)

where we have used that ∇ · v = 0; furthermore, τ is the streamline coordinate
defined in Equation (3.33), and η is a similar coordinate defined along the normal
lines of the normal field w. The normal field w is obtained by a ninety degree
rotation of the flow field v. We observe that last term on the left hand side of
the last equation involves the divergence of the normal field, which is in general
not zero even if v is divergence free. To simplify the later numerical solution
procedure, we would like to get rid of this term. It turns, out that this can be
done simply by a scaling of w, where the scaling function can be determined
analytically based on information along the normal line. It is interesting to note,
that a similar type of scaling is needed in compressible streamline simulation [46],
where the scaling function is the effective density along the streamlines.
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Using the standard operator splitting technique [69], Equation (5.2) is then
split into

φ
∂S

∂t
+
∂f (S)
∂τ

+
∂

∂τ

(

g(S,x)
‖v‖2

∂S

∂τ

)

= qB, (along streamlines), (5.3)

φ
∂S

∂t
+
∂

∂η̃

(

g(S,x)
‖w̃‖2

∂S

∂η̃

)

= 0, (along normal lines), (5.4)

where w̃ is the scaled normal field, and η̃ is the coordinate along w̃.
The above solution procedure can be implemented as follows:

Algorithm 1 Sequential solution procedure using normal lines
for each global time step ∆T do

– solve pressure equation
– trace streamlines and normal lines
– map saturation onto crossing points
for each local time step ∆t do

solve parabolic 1D equation along streamlines
solve parabolic 1D equation along normal lines

end for
map saturation back to pressure grid

end for

In the above algorithm, ∆T is the time step between pressure updates and ∆t
is the operator splitting time step. The innermost loop runs N times and ∆t satis-
fies N∆t = ∆T . Note that even smaller time steps (not shown) are used for dis-
cretizing the 1D equations within the innermost loop. An advantage of the above
approach compared to a standard streamline method [55] (not using normal lines)
is that we avoid additional mappings for each iteration of the innermost loop. A
standard streamline method requires the cross-streamline part to be solved on the
background grid, hence the solution must be mapped back and forth between the
background grid for each operator splitting time step.

As noted in the beginning of this section, the method will be applied to a ver-
tically averaged formulation, hence an extension to 3D not an issue. An extension
to 3D would be far more complicated. The approach can also be used for other
problems in 2D, like two-phase flow with capillary pressure, and for the advection
dispersion equation in, e.g., groundwater flow.

A preliminary implementation of the procedure is described in [78].





Chapter 6

Supporting material

The thesis also includes two additional coauthored papers as supporting material.
Paper G considers geostatistical generation of fractures on an aquifer analogue
scale. This paper can be read as an introduction to Paper F, and to the procedure
used for generation of discrete fracture networks. Paper H discusses streamline
methods for simulating two-phase flow. It can be viewed as a motivation for the
streamline tracing methods discussed in this thesis.
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Abstract

Streamline methods have shown to be effective for reservoir simulation. For a regular grid, it is common to use the semi-analytical
Pollock’s method to obtain streamlines and time-of-flight coordinates (TOF). The usual way of handling irregular grids is by trilinear
transformation of each grid cell to a unit cube together with a linear flux interpolation scaled by the Jacobian. The flux interpolation
allows for fast integration of streamlines, but is inaccurate even for uniform flow. To improve the tracing accuracy, we introduce a
new interpolation method, which we call corner-velocity interpolation. Instead of interpolating the velocity field based on discrete fluxes
at cell edges, the new method interpolates directly from reconstructed point velocities given at the corner points in the grid. This allows
for reproduction of uniform flow, and eliminates the influence of cell geometries on the velocity field. Using several numerical examples,
we demonstrate that the new method is more accurate than the standard tracing methods.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Streamlines, pathlines, and streaklines are convenient
tools for describing and visualizing flow given by an exter-
nal velocity field q = (qx,qy,qz). Streamlines are a family of
curves s(s) that are instantaneously tangent to the velocity
vector q at every point

ds

ds
¼ q:

Streamlines can be traced for any vector field, although the
most common is that q represents a velocity obtained from
the solution of a set of flow equations. For incompressible
flow, streamlines defined at a single instant do not intersect
and cannot begin or end inside the fluid. Streamtubes are
regions bounded by streamlines. Because streamlines are

tangent to the velocity field, fluid that is inside a streamtube
must remain forever within the same streamtube.

A pathline x(t) is the trajectory traced out by an imagi-
nary massless particle following the flow of the fluid from a
given starting point,

dx

dt
¼ qðx; tÞ; xðt0Þ ¼ x0: ð1Þ

A streakline is the locus at a given instance of the positions
of all fluid particles that have gone through a fixed spatial
point in the past. In steady flow streamlines, streaklines,
and pathlines coincide; in unsteady flow they can be
different.

The integration of (1) to obtain particle paths and/or tra-
vel times, is known as particle tracking, for which there
exists a rich literature. The particle tracking literature is pri-
marily concerned with problems where the velocity field is
only known at a finite set of points, either measured or cal-
culated from a flow model, and interpolation is needed to
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integrate pathlines. In computational fluid dynamics, parti-
cle tracking has been used for visualization [30,32,48,53,54].
Velocity interpolation in control-volume mixed finite-ele-
ment methods is a related subject to particle tracking and
has been considered in [40]. Within groundwater flow simu-
lation, particle tracking is used to model contaminant trans-
port [4,13,42,47,49,50]. In visualization, the integration of
(1) is usually done numerically using a Runge–Kutta type
solver, whereas in groundwater flow, semi-analytical inte-
gration is the most common.

In the following we regard streamline tracing as a subset
of particle tracking, since streamlines may be computed by
particle tracking if we introduce the streamline parameter s
as an artificial time variable for which the instantaneous
velocity field q(x, t) is steady. In this paper we consider
streamline tracing in the context of streamline simulation
of flow in hydrocarbon reservoirs [2,5,29]. In this case,
the fluid velocity q is typically given as the numerical solu-
tion of a set of flow equations for q and the fluid pressure p

of the form

cpt þr � q ¼ b; q ¼ �aðxÞrp:

The two equations are commonly referred to as the pres-
sure equation and Darcy’s law, respectively. How the cor-
responding discrete velocity approximation is defined,
depends on the numerical method:

• For finite-difference methods, the pressure is usually
computed at cell centers, and fluxes can be obtained at
cell edges by application of a discrete form of Darcy’s
law [60].

• For finite-element methods, the numerical solution gives
a continuously defined pressure approximation given as
the sum of the basis functions for all elements weighted
by the corresponding node values. Although a continu-
ously defined velocity can be obtained from Darcy’s law,
a better strategy is given in [13,17], where continuous
fluxes are obtained at cell edges.

• Mixed finite-element methods solve for velocity and
pressure simultaneously, resulting in a more accurate
velocity field than for finite differences and standard
finite elements. The continuously defined velocity is
given by the degrees of freedom at the edges and the cor-
responding basis functions [17,28]; see also [27,38,39].

• Finite-volume methods include multi-point flux approx-
imations [1,18] and control-volume finite-element meth-
ods [8,59]. In these methods fluxes are computed at cell
edges.

In other words, a continuously defined velocity field is
obtained only for the mixed finite-element method. For
the other methods one must use an interpolation scheme
to determine the velocity from the discrete fluxes at the cell
edges.

In reservoir simulation and groundwater flow, the pre-
dominant way of computing streamlines is by use of a
semi-analytical technique. In semi-analytical methods

[22,35,44,49], the interpolation of the velocity is simple
enough that analytical integration is possible within each
grid cell. As an example, let us consider the popular method
of Pollock [44]. Given an entry point of a streamline into a
grid cell, Pollock’s method starts by mapping the grid cell
onto the unit square (or unit cube in 3D). Each component
of the velocity field is then approximated in reference space
by a linear function, in which case the streamline path in
each direction is given as an exponential function of the tra-
vel time. To trace the streamline, Pollock’s method deter-
mines the travel time through the grid block as the
minimum time to exit in each spatial direction, which is
given by a logarithmic expression. Then the travel time is
used to compute the exit point and the exit point is mapped
back into physical space to give the entry point into the next
cell, and so on. In groundwater flow and visualization, more
complicated interpolation schemes have been used, where
numerical integration is needed, using Euler’s method or
higher-order Runge–Kutta methods [4,10,42,43,50].

Tracing of streamlines for use in flow simulations has
been investigated in [25,27,29,36–39,45,46]. In the current
paper we focus on irregular grids in three spatial dimensions
consisting of hexahedral grid cells with curved surfaces.
Streamline tracing may then be performed by a method
due to Prévost et al. [46]. This method is a simplification
of work done by Cordes and Kinzelbach [13], where Pol-
lock’s method is extended to irregular grids. Each grid cell
in physical space P is transformed to a unit cube in a refer-
ence space R using a standard isoparametric trilinear trans-
formation [12]. Next, the velocity in R is approximated by a
linear flux interpolation scaled by an approximation of the
Jacobian determinant of the transformation. Finally, the
streamline segments passing through each cell can be inte-
grated in R and mapped back to P. Henceforth, we will call
this method standard flux-mapping, SFM.

As we shall see, the standard flux mapping cannot repro-
duce a uniform flow field on irregular hexahedrons. Uni-
form flow or almost uniform flow are important cases to
consider, since such flow patterns are likely to occur in
large parts of a hydrocarbon reservoir. For example, if
the driving force for the flow in the reservoir is gravity,
and the permeability of the medium is almost homoge-
neous, the flow locally is almost uniform in the z-direction
of the reservoir. Reproduction of uniform flow is impor-
tant if the grid cells are small compared to the variation
of the velocity. Also, the failure to reproduce uniform flow
will produce errors in the interpolated velocity for the SFM
even for nonuniform flow. The error will increase with the
irregularity of the grid cells.

To handle the difficulty associated with the standard flux
mapping, we consider an alternative method, which we call
corner-velocity interpolation (CVI). Instead of interpolating
the velocity field based on discrete fluxes at cell edges, we
interpolate directly from point velocities given at the corner
points in the grid. This allows for reproduction of uniform
flow, and eliminates the influence of the cell geometry on
the velocity field. In streamline simulation, we usually only
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know fluxes, so we also present a method for reconstruct-
ing the corner-point velocities in each grid cell from fluxes.

A radically different strategy was recently introduced by
Matringe et al. [38,39] and Juanes and Matringe [27] for han-
dling irregular grids consisting of triangles and quadrilaterals
in 2D. They propose both low and high-order tracing meth-
ods based on the mathematical framework of mixed finite-
element methods and the associated velocity spaces.

The rest of this paper is organized as follows: First we
give a short introduction to streamline simulation. Then
Section 3 describes the standard method for streamline
tracing on irregular grids. We start with a brief review of
Pollock’s method [44] for streamline tracing on a Cartesian
grid. Then a velocity transformation from physical to refer-
ence space is described. Considering this velocity transfor-
mation we discuss the methods of Cordes and Kinzelbach
[13] and Prévost et al. [46] for streamline tracing on irregu-
lar grids. A recent improvement of this standard flux map-
ping due to Jimenez et al. [25] is also discussed. The latter
method is here denoted by extended flux-mapping (EFM).
Finally, the extension of these methods to 3D will motivate
the corner-velocity interpolation method (CVI).

In Section 4, the CVI method is described first for the
2D case and then extended to 3D. We use bilinear or trilin-
ear interpolation of the velocities at the corners of the cell
[9,54]; an important part of the method is the reconstruc-
tion of the corner velocities from the given fluxes.

Finally, in Section 5 the three methods (SFM, EFM,
and CVI) are compared by numerical experiments for dif-
ferent grids and flow fields in 3D. We consider uniformly
and nonuniformly refined grids, including random hexahe-
dral, pyramidal, and a simplistic real field grid. The flow
fields may be analytical solutions of the pressure equation,
including uniform, combined uniform and nonuniform,
and pure nonuniform flow; or, realistic flow fields where
analytical solutions are not available. Further, the CVI
method is also tested for use with half-edge fluxes in 2D.

2. Background: streamline simulation

Multiphase flow in porous media is usually modeled by a
coupled set of differential equations. Using the so-called
fractional flow formulation, the flow of e.g., two phases
can be described by a parabolic equation for the fluid pres-
sure p (neglecting for simplicity gravity and capillary forces)

ctotp þr � q ¼ bp; ð2Þ

where q is the total velocity (sum of phase velocities), ct is
the total compressibility, and bp is a source term. Eq. (2) is
linked to a transport equation for the fluid saturation S

/otS þr � ðqf ðS; xÞÞ ¼ bs; ð3Þ
through Darcy’s equation for the velocity,

q ¼ �kðS; xÞrp: ð4Þ
Here, /, k, f, and bs denote porosity, total mobility, frac-
tional flow function, and source terms, respectively.

The basis for any streamline simulation method is a
sequential splitting of the coupled pressure and saturation
equations, in which one first fixes the saturation and solves
the pressure Eq. (2) and Darcy’s law (4). The pressure and
velocity fields are then used as parameters while advancing
the transport equation (3) a given time step. Finally, the
new saturation field is used as input parameter for a new
pressure solution step, and so on.

In reservoir simulation, the streamline parameter s is
called time-of-flight, since it can be interpreted as the travel
time of a neutral particle along the streamline. Together
with the bi-stream functions w and v, for which
qq = $w · $v, the time-of-flight s forms an alternative set
of coordinates for three-dimensional space [3,11,29]. Here,
the effective density q reduces to q � 1 for incompressible
flows, see [11]. The Jacobian of the transformation from
physical coordinates (x,y,z) to time-of-flight coordinates
(s,w,v) simply equals /. Using this, and the fact that q is
orthogonal to $w and $v, allows us to simplify the direc-
tional gradient along q as follows:

q � r ¼ /
o

os
:

This operator identity is a key point in any streamline
method, allowing the multidimensional transport equation
(3) to be transformed to a family of one-dimensional trans-
port equations along streamlines (which are straight lines
in (s,w,v) space),

otS þ osf ðSÞ ¼ bs � f ðSÞr � q: ð5Þ

The last term on the right-hand side accounts for compres-
sion or expansion of fluids in the case of compressible
flows. For incompressible flows, $ Æ q = 0 outside wells.
Solving the family of one-dimensional problems (5) on a
representative set of streamlines is often much faster than
solving (3) over a grid in physical space.

Streamline simulation has grown in popularity in the last
years due to its ability to deliver fast and accurate simulation
of large reservoir models using simplified flow physics
[29,55]. However, current streamline simulators are also
capable of including gravity and capillary effects by the
means of operator splitting [6,20,21] and simulating complex
flow physics like miscibility [26,58], three-phase [24,34] and
compositional flow [14,56], and dual-porosity models [15,57].

3. Streamline tracing on irregular grids

In this section we will describe the standard methods
that are used in current commercial streamline codes for
tracing streamlines on irregular grids. The method relies
on a trilinear mapping from physical space to a reference
space, linear interpolation of each velocity component,
and analytical solution of the streamline equation (1)
within each grid cell. We will then show that the method,
and its recent extension due to Jimenez et al. [25], are
unable to correctly reproduce uniform flow on arbitrary
irregular grids in three spatial dimensions.
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3.1. Introduction: tracing on cartesian grids

To motivate the description of streamline tracing on
irregular grids, we start by discussing the basic version on
Cartesian grids, which is commonly referred to as Pollock’s
method in the literature. As we saw in the introduction,
Pollock’s method builds a streamline as a series of (small)
line segments that each cross a grid cell in physical space.
The segments are constructed such that the exit point of
the streamline in one cell is the entrance point in the next
cell. For the development in this paper, it is sufficient to
consider the method in the unit square (or unit cube in 3D).

3.1.1. Pollock’s method
The method will be presented for 2D; the extension to

3D should be obvious. Linear interpolation of the edge
fluxes is then used to define a velocity field (see Fig. 1)

qIðx; yÞ �
F x0ð1� xÞ þ F x1x

F y0ð1� yÞ þ F y1y

� �
; 0 6 x 6 1; 0 6 y 6 1:

ð6Þ
Here the superscript I refers to the fact that the velocity
field is interpolated based on fluxes given at the edges, as
shown in Fig. 1.

Having defined a velocity field, the streamline
s(t) = [x(t),y(t)] is found by integrating the system of ODEs
in (1):

dx
dt ¼ qI

xðxÞ; xð0Þ ¼ x0;
dy
dt ¼ qI

yðyÞ; yð0Þ ¼ y0;

(
ð7Þ

where qI
x and qI

y are the x- and y-components of qI. Since qI
x

depends only on x, and qI
y depends only on y, the stream-

line can be found analytically [44]: Assuming Fx05Fx1

and Fy05Fy1, integration of each of the equations in (7)
yields two separate expressions for the travel time along
the streamline as a function of x and y, respectively,

tx ¼
1

F x1 � F x0

ln
qI

xðxÞ
qI

xðx0Þ

� �
; ð8Þ

ty ¼
1

F y1 � F y0

ln
qI

yðyÞ
qI

yðy0Þ

 !
: ð9Þ

By inserting x = 0 and x = 1 in (8) and y = 0 and y = 1 in
(9), we determine the times tx0, tx1, ty0, and ty1, respectively,
when the streamline crosses the corresponding straight
lines. (Notice that these times may be negative or infinite.)
From these four travel times we can easily determine the
exit time te when the streamline leaves the unit square.
The exit point xe is then found by inserting te in (8) and (9).

3.1.2. Applying Pollock’s method in reservoir simulation

For flow in porous media, the flow velocity q is obtained
by solving (2) and (4) using e.g., a flux continuous scheme
[1] to provide fluxes on each grid cell edge. In order to
obtain particle velocities, these fluxes should be divided
by the porosity. We assume for the moment that the grid
cells can be any quadrilateral. The fluxes will be used to
define a velocity field qI that approximates q.

The flux is the integral of the normal component of the
velocity field across an edge. We will require that qI repro-
duces the given edge fluxes,

F E ¼
Z

E
qI � mE ds; ð10Þ

where the subscript E refers to the edge, FE is the flux over
the edge, and mE is a unit normal to the edge. At the com-
mon edge between two adjacent grid cells, the absolute va-
lue of the flux is the same seen from both cells. By defining
mE suitably, we can assure that the sign of the flux is also the
same. Thus only one flux is needed per cell edge.

We next assume that the normal component (qI Æ mE) is
constant along a given edge. Then (10) becomes

F Ei ¼ ðqIjEi
� mEiÞ jEij; i ¼ 1; 2; 3; 4; ð11Þ

where Ei is one of the four edges, qIjEi
denotes qI evaluated

at a point on the edge, and jEij is the length of the edge.
Using this, combined with (10) for a unit square, gives

qI
xð0; yÞ ¼ F x0; qI

yðx; 0Þ ¼ F y0;

qI
xð1; yÞ ¼ F x1; qI

yðx; 1Þ ¼ F y1;

where qI
x and qI

y are the x- and y-components of qI, respec-
tively. We are now in a position to introduce the velocity
interpolation (6) and use Pollock’s method to obtain the
streamlines, as described above.

Finally, note that the interpolation step is not always
necessary since (6) can be obtained directly when solving
the pressure equation with a mixed finite-element method
using the lowest-order Raviart-Thomas (RT0) elements [7].

3.2. Streamline and velocity in curvilinear coordinates

Streamline tracing on irregular grid cells involves intro-
ducing a curvilinear coordinate system [33] for each grid cell.
In this section we describe the coordinate transformation
and how to express the velocity in curvilinear coordinates.
This transformation of coordinates and velocity will be fun-
damental for the development of the CVI method. Addition-
ally, it will be used to derive the SFM and EFM methods.

0

1

x

y

Fy0

Fx1Fx0

Fy1

x0

xe

1

Fig. 1. Streamline tracing on a unit square.
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Consider a quadrilateral grid cell in physical space P
given by the four corner points xi = [xi,yi], i = 1, . . . , 4. By
using the bilinear isoparametric transformation [12,13,46]

xðx̂Þ �
X4

i¼1

xi/iðx̂; ŷÞ; ð12Þ

each grid cell is transformed into a unit square in the refer-
ence space R. Here x̂ ¼ ½x̂; ŷ� is a point in R;
xðx̂Þ ¼ ½xðx̂; ŷÞ; yðx̂; ŷÞ� is a point in physical space P; and
/iðx̂; ŷÞ, i = 1, . . . , 4, are the standard bilinear shape func-
tions on the unit square.

Later we will compute normal vectors to the cell edges.
In order to obtain a well-defined direction of these normals
we require that xi, i = 1, . . . , 4, are the logically bottom-left,
bottom-right, top-left, and top-right corner of the quadri-
lateral, respectively.

3.2.1. A velocity transformation

If we can describe the velocity in bilinear coordinates,
the streamline can be integrated in bilinear coordinates,
and since each grid cell is a unit square in R, Pollock’s
method is applicable. To obtain the streamline s(t) in P,
the bilinear transformation is applied to the streamline
ŝðtÞ in R; see Fig. 2. From this we can use the chain rule
to deduce the velocity in R,

q � ds

dt
¼ dxðŝðtÞÞ

dt
¼ dx

dx̂

dŝ

dt
¼ Jq̂: ð13Þ

Here q̂ ¼ dŝ=dt is the velocity in R, q is the velocity in P,
and J ¼ dx=dx̂ is the Jacobian matrix of the transforma-
tion. Thus, the transformed velocity is given by

q̂ ¼ J�1q: ð14Þ
Note that the Piola transformation [7,27] of a vector field
given by

q̂P ¼ ðdet JÞJ�1q ð15Þ
is constructed so that fluxes are preserved in reference space.
By comparing (14) and (15) we see that q̂P ¼ ðdet JÞq̂.

3.3. Extending Pollock’s method to irregular grids

Tracing on irregular grids is done in reference space R
using (14). The Jacobian matrix is given by

J ¼
ox
ox̂

ox
oŷ

oy
ox̂

oy
oŷ

2
64

3
75 ¼ ux uy½ �; ð16Þ

where ux and uy are the base vectors of the bilinear coordi-
nates. Thus, the inverse of the Jacobian matrix can be ex-
pressed in terms of contravariant vectors, nx and ny, as

J�1 ¼ 1

det J

nT
x

nT
y

" #
; ð17Þ

where

nx ¼ ½oy=oŷ;�ox=oŷ�T; and

ny ¼ ½�oy=ox̂; ox=ox̂�T: ð18Þ

The contravariant vectors, nx and ny, are normal vectors to
edges of the quadrilateral in physical space P. These vec-
tors are generally not constant, but when evaluated at a
particular edge of the quadrilateral, they are constant;
and the length of these vectors is then equal to the length
of the edge. It follows from (14) and (17) that,

q̂ ¼ 1

det J

q � nx

q � ny

� �
: ð19Þ

Next, we approximate q and q̂ by qI and q̂I, respectively,
based on the given fluxes in P. Still using (11) for qI, and rec-
ognizing the dot products in (19) as fluxes since nE = mEjEj,
we can define q̂I by the use of a linear flux interpolation,

q̂I ¼ 1

det J

F x0ð1� x̂Þ þ F x1x̂

F y0ð1� ŷÞ þ F y1ŷ

� �
: ð20Þ

This expression is the basis for the standard flux-mapping
(SFM) method [46] and the extended flux-mapping (EFM)
method of Jimenez et al. [25]. In the SFM method [46], the
bilinear Jacobian determinant is replaced by a constant va-
lue in order to make analytical integration possible. Hence,

q̂I
SFM ¼

1

det Jm

F x0ð1� x̂Þ þ F x1x̂

F y0ð1� ŷÞ þ F y1ŷ

� �
; ð21Þ

where Jm = J(0.5,0.5) is the Jacobian matrix evaluated at
the midpoint of the reference element. In [40] it was shown
that (20) is exact for uniform flow in 2D. Since the Jacobian
determinant only scales the absolute value of the velocity in
(21), SFM reproduces the shape of the streamlines exactly
for uniform flow. However, approximating the Jacobian
determinant by a constant introduces errors in computing
time-of-flight, as noted by Jimenez et al. [25]. They demon-
strated that by using a pseudo time-of-flight s, the velocity
in (20) can be integrated analytically by rewriting (20) as

dx̂
F x0ð1� x̂Þ þ F x1x̂ ¼

dt
det J

¼ ds;

dŷ
F y0ð1� ŷÞ þ F y1ŷ ¼

dt
det J

¼ ds:

8><
>: ð22Þ

Then Pollock’s method is used to find x̂ðsÞ and ŷðsÞ and the
exit pseudo time se. To find the real exit time, te, we inte-
grate the determinant of the Jacobian

x̂

ŷ

0 1

1

q q̂

ŝ(t)s(t)

Fig. 2. Transformation of a streamline and velocity from reference space
R to physical space P.

H. Hægland et al. / Advances in Water Resources 30 (2007) 1027–1045 1031



te ¼
Z tðseÞ

0

dt ¼
Z se

0

det Jðx̂ðsÞ; ŷðsÞÞds: ð23Þ

Thus, the EFM method is characterized by the velocity
field q̂I

EFM given in (20), where the Jacobian determinant
is evaluated exactly.

3.4. Extending the SFM and EFM methods to 3D

We consider an irregular grid consisting of hexahedral
grid cells with fluxes computed on the faces of each cell.
Each hexahedron in physical space P will be defined as a
one-to-one trilinear map [12,13,46] of a unit cube in a ref-
erence space R. The trilinear map is given by

xðx̂Þ ¼
X8

i¼1

xi/iðx̂; ŷ; ẑÞ; ð24Þ

where xi, i = 1, . . . , 8 are the coordinates of the eight corners
defining the grid cell, and /iðx̂; ŷ; ẑÞ, i = 1, . . . , 8 are the stan-
dard trilinear shape functions on the unit cube. Note that
these hexahedrons generally have curved surfaces.

We remark that the mapping gives a natural definition
of the faces of the hexahedron in physical space. We define
general x-, y-, and z-surfaces in P by

sxðx̂Þ ¼ xðx̂; ŷ; ẑÞ : 0 6 ŷ 6 1; 0 6 ẑ 6 1f g;
syðŷÞ ¼ xðx̂; ŷ; ẑÞ : 0 6 x̂ 6 1; 0 6 ẑ 6 1f g;
szðẑÞ ¼ xðx̂; ŷ; ẑÞ : 0 6 x̂ 6 1; 0 6 ŷ 6 1f g:

ð25Þ

For the primary faces, sx(0), sx(1), etc., we will also use the
notation Sx0, Sx1, respectively.

The velocity in physical space P is related to the velocity
in reference space R by (13). The Jacobian matrix of the
transformation is written,

J ¼

ox
ox̂

ox
oŷ

ox
oẑ

oy
ox̂

oy
oŷ

oy
oẑ

oz
ox̂

oz
oŷ

oz
oẑ

2
666664

3
777775 ¼ ux uy uz½ �: ð26Þ

Here ux, uy, and uz are the covariant base vectors of the tri-
linear coordinates. It follows that the inverse of J can be
expressed in terms of contravariant vectors nx, ny, and nz

such that

J�1 ¼ 1

det J

nT
x

nT
y

nT
z

2
64

3
75; ð27Þ

where

nx ¼ uy � uz; ny ¼ uz � ux; nz ¼ ux � uy : ð28Þ
Therefore,

q̂ ¼ J�1q ¼ 1

det J

q � nx

q � ny

q � nz

2
64

3
75: ð29Þ

As in the 2D case, the EFM method of Jimenez et al. [25]
is based on (29) in combination with a linear flux
interpolation,

q̂I
EFM ¼

1

det J

F x0ð1� x̂Þ þ F x1x̂

F y0ð1� ŷÞ þ F y1ŷ

F z0ð1� ẑÞ þ F z1ẑ

2
64

3
75; ð30Þ

where Fx0 is the given flux over the face Sx0 in P corre-
sponding to x̂=0, etc. We will later use the normal vectors
at the six primary faces defined as,

nx0ðŷ; ẑÞ � nxð0; ŷ; ẑÞ; nx1ðŷ; ẑÞ � nxð1; ŷ; ẑÞ; ð31Þ
ny0ðx̂; ẑÞ � nyðx̂; 0; ẑÞ; ny1ðx̂; ẑÞ � nyðx̂; 1; ẑÞ; ð32Þ
nz0ðx̂; ŷÞ � nzðx̂; ŷ; 0Þ; nz1ðx̂; ŷÞ � nzðx̂; ŷ; 1Þ; ð33Þ

where ðx̂; ŷ; ẑÞ 2 ½0; 1� � ½0; 1� � ½0; 1�.
In the SFM method by Prévost et al. [46], the Jacobian

in (30) is evaluated at the midpoint of the unit cube.

3.5. Reproduction of uniform flow

By uniform flow we refer to flow given by a constant
velocity field q. Obviously, uniform flow leads to straight
and parallel streamlines, and therefore the time-of-flight
is equal at all points having the same distance from the
inflow boundary.

In 2D, the linear flux interpolation used by EFM is exact
for uniform flow, as shown in [40]. However, this is not the
case in 3D: in [40] it was shown that the flux of a uniform
flow field will vary quadratically. This might lead one to
believe that replacing the linear interpolation in (30) with
a quadratic, would solve the problem.

The difficulty with any flux interpolation can be seen
from the following argument: Consider for instance the
surface Sx0. A normal vector nx0 to this face at xð0; ŷ; ẑÞ
is given by (31). The absolute value of nx0 equals the sur-
face Jacobian, which in the case of planar faces is constant
only for parallelograms. For nonplanar faces the direction
of the normal vector is not constant either. By inserting
x̂ ¼ 0 in (29) and (30) we see that both SFM and EFM
use the following approximation:

q � nx0 ¼ F x0: ð34Þ
For uniform flow, q is constant but nx0 will generally not be
a constant, as noted above. The normal vector in (34) can-
not change at a fixed point, so in effect we will trace the
streamline using a velocity ~q such that ~q � nx0 ¼ F x0, and ~q
compensates for the fact that nx0 is not constant. Hence,
the tracing velocity ~q will depend on the normal vector
nx0, or in other words, depend on the geometry of the cell.
Therefore uniform flow cannot be reproduced.

4. Corner-velocity interpolation

In the previous section we described how the SFM and
the EFM methods fail to reproduce uniform flow on e.g.,
grids with nonplanar faces. To remedy this problem, we
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will propose a different velocity interpolation scheme,
which we will denote corner-velocity interpolation (CVI).
For simplicity, the method will first be introduced in 2D
and then extended to 3D in Section 4.2.

4.1. Interpolation in 2D

As for the SFM and EFM methods introduced in Sec-
tion 3.3, we will formulate the CVI method using a cell-
by-cell integration on the unit cube in reference space R.
However, the method may also be used to integrate stream-
lines directly in physical space; see [23] for more details. To
formulate the CVI method, we start with the relation (19)
for the velocity in R, where the unknown quantity is the
velocity q in P. We approximate q by a bilinear interpola-
tion of the velocities qi at the corners xi, i = 1, . . . , 4,

qI
CVIðxðx̂; ŷÞÞ �

X4

i¼1

qi/iðx̂; ŷÞ: ð35Þ

The corner velocities qi will be reconstructed from the given
fluxes, such that qI

CVI is exact for uniform flow. This means
that all qi will be equal if q is constant.

Hence the CVI method is characterized by the following
velocity interpolation in R,

q̂I
CVI � J�1qI

CVI: ð36Þ

4.1.1. Reconstruction of corner velocities

We consider the cell shown in Fig. 3. The four fluxes Fi,
will be given on the edges Ei for i = x0, x1, y0, y1, and the
normal vectors are defined in (18). Note that
nxðx̂; ŷÞ ¼ nxðx̂Þ and nyðx̂; ŷÞ ¼ nyðŷÞ. Hence, we can define
nx0 = nx(0), nx1 = nx(1), ny0 = ny(0), and ny1 = ny(1),
respectively.

The corner velocities qi, i = 1, . . . , 4, will be solutions of
2 · 2 linear systems on the form

qi � nExðiÞ ¼ F ExðiÞ;

qi � nEyðiÞ ¼ F EyðiÞ;

�
i ¼ 1; . . . ; 4: ð37Þ

Here Ex(i) and Ey(i), i = 1, . . . , 4, refer to edges in the x-
and y-direction, respectively, adjacent to corner xi. This
means that for q1, we get

q1 � nx0 ¼ F x0;

q1 � ny0 ¼ F y0;

�
ð38Þ

since Ex0 and Ey0 are adjacent to corner x1. The systems
(37) are well-conditioned as long as the quadrilateral does
not degenerate. If the fluxes have been computed exactly
for a uniform flow field q, then qi = q.

Note that (37) implies that

qI
CVIðEiÞ � ni ¼ F i; i ¼ x0; x1; y0; y1; ð39Þ

where qI
CVIðEiÞ denotes qI

CVI evaluated at a point on edge Ei.
Hence, since the length of ni is equal to the length of Ei,
qI

CVI will reproduce the given edge fluxes.

4.2. Extension to 3D

We approximate q in (29) by a trilinear interpolation of
the velocities qi at the corners xi, i = 1, . . . , 8,

qI
CVI �

X8

i¼1

qi/iðx̂; ŷ; ẑÞ: ð40Þ

4.2.1. Reconstructing corner velocities

Consider the cell in Fig. 4. The six fluxes Fi will be given
on the faces Si for i = x0, x1, y0, y1, z0, z1, respectively.
The corresponding normal vectors ni are defined in (31).

The flux integral of a velocity field q over the face Si can
be transformed to a double integral on a face of the unit
cube in R using the trilinear transformation:

F i ¼
Z 1

0

Z 1

0

q � ni dadb; i ¼ x0; x1; y0; y1; z0; z1; ð41Þ

since the norm of ni is equal to the surface Jacobian. If q is
constant, we get,

F i ¼ q �
Z 1

0

Z 1

0

niða; bÞdadb ¼ q � �ni;

i ¼ x0; x1; y0; y1; z0; z1; ð42Þ

where �ni, defined by the above equation, is given by a sim-
ple analytic expression, see e.g., [1]. Thus, in order to repro-
duce a uniform flow field, the corner velocities qi,
i = 1, . . . , 8, will be solutions of 3 · 3 linear systems on
the form

qi � �nSxðiÞ ¼ F SxðiÞ;

qi � �nSyðiÞ ¼ F SyðiÞ;

qi � �nSzðiÞ ¼ F SzðiÞ;

8><
>: i ¼ 1; . . . ; 8: ð43Þ

q
1

q3

q2
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Fx0
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Fig. 3. Reconstructing velocities from fluxes in 2D.
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Fig. 4. Reconstructing velocities from fluxes in 3D.

H. Hægland et al. / Advances in Water Resources 30 (2007) 1027–1045 1033



Here Sx(i), Sy(i), and Sz(i), i = 1, . . . , 8, refer to faces in the
x-, y-, and z-direction, respectively, adjacent to corner xi.
In particular, for q8 we get

q8 � �nx1 ¼ F x1;

q8 � �ny1 ¼ F y1;

q8 � �nz1 ¼ F z1:

8><
>: ð44Þ

Now, qI
CVI and q̂I

CVI are given by (40) and (36), respectively.
As opposed to SFM and EFM, each component of the
interpolated velocity field q̂I

CVI is a function of all three
variables x̂; ŷ, and ẑ. Therefore, analytical integration of
q̂I

CVI is generally not possible.
Note that numerical integration of a velocity in R will

not give the exact exit point from the cell, unless the last
integration step ends on the cell boundary. Generally,
interpolation is needed to determine the exit point [43].

4.3. Comparison of SFM, EFM, and CVI

Before summing up, let us compare the expressions of
the EFM and CVI for the velocity field in 2D physical
space. From Section 3.3 we know that

q̂I
EFM ¼

1

det J

F x0ð1� x̂Þ þ F x1x̂

F y0ð1� ŷÞ þ F y1ŷ

� �
: ð45Þ

Furthermore, multiplication by J gives

qI
EFM ¼ Jq̂I

EFM ¼
1

det J

k1x̂ŷ þ k2x̂þ k3ŷ þ k4

k5x̂ŷ þ k6x̂þ k7ŷ þ k8

� �
; ð46Þ

for certain coefficients ki, i = 1, . . . , 8, depending on the cor-
ners xi, i = 1, . . . , 4, and the edge fluxes Fi, i = x0, x1, y0,
y1. Note that for incompressible flow (for which
Fx0 � Fy1 + Fy0 � Fx1 = 0), both k1 and k5 vanish. Some
manipulations show that

qI
EFM ¼

1

det J

X4

i¼1

ðdet JðxiÞÞqi/iðx̂; ŷÞ; ð47Þ

where qi, i = 1, . . . , 4, are the corner velocities of the CVI
method. Thus, the corner velocities for the CVI method
and the EFM method are the same. It then follows that
for parallelograms, where the determinant of the Jaco-
bian J is constant, the CVI and EFM are identical. Also,
since the Jacobian determinant is bilinear, it can be writ-
ten as

det J ¼
X4

i¼1

ðdet JðxiÞÞ/iðx̂; ŷÞ: ð48Þ

For a uniform flow field q, we have, as noted after (38),
that qi = q. Therefore, it follows from (48) and (47) that
qI

EFM ¼ q. (Of course, by construction, the CVI method is
also exact for uniform flow.) Equation (47) can only be
extended to 3D for parallelepiped cells, since the corner
velocities in 3D are determined from the average normals,
�ni. The same is true for (48), since the Jacobian in 3D is not
trilinear.

So far, we expect the main advantage of the CVI method
to come with its extension to 3D. The CVI method is the
only method that can reproduce uniform flow on irregular
grids in 3D. In 2D, all the methods reproduce correct
streamline paths for uniform flow, but only EFM and
CVI reproduce the time-of-flight exactly. In the next sec-
tion we demonstrate that CVI is the only method that con-
verges for nonuniform grid refinements. We also show how
the CVI method can be adapted to use half-edge fluxes.
When the flow equations are solved by an MPFA method
[1], half-edge fluxes are computed, and hence, more infor-
mation about the velocity field is available. A disadvantage
of CVI is that numerical integration must be used, whereas
the EFM and SFM use analytical integration, which is
faster.

5. Numerical experiments

In this section we compare the three methods, SFM,
EFM, and CVI with respect to accuracy in producing both
streamline paths and time-of-flight. Moreover, we will dis-
cuss their relative computer efficiency.

Errors in a streamline tracing method may be classified
in several categories. First, there may be errors in the com-
puted velocity field or in the computed fluxes that are used
as input data. This will be the case in Section 5.4, where we
present results on two quarter-five spot configurations; on
the unit cube and for a simplified real field model. The
other numerical experiments however, consider only veloc-
ity fields with analytic representations to eliminate errors
due to approximate velocities. For such velocity fields,
the streamlines can be calculated analytically or numeri-
cally to any desired accuracy. These exact streamlines will
then be used to measure the errors in the different tracing
methods.

Disregarding round-off errors in e.g., reconstruction of
the corner velocities from fluxes, the remaining errors
may come from the following sources

• Errors in the transformation of the velocity from P to
R.

• Errors in the interpolation in R. These are related to:
– assumptions on the normal component of the velocity

at cell edges, or
– the interpolation method (linear/bilinear/trilinear).

• Errors in the integration due to:
– the evaluation of the Jacobian determinant, or
– numerical integration of the velocity, or
– interpolation to find the streamline exit points in the

numerical integration.

These errors may combine or cancel each other at differ-
ent parts of a given streamline. Due to the number of differ-
ent error sources, and since the errors may cause the
computed streamline to oscillate around, or diverge away
from the true streamline, it is generally difficult to evaluate
the accuracy and efficiency of a tracing method.
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Error of the tracing method. Consider the exact stream-
line s(t;xj) and an approximate streamline sh(t;xj) starting
at the common point xj at t = 0, see Fig. 5. The length of
the exact streamline at time t is given by

LðtÞ ¼
Z t

0

dsðt; xjÞ
dt

����
����dt: ð49Þ

The streamlines are traced until they reach the outflow
boundary of the physical domain. Let T be the time-of-
flight coordinate of the streamline that first arrives at a
boundary. We choose to evaluate the error in the approx-
imate streamline by (see [32,43]):

ejðT Þ �
ksðT ; xjÞ � shðT ; xjÞk

LðT Þ ; ð50Þ

where kÆk denotes Euclidean distance. This error measures
the error per unit length in both streamline shape and time-
of-flight.

The average error for a given method on a given grid for
a number of starting points xj, j = 1, . . . ,Ns, will be com-
puted as

�e ¼ 1

N s

XNs

j¼1

ej: ð51Þ

Random grids. In several of the test cases, irregular grids
of hexahedral cells will be used. We start with a rectangular
grid of nx · ny · nz uniformly partitioned grid cells. To
obtain an irregular, randomly perturbed grid, each corner
point in the uniform grid is perturbed by up to p percent
relative to the grid cell size. Note that when these relative
perturbations are retained for all refinements of the grid,
these grids are referred to as rough grids. Refer to [31]
for more details.

CVI integration method. To compute streamline paths,
we have used the fourth-order, explicit Runge–Kutta solver
in Matlab, ode45 [52]. This solver is based on the Dor-
mand–Prince (4,5) pair [16], which uses six function evalu-
ations per time step. The equation solved for each grid cell
is

dŝ

dt
¼ q̂I

CVI; ŝð0Þ ¼ ŝ0: ð52Þ

Since this is a method with step size control, we can choose
a relative tolerance dr and an absolute tolerance da. In each

time step, the solver estimates the local error e = [e1,e2,e3]
in the solution ŝ ¼ ½y1; y2; y3�. This error must be less than
or equal to the acceptable error, which is a function of
the specified relative and absolute tolerances

jeij 6 maxðdrjyij; daÞ; 1 6 i 6 3: ð53Þ
In the following we choose da = 10�8 and use
10�8

6 dr 6 10�3. If the time step is too large according
to (53), the step is rejected, a smaller time step is computed,
and a new set of function evaluations is needed. If the error
is much smaller than the acceptable error, it is likely that
the time step is unnecessarily small. The current step is
therefore accepted and the next integration step is com-
puted with a larger time step.

Generally, the last time step in a cell does not end on the
cell boundary. Hence, interpolation is needed to determine
the exit point [43]. The interpolation to find the exit point
uses a fifth order Hermite polynomial [51,52] and a Newton
iteration.

Finally, it is important to choose a good initial step size
to avoid an excessive number of function evaluations [4].
For our purposes, we will not go into this topic, but assume
that a good initial step has been found. This is done by
picking an initial step that is too large for the given toler-
ance dr, and letting the solver iterate until an acceptable
step is found.

It is also possible to integrate streamlines directly in phys-
ical space based on CVI. However, using a higher-order
Runge–Kutta method like ode45 directly in physical space
will generally be computationally expensive, since these
methods require the velocity to be evaluated in the interior
of each cell. At such points, the velocity is only given in
reference coordinates and a velocity evaluation thus
requires an inverse bilinear/trilinear transformation that is
quite computationally expensive. In [23], we therefore sug-
gest an alternative method based on a simple Euler predic-
tor–corrector scheme that only requires velocities at cell
boundaries in combination with a grid refinement scheme.

Reference streamlines. For comparing the tracing meth-
ods to an analytical solution, the exact streamline is com-
puted using ode45 in Matlab with dr = 10�12 and
da = 10�12. The solution domain and the velocity is
mapped to a reference element to simplify detection of
domain boundaries.

5.1. Uniform flow on random grids

We consider first four test cases for uniform flow on ran-
dom grids using given constant velocity fields. Unless sta-
ted otherwise, the relative tolerance for the numerical
integration in the CVI method is either dr = 10�3 or
dr = 10�8, giving two methods denoted CVI3 and CVI8,
respectively. The fluxes are computed analytically (to
machine precision).

Case 1: Perturbed grids. For the first test we consider a
uniform flow field q = [1,1,1]T, and a base 10 · 10 · 10
Cartesian grid partition of the unit cube. The simulation will

*xj

(T; )s xj (T; )s xh

error
j

Fig. 5. Error of the method.
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be performed on two series of perturbed grids, for which
each vertex of the grid is moved a distance of up to pk per-
cent relative to the h = 0.1 grid spacing (i.e., on random
grids with a pk percent perturbation as defined in the previ-
ous subsection). For each grid and each tracing method,
streamlines are traced from 100 random points in the front
lower-left grid cell. The results of the test are shown in
Fig. 6. For this, and all subsequent plots, we have plotted
the (base 10) logarithm of the average error given in (51).

Note that for a constant velocity field the Runge–Kutta
solver will only need a single time step for each cell inde-
pendent of the value specified for dr. Thus, for velocity
fields that are uniform or nearly uniform in a cell, we can-
not assign any particular interpretation to the error toler-
ances used in the CVI method. However, since the
velocity of the CVI method is integrated in reference space
R, this velocity will not be uniform in a cell even if the
physical velocity field is uniform, unless the Jacobian
matrix of the transformation is constant (i.e., the cells tend
to parallelepipeds).

Fig. 6 shows that for small grid perturbations the errors
of the CVI methods may be below their prescribed error
tolerances, indicating that the velocity field in R is also uni-
form. As we reach a 1% perturbation, we begin to see the
effect of the chosen relative tolerances for the CVI method.
The results indicate that the error for the CVI method can
be made arbitrarily small by decreasing dr and da.

Case 2: Uniform refinement. For the second test we con-
sider the error with respect to uniform grid refinement. We
still consider a flow field q = [1,1,1]T. Grid G0 consists of
one grid cell and is a 50% random perturbation of the unit
cube. Grid Gk for k = 1,2, . . . , 6 will be a trilinear map (see
Section 3.4) of a uniform 2k · 2k · 2k partition of the unit
cube in R to the cell represented by G0, see Fig. 8 (left).
The grids Gk will thus be refinements of G0 and asymptot-
ically tend to a parallelepiped grid.

Streamlines are traced from 100 random points in the
front lower-left grid cell of the finest grid ðG6Þ. The average
error for grid Gk, k = 2, . . . , 6, is shown in Fig. 7.

We observe that the CVI method is both more accurate
and converges faster than EFM and SFM. For an 8 · 8 · 8
refinement ðG3Þ, EFM and SFM have an error of approx-
imately 10�3. The same accuracy is achieved for the initial
grid G0 (not shown in the plot) for the CVI3 method. For
the given velocity field, the streamlines for EFM and SFM
on grid G3, are traced through 21 cells. Consequently, SFM
and EFM have to trace approximately 21 cells to achieve
the same accuracy that CVI3 obtains on a single cell.

Moreover, we observe that the errors for the CVI meth-
ods are almost independent of the tolerance for Gk, k P 3.
The reason is that as the grid is refined and the grid cells
tend to parallelepipeds, the velocity field in reference space
also becomes approximately uniform, and the numerical
integration will need only one time step for any dr.

Case 3: Nonuniform refinement. The setup will be the
same as for Case 2, except that the refinement now is ran-
dom. At each refinement level, the grids will be a 50% per-
turbation of a uniformly refined grid, see Fig. 8 (right). The
average error for grid Gk, k = 2, . . . , 6 is shown in Fig. 9.
(The choice of a nonuniform refinement may seem strange,
but is in fact what one will use for real field cases when try-
ing to approach the resolution of an underlying geomodel,
which will typically consist of highly irregular grid cells
modeling complex geological structures.)

For this case, the velocity in reference space will not
become uniform at the same rate as for the uniform refine-
ment. Due to the nonlinearity of the velocity field in R, the
errors of the CVI method cannot be reduced further than

Fig. 6. (Case 1, uniform flow). Logarithm of error relative to the degree
of irregularity of cells. Top: log10(pk) = �4,�3, . . . , 1. Bottom: pk =
10, 20, . . . , 60.

Fig. 7. (Case 2, uniform flow). Logarithm of error relative to uniform grid
refinement.
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the prescribed tolerances used in the numerical integration;
i.e., 10�3 for CVI3 and 10�8 for CVI8, respectively. The
errors are therefore almost independent of the grid spacing.
To increase the accuracy of CVI, one must select a lower
tolerance dr, which implies an increased number of integra-
tion steps. The situation is quite different for the SFM and
EFM methods: Here the horizontal curves indicate that
these methods do not converge as the grid is refined!

Case 4. In this test we consider error accumulation due
to the length of the streamline and the number of cells tra-
versed. For this case we use the flow field q = [1,0,0]T. Grid
Gk for k = 0,1, . . . , 4 will be a 50% perturbation of a
3 Æ 2k · 3 · 3 partition of the parallelepiped [0,2k] · [0,1] ·
[0,1]. Twenty streamlines are traced, each with a different
random starting point in the central-left cell of each grid.
Then the number of cells traversed for a given streamline
for a given grid Gk will be approximately 3 Æ 2k.

Fig. 10 shows the error per unit length for each stream-
line. Since this error is approximately constant for each
method, we can in other words expect a uniform increase
in the absolute error ks(T;xj) � sh(T;xj)k with increasing
streamline length for all methods. Moreover, since the
error constant is larger for EFM and SFM than for the
CVI method, the accumulation of error with streamline
length will be more pronounced for SFM and EFM.

We also see from (21) that the only difference between
EFM and SFM is the scaling of the velocity vector. Thus
the streamline shape will be the same for both methods,

and the differences in the figure are only due to different
time-of-flights. EFM uses a more accurate approximation
of the Jacobian determinant than SFM and should there-
fore in principle be more accurate. Here, however, SFM
is more accurate than EFM, which is explained by error
cancellation in which the error in approximating the Jaco-
bian determinant cancels the error in the interpolation.

5.2. Nonuniform flow on random grids

Streamline simulators use a sequential splitting method
to solve the flow equations as explained in Section 2. For
an incompressible flow in an isotropic and homogeneous
medium with no sources, (2) reduces to the well-known
Laplace equation. For this case it is easy to verify that

pðx; y; zÞ ¼ sinð
ffiffiffi
2
p

xÞ sinhðyÞ sinhðzÞ ð54Þ
is a solution to (2). The corresponding velocity field is given
by (4) as

q ¼ �

ffiffiffi
2
p

cosð
ffiffiffi
2
p

xÞ sinhðyÞ sinhðzÞ
sinð

ffiffiffi
2
p

xÞ coshðyÞ sinhðzÞ
sinð

ffiffiffi
2
p

xÞ sinhðyÞ coshðzÞ

2
64

3
75: ð55Þ

We will now consider the same type of tests as for uni-
form flow, using the velocity field in (55). The setup for
the test cases will be similar to the cases for uniform flow
in the previous section, except for the following:

• The analytical velocity field is now nonlinear, and
numerical integration must be used to obtain fluxes.
We have used a Lobatto quadrature [19] with a toler-
ance of 10�6.

• The domain is shifted slightly to avoid the singularity of
the velocity at the origin, see Fig. 11.

• Twenty streamlines are traced from the surface (see
Fig. 11)

S ¼ ðx; y; zÞ : x ¼ 0:5; 0:5 6 y; z 6 0:55f g:
Case 1: Perturbed grids. First we revisit the perturbed

grids from Case 1 in Section 5.1, i.e., consider a pk percent
perturbation of the cells in a 10 · 10 · 10 partition of the

Fig. 8. Grids for the first refinement level ðG1Þ in Case 2 (left) and Case 3
(right). Note that the base grid G0 is different for the two figures, and also
only internal grid points are perturbed for Case 3, i.e., the central corner in
the figure.

Fig. 9. (Case 3, uniform flow). Logarithm of error relative to nonuniform
grid refinement.

Fig. 10. (Case 4, uniform flow). Logarithm of error relative to length of
streamline.
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cube shown in Fig. 11, but now with the velocity field (55).
The results are shown in Fig. 12. The curves for CVI8 are
identical to those of CVI3 and are therefore not shown in
the plots. For small perturbations, the difference in the
methods are overshadowed by the error in the interpola-

tion since all methods use the same interpolation for small
perturbations. As the perturbations increase, we see the dif-
ferences in the methods. However, due to possible cancella-
tion of errors (e.g., as discussed for Case 4 in Section 5.1), it
is difficult to interpret these differences in favor of one
method or the other, even though CVI generally has a
slightly lower error than SFM and EFM.

Case 2: Uniform refinement. Next, we consider the error
relative to a uniform refinement of a single skewed cell, as
in Case 2 of Section 5.1. The results are shown in Fig. 13,
where the CVI8 curve (not shown) is identical to the CVI3
curve. The figure shows that the convergence rates are
equal for all three methods, indicating that the perturba-
tions of the cells go faster to zero than the velocity
approaches uniform flow in a given cell (otherwise, the
CVI method would converge faster than SFM/EFM).

Case 3: Nonuniform refinement. Corresponding results
for nonuniform refinement are shown in Fig. 14. This test
case shows again the benefit of the CVI method when the
flow becomes approximately uniform in each cell and the
grid cells are kept irregular: As for Case 3 in Section 5.1
for uniform flow, SFM and EFM do not seem to converge
as the grid is refined.

Note, however, that the curves depend on a particular
realization of the random grids. Ideally, we should have
averaged over a set of such realizations. This may explain
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Fig. 11. Field plot for the velocity in (55). All the analytical streamlines
traced for this case lie within the streamtube indicated in red.

Fig. 12. (Case 1, nonuniform flow). Logarithm of the error relative to the
degree of irregularity of cells Top: log10(pk) = �4,�3, . . . , 1. Bottom:
pk = 10,20, . . . , 50.

Fig. 13. (Case 2, nonuniform flow). Logarithm of error relative to
uniform grid refinement.

Fig. 14. (Case 3, nonuniform flow). Logarithm of error relative to
nonuniform grid refinement.
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the irregular behavior of the CVI curve. Also, since the
fluxes are computed numerically with a tolerance of 10�6,
we cannot expect the same level of accuracy as the grid is
refined for the CVI methods compared to Case 3 for uni-
form flow, where the fluxes were computed analytically.

5.3. Analytic flow on truncated pyramidal grids

We now study the effect of using a special kind of grid,
denoted a truncated pyramidal grid, see also [40]. The con-
struction of such a grid is illustrated by Fig. 15, where the
entire grid conforms to a cubic domain. As seen here, the
inner cells are truncated pyramids, and ‘infill’ cells are used
to account for the boundary, and the cells will be turned
upside down systematically from layer to layer. The surface
with the smallest area of a truncated pyramid will either be
the roof surface or floor surface of the cells, and the ratio
between the smallest and the largest surface area is kept
constant and equal to 1/9 as the grids are refined.

As pointed out in the description of the CVI method
(Section 4), this method is constructed to reproduce uni-
form flow exactly regardless of the grid geometry. SFM
and EFM, on the other hand, do not reproduce uniform
flow and will therefore, as observed from the results below,
produce a systematic error for skewed cells like the trun-
cated pyramids.

Case 1: Uniform flow. Fig. 16 shows the performance of
the three tracing methods on a sequence of refinements of
truncated pyramidal grids for the uniform flow field
q = [0,0,1] on the cubic domain {1 6 x,y,z 6 2}. For each
refinement, 100 streamlines are traced from randomly dis-
tributed points on the bottom surface (z = 1) of the domain
until they exit at the top of the domain (z = 2). We see that
the errors of the CVI method stay at the level of their pre-
scribed tolerances, indicating that the velocity in the refer-
ence space is not becoming uniform as the grid is refined

(compare with Fig. 7). We also notice that the streamlines
of SFM and EFM do not converge as the grid is refined.

Case 2: Combined uniform and nonuniform flow. We next
replace the uniform flow field by a combination of nonuni-
form and uniform flow, obtained by taking the negative
gradient of the pressure field

pðx; y; zÞ ¼ coshðxÞ cosðyÞ þ cz;

which is an analytical solution to the Laplace equation that
here represents a simplification of the general pressure
equation (2). Note that this pressure field gives rise to a
uniform flow in the z-direction since the z-component of
the gradient of the pressure field is a constant. This situa-
tion can occur if gravity is the driving force for the flow
in the reservoir and the permeability of the medium is al-
most homogeneous. Then the flow locally is almost uni-
form in the z-direction of the reservoir.

Fig. 17 depicts how the methods behave for refinements
of the truncated pyramidal grids introduced above, where
the constant c = 5 is used and 20 streamlines are traced
for each refinement level. The CVI method converges with
the expected rate, whereas the convergence for SFM and
EFM is both slower and decays significantly for the highest
refinements, suggesting that these two methods may fail to
converge asymptotically.

Case 3: Nonuniform flow. Finally, we study the effect of a
gradual change from uniform flow in the z-direction to

Fig. 15. Sketch of a truncated pyramidal grid.

Fig. 16. (Case 1, truncated pyramids). Errors versus grid refinement.

Fig. 17. (Case 2, truncated pyramids). Errors of streamlines versus grid
refinement.
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nonuniform flow in all directions. This is done by allowing
the r-parameter to increase for the solution

pðx; y; zÞ ¼ coshðxÞ cosðyÞ þ czþ r coshðxÞ cosðzÞ: ð56Þ
The result for an 11 · 11 · 11 grid is presented in Fig. 18,
where we have plotted the log10r along the x-axes. As ex-
pected, the errors decrease as the flow approaches uniform
in the z-direction (i.e., r! 0). Repeating the refinement
process from Case 2, we observed that the CVI method still
converges for a fixed r and increasing refinements, but the
error constant increases for increasing values of r.

Summing up, when either truncated pyramids or general
rough grids are used in 3D, the difference between our new
streamline method and SFM and EFM is striking. The CVI
method is superior to the other methods in terms of accu-
racy; this is manifested as either loss of convergence or
diminished convergence rates for the SFM and EFM
methods.

5.4. Quarter-five spot

In this subsection we use a control-volume finite-differ-
ence method [1] to solve the single-phase flow equations,

divq ¼ �divðKgradpÞ ¼ f in X;

q � n ¼ 0 on oX;
ð57Þ

and provide discrete fluxes on cell interfaces. Here,
q = �Kgradp is the Darcy velocity, p is the pressure, K is
the permeability tensor, f is a source term, X is the solution
domain, oX is its boundary, and n is the unit outward nor-
mal to oX. The domain will be discretised with different
kinds of nx · ny · nz grids.

A 3D extension of the classical 2D quarter-five spot test
case is generated by placing an injector and a producer,
respectively, in the lower and upper corner cells (1, 1,1)
and (nx,ny,nz). Streamlines will then be traced from the
injector to the producer. As an error measure, we will in
this subsection only compare the time-of-flight in the pro-
ducing wells. To this end, we use a relative error measure
by dividing the absolute difference in time-of-flights by

the time-of-flight of the reference streamline. These relative
errors are then averaged over all the traced streamlines.

Case 1: Random grids. Let X be the unit cube and
assume that K � 1 over the whole domain. On this simpli-
fied medium, we compare the streamline methods on a
coarse 10 · 10 · 10 random grid. The inner corners of the
coarse grid are perturbed such that the grid is nonorthog-
onal throughout the simulation domain. Wells are imple-
mented by using nonhomogeneous Neumann conditions
at the faces of the corner cells (1, 1,1) and (10, 10,10). We
trace streamlines starting from 225 uniformly spaced entry
points along the inflow boundary given by the boundary
faces of cell (1,1,1). The streamlines are traced until they
exit at the outflow boundary, i.e., at some point of the
boundary faces of cell (10,10,10).

Time-of-flights at the producer are compared to the ref-
erence case simulated by the SFM method on a 50 · 50 ·
50 uniform Cartesian grid, where the entry points agree
with the entry points of the coarse grid. Table 1 reports
the average errors and corresponding standard deviations
for the three tracing methods. As seen from the table, the
CVI method performs slightly better than the other two
methods; the average error is roughly 20% smaller for the
CVI method compared to e.g., SFM.

Case 2: A simplified field case. Next, we study the
streamline generation on a simplified version of a real field
model. We use a 3D grid that is an extension of a 2D grid
where the height of the top and bottom of the medium var-
ies throughout. The grid has moderate grid aspect ratios
that resemble typical features of field cases; here this ratio
is approximately 1/20 for height versus length of a typical
grid block. A reference solution will be generated on a fine
45 · 45 · 45 grid, which is a uniform refinement of a coarse
9 · 9 · 9 grid on which the tracing methods will be com-
pared. The two grids are compatible in the sense that each
cell interface of the coarse grid is exactly matched by a
set of interfaces in the fine grid. To compute a reference
solution we solve the flow equations on the fine grid with
no-flow boundary conditions and a nonzero source f to
simulate wells. The approximate solution on the coarse
grid are found by simple averaging of fine-grid fluxes.

We will apply two different permeability fields; first a
homogeneous permeability field, and then a layered log-
normal permeability field that has similarity to real field
cases. For both cases, three hundred streamlines are traced
from the injector to the producer. The reference solution
will be traced with SFM on the 45 · 45 · 45 grid.

For the homogeneous case, K � 1, averaged errors and
associated standard deviations for the three methods are
presented in Table 2. We see that there is an apparent
improvement for CVI compared to SFM and EFM, and
both errors and standard deviations are significantly
smaller.

For the heterogeneous case, the permeability field is
defined on the coarse 9 · 9 · 9 grid. On the fine grid, the
permeability is therefore constant on patches of 5 · 5 · 5
cells. We apply an isotropic, layered log-normally distrib-

Fig. 18. (Case 3, truncated pyramids). Effect of flow becoming gradually
more nonuniform by increasing r in Eq. (56) when the grid resolution is
fixed.
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uted permeability field, see Fig. 19. Fig. 20 depicts 75 of the
streamlines traced on the fine grid, and Fig. 21 shows the
base 10 logarithm of the time-of-flight for the reference
solution and for the approximate solutions.

Note that in Fig. 21 the red1 SFM curve and the black
EFM curve are more or less covered by the magenta
CVI3 curve. Due to the large variation in permeability on
the coarse 9 · 9 · 9 grid, we observe huge variations in
time-of-flight for different streamlines. Unfortunately,
there are equally large differences if the same streamline
is traced using coarse and fine-grid fluxes, respectively,
which indicates nonlinearity in the velocity field and a high
information loss in the flux averaging. This shows the futil-
ity of comparing different streamline methods on ‘realistic’
models, that is for skew grids and permeability fields with
complex heterogeneity structures. In this paper, we have
therefore mainly focused on simplified models, on which
one has control of the reference solution and errors in

the velocity fields on the coarser grids. More details can
be found in [41], where a discontinuous Galerkin method
was used for computing time-of-flight.

5.5. Runtime comparisons

Finally, we investigate the runtimes of the different
methods. For the CVI method, there will be a relation
between the number of time steps needed per cell and the
prescribed tolerance dr. Tables 3 and 4 report the average
number of time steps per cell for different values of dr

and different perturbations of the grids for Case 1 from
Sections 5.1 and 5.2.

Fig. 19. Logarithm of the horizontal permeability for the simplified 3D
field model.

Fig. 20. Seventy-five streamlines traced using the fine-grid velocity for the
layered permeability field shown in Fig. 19. Injector and producer cells for
the coarse grid are shown in green. Black dots indicate starting points for
the streamlines.

Fig. 21. Time-of-flight distribution for SFM on the fine grid, and for
SFM, EFM, and CVI3 on the coarse grid. The EFM and CVI3 results on
the fine grid are not shown since they could not be distinguished from the
SFM curve on the fine grid. Note that the axis have been scaled: the ratio
between height and length of a typical grid block is really 1/20. The
streamlines are distributed uniformly over the faces rather than being
distributed uniformly according to their associated amount of fluid flux.

1 For interpretation of color in figures, the reader is referred to the Web
version of this article.

Table 3
Relation between number of time steps per cell and dr for a 60%
perturbation for Case 1 for uniform and nonuniform flow

Tolerance dr 10�3 10�4 10�5 10�6 10�7 10�8

Uniform 1.3 1.7 2.3 3.0 4.2 5.2
Nonuniform 1.4 1.9 2.5 3.2 4.4 5.4

Table 2
Average errors and associated standard deviations for the three tracing
methods for the homogeneous case

Method Average error Std. dev.

SFM 0.084 0.076
EFM 0.083 0.077
CVI3 0.077 0.068

Table 1
Average errors and standard deviations for the different tracing methods.
Random grid perturbations of 16%

Method Average error Std. dev.

SFM 0.022 0.015
EFM 0.021 0.015
CVI3 0.017 0.012
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5.5.1. Timing results

Let us now compare the computational costs required to
determine the exit point given a starting point within the
cell. If we normalize the results such that SFM uses one
time unit on average, EFM uses 1.5 time units, and CVI
uses eight time units (assuming one time step per cell).

The runtime of CVI is essentially made up of the time
used for:

• function evaluations,
• interpolation to find the exit point, and
• the reconstruction of the corner velocities.

By a function evaluation we mean evaluation of the
velocity at a given point in reference space. This is done,
as shown in Section 4, by a trilinear interpolation to find
the velocity in physical space. Then the velocity in reference
space is found by a multiplication by the inverse of the Jaco-
bian matrix. The evaluation of the inverse is quite time-con-
suming, so a function evaluation takes approximately one
time unit. One integration step generally requires six func-
tion evaluations, but for the first integration step in a cell,
we need one extra function evaluation to get started. The
interpolation to find the exit point uses a fifth-order polyno-
mial [52] and a Newton iteration. This part consumes
approximately one half time unit. Finally, reconstruction
of corner velocities from discrete fluxes also takes one half
time unit. Altogether, this consumes eight time units.

Although the CVI method is slower, the accuracy is
higher when the flow becomes uniform. Our test cases for
uniform flow indicate that to reach the same level of accu-
racy, SFM and EFM must use a refined grid, for which the
computational cost is higher, in particular if refining the
grid requires a new global pressure solution since the cost
of streamline tracing typically is minuscule compared with
the cost of solving the pressure equation. Moreover, in [23]
we showed that by integrating directly in physical space
rather than in reference space, the CVI method can be
made as efficient as EFM for cases with uniform and
almost uniform flow in 2D.

5.6. Using CVI with half-edge fluxes

The CVI method interpolates velocities in a manner that
makes it appealing to use a finer resolution of the velocities.
Moreover, if fluxes/velocities are evaluated for the half-
edge rather than for the full edge, this subresolution in
the fluxes may possibly be taken advantage of.

We have tested the CVI method with half-edge fluxes
(denoted CVIH) in 2D for the velocity field,

q ¼
sinh x cos y

� cosh x sin y

� �
; ð58Þ

which is an analytical solution to the Laplace equation.
When using CVI with half-edge fluxes, the interpolated
velocity field is still given by (35), but the corner velocities
will be different. Equation (37) is replaced by

qi � nExðiÞ ¼ 2F ExðiÞ;

qi � nEyðiÞ ¼ 2F EyðiÞ;

�
i ¼ 1; . . . ; 4; ð59Þ

where FEx(i) and FEy(i) are now half-edge fluxes adjacent to
corner i. Eq. (59) implies that the normal component of
qI

CVI varies linearly along each edge.
Case 1: Half-edge fluxes on parallelogram grids. For par-

allelogram grids, CVI, SFM, and EFM are identical, as
noted in Section 4.3. When the skewness of the parallelo-
grams gets large, these methods will produce streamlines
with apparent cusps. The CVIH method will reduce these
artifacts, see Fig. 22.

Case 2: Comparing BDM and CVIH. A mixed finite-ele-
ment method [7] can be employed to solve the pressure
equation for both pressure and velocity, in which case the
velocity must belong to the space H(div;X). A divergence-
free higher-order velocity field can then be used to approx-
imate H(div;X). For two degrees-of-freedom per edge in the
two-dimensional case, the velocity should belong to the Bre-
zzi–Douglas–Marini (BDM) space of order one, with the
added condition of zero divergence [36,37]. By the BDM
method we will in the following mean streamlines traced
by the above velocity field. See [38,39,27] for a comprehen-
sive discussion of streamline tracing in 2D using low and
high-order mixed finite-element velocity spaces.

In our final example, we compare all the methods intro-
duced so far: BDM, CVIH, CVI, SFM, and EFM for the
analytical solution in (58). We start with a 10 · 10 uniform

Table 4
Relation between cell perturbation and number of time steps per cell for a
given dr for Case 1 for uniform and nonuniform flow

Perturbation in % 0 10 20 30 40 50 60

Uniform (dr = 10�3) 1.0 1.0 1.0 1.1 1.1 1.2 1.3
Uniform (dr = 10�8) 1.0 2.3 3.2 3.6 4.2 4.6 5.2

Nonuniform (dr = 10�3) 1.0 1.0 1.0 1.0 1.1 1.2 1.4
Nonuniform (dr = 10�8) 1.1 2.2 3.0 3.4 3.8 4.4 5.4

Exact streamline
CVI/EFM/SFM whole edge
CVI half edge
Grid lines

Fig. 22. Using CVI with half-edge fluxes. Note that the aspect ratio of the
plot is 1:2.75, i.e., the y-direction is compressed. A horizontal line really
makes an angle of 71� with the bottom or top edge of the parallelograms.
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partition of [0, 1] · [0,1] and consider grids obtained by a
10i percent perturbation for i = 1, . . . , 6. Exact edge and
half-edge fluxes will be computed for each grid. These
fluxes will be used to construct interpolated velocity fields
for all the methods. For each grid, streamlines are started
from 20 random points within a random cell. This cell is
selected randomly as one of three cells in the top row of
the grid. The results are shown in Fig. 23. Here, as also
remarked for Case 4 in Section 5.1, SFM is better than
EFM due to cancellation of errors. We also note that the
CVIH and BDM methods are of approximately the same
accuracy.

6. Summary and concluding remarks

This work has investigated streamline generation on
irregular grids in 3D and has in particular focused on the
problem of representing uniform flow on hexahedral grids.
We have considered two standard methods, the standard
flux-mapping method (SFM) [13,44,46] and the extended
flux-mapping method (EFM) [25]. For irregular grids,
these methods are based on a trilinear transformation of
each grid cell to a unit cube together with a linear interpo-
lation scaled by the Jacobian. The two methods only differ
in the way they treat the Jacobian; see Eqs. (20) and (21).
The major advantage of the SFM and EFM methods is
that they both allow for fast and analytical integration of
streamlines due to the linear flux interpolation. On the
other hand, the methods share the same fundamental defi-
ciency of being inaccurate for irregular (and rough) grids.
That is, for irregular grids, the interpolated velocity field
used in these methods will generally depend on the geome-
try of the grid cell, except for the 2D case, where a linear
flux interpolation in reference space is sufficient to model
the normal vectors nx and ny exactly. In 3D, the flux of a
uniform flow field varies quadratically for a general hexa-
hedral cell, and also a flux interpolation cannot capture
the variation of the normal vectors that describe the geom-
etry of the cell.

To improve the tracing accuracy, we introduced a new
method, which we called the corner-velocity interpolation

(CVI) method. Instead of interpolating the velocity inside
the cell based on discrete fluxes at cell edges, the method
interpolates the velocity based on (reconstructed) veloci-
ties at the eight corner points of a hexahedral cell. This
way, we get a method that is generally less sensitive to
the regularity of the cells and in particular is able to
reproduce uniform flow regardless of the cell geometries,
a property that is considered to be of high importance
in solution of (elliptic) pressure equations. Moreover,
the CVI method can easily be adapted to exploit the extra
accuracy represented in half-edge fluxes, when these are
available (see Section 5.6).

In Section 5, we compare the three tracing methods on a
variety of simple test cases, focusing in particular on repre-
senting uniform flow in 3D. Our test cases in Sections
5.1,5.2 and 5.3 can be divided in two categories. In the first
category, the irregularity of the grids diminish as they are
refined. For these grids, all three methods converge, but
CVI typically converges faster and is more accurate on
each specific grid as the flow becomes uniform.

In the second category, we consider so-called rough grids

and nonuniform refinements of these. (Nonuniform refine-
ment may seem a bit strange on a first glance, but is in fact
what will typically be used when refining a coarse simula-
tion model towards an underlying geological model, which
typically contains highly irregular cells used to model the
complex structures of the underlying geology.) The test
cases in this category reveal significant differences in the
behavior of the three methods. For tests with uniform flow,
the SFM and EFM methods do not only fail to reproduce
uniform flow; they also fail to converge as the grids are
(nonuniformly) refined. For nonuniform flow cases, our
tests establish convergence of the CVI method, whereas
the SFM and EFM methods either do not converge asymp-
totically or have a small convergence rate for the refine-
ments levels observed.

The added accuracy of the CVI method comes at the
cost of an increased computational complexity, which is
imposed by the need to use numerical integration of a
set of ODEs to compute streamlines. Since EFM and
SFM use analytical integration, these methods will be sig-
nificantly faster. We are therefore investigating various
means to speed up the CVI method, for instance, integrat-
ing streamlines directly in physical space using an adap-
tive Euler predictor–corrector method [23]. The method
proved to be quite successful in 2D, but has not yet been
extended to 3D. Another tempting idea is to use a hybrid
method, in which SFM is used for regular cells and CVI is
used for irregular cells. This, however, requires some kind
of error estimate for SFM and EFM and remains to be
investigated.

Acknowledgements

The authors would like to thank Jan Nordbotten and
two anonymous referees for useful comments and sugges-
tions for improving the manuscript.

Fig. 23. Comparing different methods. Base 10 logarithm of error.

H. Hægland et al. / Advances in Water Resources 30 (2007) 1027–1045 1043



The research of K.–A. Lie and H. Hægland was funded
by the Research Council of Norway under grants no.
158908/I30 and 173875/I30, respectively.

References

[1] Aavatsmark I. An introduction to multipoint flux approximations for
quadrilateral grids. Comput Geosci 2002;6:405–32.

[2] Batycky RP. A three-dimensional two-phase field scale streamline
simulator. PhD thesis, Stanford University, Department of Petroleum
Engineering, 1997.

[3] Bear J. Dynamics of fluids in porous media. Environmental science
series. New York: American Elsevier Publishing Company; 1972.

[4] Bensabat J, Zhou Q, Bear J. An adaptive pathline-based particle-
tracking algorithm for the Eulerian–Lagrangian method. Adv Water
Resour 2000;23:383–97.

[5] Bratvedt F, Bratvedt K, Buchholz CF, Gimse T, Holden H, Holden
L, et al. Frontline and frontsim: two full scale, two-phase, black oil
reservoir simulators based on front tracking. Surveys Math Indust
1993;3:185–215.

[6] Bratvedt F, Gimse T, Tegnander C. Streamline computations for
porous media flow including gravity. Transp Porous Media
1996;25(1):63–78.

[7] Brezzi F, Fortin M. Mixed and hybrid finite element methods. Springer
series in computational mathematics, vol. 15. New York: Springer-
Verlag; 1991.

[8] Cai Z, Jones JE, McCormick SF, Russell TF. Control-volume mixed
finite element methods. Comput Geosci 1997;1:289–315.

[9] Charbeneau RJ, Street RL. Modeling groundwater flow fields
containing point singularities: Streamlines, travel times, and break-
through curves. Water Resour Res 1979;15(6):1445–50.

[10] Cheng H-P, Cheng J-R, Yeh G-T. A particle tracking technique for
the Lagrangian–Eulerian finite element method in multi-dimensions.
Int J Numer Methods Engrg 1996;39:1115–36.

[11] Cheng H, Osako I, Datta-Gupta A, King MJ. A rigorous compress-
ible streamline formulation for two- and three-phase black-oil
simulation. Paper SPE 96866 in Proceedings of the SPE annual
technical conference and exhibition, Dallas, Texas, 2005.

[12] Ciarlet PG. The finite element method for elliptic problems. Amster-
dam: North-Holland; 1980.

[13] Cordes C, Kinzelbach W. Continuous groundwater velocity fields and
path lines in linear, bilinear, and trilinear finite elements. Water
Resour Res 1992;28(11):2903–11.

[14] Crane M, Bratvedt F, Bratvedt K, Childs P, Olufsen R. A fully
compositional streamline simulator. SPE 63156. In: Proceedings of
the SPE annual technical conference and exhibition, Dallas, Texas, 1–
4 October, vol. 3, 2000.

[15] Di Donato G, Blunt MJ. Streamline-based dual-porosity simulation
of reactive transport and flow in fractured reservoirs. Water Resour
Res 2004;40(4).

[16] Dormand JR, Prince PJ. A family of embedded Runge–Kutta
formulae. J Comput Appl Math 1980;6(1):19–26.

[17] Durlofsky LJ. Accuracy of mixed and control volume finite element
approximations to Darcy velocity and related quantities. Water
Resour Res 1994;30(4):965–73.

[18] Edwards MG. Unstructured, control-volume distributed full-tensor
finite-volume schemes with flow based grids. Comput Geosci 2002;6:
433–52.

[19] Gander W, Gautschi W. Adaptive quadrature – revisited. BIT
2000;40:84–101.

[20] Gmelig Meyling RHJ. A characteristic finite element method for
solving non-linear convection-diffusion equations on locally refined
grids. In: Proceedings of the second European conference on the
mathematics of oil recovery, 11–14 September, Arles, France,
1990.

[21] Gmelig Meyling RHJ. Numerical methods for solving the nonlinear
hyperbolic equations of porous media flow. In: Proceedings of the

third international conference on hyperbolic problems, Uppsala,
Sweeden, 1990.

[22] Goode DJ. Particle velocity interpolation in block-centered finite
difference groundwater flow models. Water Resour Res 1990;26(5):
925–40.

[23] Hægland H, Dahle HK, Aavatsmark I, Eigestad GT, Lie K-A.
Adaptive streamline tracing for streamline simulation on irreg-
ular grids. In: Proceedings of the XVI international conference
on computational methods in water resources, June, Denmark,
2006.

[24] Ingebrigtsen L, Bratvedt F, Berge J. A streamline based approach to
solution of three-phase flow. SPE 51904. In: SPE reservoir simulation
symposium, Houston, Texas, 14–17 February 1999.

[25] Jimenez E, Sabir K, Datta-Gupta A, King MJ. Spatial error and
convergence in streamline simulation. SPE 92873. In: SPE reservoir
simulation symposium, Woodlands, Texas, 31 January–2 February
2005.

[26] Juanes R, Lie K-A. A front-tracking method for efficient simulation
of miscible gas injection processes. SPE 93298. In: SPE reservoir
simulation symposium, Woodlands, Texas, 31 January–2 February
2005.

[27] Juanes R, Matringe SF. Unified formulation of velocity fields for
streamline tracing on two-dimensional unstructured grids. Comput
Methods Appl Mech Engrg, submitted for publication.

[28] Kaasschieter EF. Mixed finite elements for accurate particle tracking
in saturated groundwater flow. Adv Water Resour 1995;18(5):277–94.

[29] King MJ, Datta-Gupta A. Streamline simulation: a current perspec-
tive. In Situ 1998;22(1):91–140.

[30] Kipfer P, Reck F, Greiner G. Local exact particle tracing on
unstructured grids. Comput Graph Forum 2003;22(2):1–9.

[31] Klausen RA, Winther R. Robust convergence of multi point flux
approximation on rough grids. Numer Math 2006;104(3):317–37.

[32] Knight D, Mallinson G. Visualizing unstructured flow data using
dual stream functions. IEEE Trans Vis Comput Graph 1996;2(4):
355–63.

[33] Lebedev LP, Cloud MJ. Tensor analysis. River Edge, NJ: World
Scientific; 2003.

[34] Lie K-A, Juanes R. A front-tracking method for the simulation of
three-phase flow in porous media. Comput Geosci 2005;9(1):29–59.

[35] Lu N. A semianalytical method of path line computation for transient
finite-difference groundwater flow models. Water Resour Res
1994;30(8):2449–59.

[36] Matringe SF. Accurate streamline tracing and coverage. Master’s
thesis, Stanford university, Dept of petr eng, 2004.

[37] Matringe SF, Gerritsen MG. On accurate tracing of streamlines. In:
Proceedings of the SPE annual technical conference and exhibition,
Houston, Texas, 26–29 September 2004.

[38] Matringe SF, Juanes R, Tchelepi HA. Streamline tracing on general
triangular and quadrilateral grids. Paper SPE 96411. In: Proceedings
of the SPE annual technical conference and exhibition, Dallas, Texas,
2005.

[39] Matringe SF, Juanes R, Tchelepi HA. Robust streamline tracing for
the simulation of porous media flow on general triangular and
quadrilateral grids. J Comput Phys, in press, doi:10.1016/
j.jcp.2006.07.004.

[40] Naff RL, Russell TF, Wilson JD. Shape functions for velocity
interpolation in general hexahedral cells. Comput Geosci 2002;6(3–4):
285–314.

[41] Natvig JR, Lie K-A, Eikemo B, Berre I. A discontinuous Galerkin
method for computing single-phase flow in porous media, submitted
for publication.

[42] Oliveira A, Baptista AM. On the role of tracking on Eulerian–
Lagrangian solutions of the transport equation. Adv Water Resour
1998;21:539–54.

[43] Pokrajec D, Lazic R. An efficient algorithm for high accuracy particle
tracking in finite elements. Adv Water Resour 2002;25:353–69.

[44] Pollock DW. Semi-analytical computation of path lines for finite-
difference models. Ground Water 1988;26(6):743–50.

1044 H. Hægland et al. / Advances in Water Resources 30 (2007) 1027–1045



[45] Prévost M. Accurate coarse reservoir modeling using unstructured
grids, flow-based upscaling and streamline simulation. PhD thesis,
University of Stanford, 2003. http://geothermal.stanford.edu/pere-
ports/search.htm.

[46] Prévost M, Edwards MG, Blunt MJ. Streamline tracing on curvilin-
ear structured and unstructured grids. SPE J 2002(June):139–48.

[47] Russell TF, Healy RW. Analytical tracking along streamlines in
temporally linear Raviart-Thomas velocity fields. In: Proceedings of
the XIII international conference on computational methods in water
resources, Alberta, Canada, 25–29 June 2000.

[48] Sadarjoen IA, van Walsum T, Hin AJS, Post FH. Particle tracing
algorithms for 3d curvilinear grids. In: Nielson GM, Hagen H, Müller
H, editors. Scientific visualization: overviews, methodologies, and
techniques. Los Alamitos, Calif: IEEE Computer Society; 1997. p.
311–35 [chapter 14].

[49] Schafer-Perini AL, Wilson JL. Efficient and accurate front tracking
for two-dimensional groundwater flow models. Water Resour Res
1991;27(7):1471–85.

[50] Shafer JM. Reverse pathline calculation of time-related capture zones
in nonuniform flow. Ground Water 1987;25(3):283–9.

[51] Shampine LF. Interpolation for Runge–Kutta methods. SIAM J
Numer Anal 1985;22(5):1014–27.

[52] Shampine LF, Reichelt MW. The MATLAB ODE suite. SIAM J Sci
Comput 1997;18(1):1–22.

[53] Shirayama S. Processing of computed vector fields for visualization. J
Comput Phys 1993;106:30–41.

[54] Strid T, Rizzi A, Oppelstrup J. Development and use of some flow
visualization algorithms. Lecture Series/Von Karman Institute for
Fluid Dynamics 1989(7):1–56.

[55] Thiele MR. Streamline simulation. In: Proceedings of the sixth
international forum on reservoir simulation, Fuschl, Austria, 2001.

[56] Thiele MR, Batycky RP, Blunt MJ. A streamline-based 3D field-scale
compositional reservoir simulator, SPE 38889. In: Proceedings of the
SPE annual technical conference and exhibition, San Antonio, Texas,
5–8 October 1997.

[57] Thiele MR, Batycky RP, Iding M, Blunt M. Extension of streamline-
based dual porosity flow simulation to realistic geology. In: Proceed-
ings of the 9th European conference on the mathematics of oil
recovery, Cannes, France, 2004.

[58] Thiele MR, Batycky RP, Thomas LK. Miscible WAG simula-
tions using streamlines. In: Proceedings of the 8th European
conference on the mathematics of oil recovery, Freiberg,
Germany, 2002.

[59] Verma S, Aziz K. A control-volume scheme for flexible grids in
reservoir simulation, SPE 37999. In SPE reservoir simulation sym-
posium, Dallas, Texas, 8–11 June 1997.

[60] Zheng C, Bennett GD. Applied contaminant transport modeling. 2nd
ed. New York: Wiley-Interscience; 2002.

H. Hægland et al. / Advances in Water Resources 30 (2007) 1027–1045 1045





Paper B

On reproducing uniform flow
exactly on general hexahedral cells
using one degree of freedom per
surface

*

* In Advances in Water Resources,doi:10.1016/j.advwatres.2008.11.005, 2008





On reproducing uniform flow exactly on general hexahedral cells using one
degree of freedom per surface

J.M. Nordbotten a,b, H. H�gland b,*

a Department of Civil and Environmental Engineering, Princeton University, NJ, USA
b Department of Mathematics, University of Bergen, Norway

a r t i c l e i n f o

Article history:
Received 16 June 2008
Received in revised form 12 November 2008
Accepted 19 November 2008
Available online xxxx

Keywords:
Uniform flow
Hexahedral cells
H(div)
Streamline tracing
Mixed finite element methods

a b s t r a c t

The solution of second order elliptic partial differential equations typically arising for flow problems, e.g.,
in porous media, is frequently expressed as face fluxes of a flow field at hexahedral cells. In this letter, we
show by example that the following properties are incompatible: (1) A local velocity reconstruction, (2)
reproduction of uniform flow for general hexahedral cells, and (3) a flow field in H(div). This is in partic-
ular relevant to mixed finite element methods approximating H(div), and to other methods trying to
reconstruct a flow field in a hexahedron using only local face fluxes, e.g., streamline tracing methods
for reservoir simulation.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Thirty years after Raviart and Thomas [29] introduced the
mixed finite element method on rectangular meshes for numerical
solution of second order elliptic partial differential equations,
applications to distorted hexahedral grids remain challenging.
Even if mixed methods using triangular or rectangular elements
in 2D, or tetrahedral, parallelepiped, or prismatic elements in 3D
have shown to be efficient and perform well, geophysical applica-
tions often require the flexibility of a general hexahedral mesh.

More generally, consider any method trying to build (interpo-
late) a flow field on a general hexahedron based on six boundary
face fluxes. A key issue is then: Is it possible to obtain a flow field
that both reproduce uniform flow and has point-wise continuity in
the normal component across the boundary faces? In addition to
mixed finite element methods, this problem is relevant to both
streamline tracing [18] and control-volume mixed finite element
methods [24].

To explain the reason for this difficulty, we start by reviewing
the mixed finite element method for second order elliptic equa-
tions. With the aid of Lagrangian multipliers, the original partial
differential equation is turned into a saddle point problem in var-
iational form. The mixed method solves for a scalar field and a vec-
tor field (flow field) simultaneously. In order to prove that the

approximate solution is unique and converges to the true solution,
the vector field and scalar field must have certain regularities, i.e.,
belong to certain vector spaces.

A common choice for the vector field is the space [10]

Hðdiv; XÞ � fq 2 ðL2ðXÞÞ3 : r � q 2 L2ðXÞg:

If the discrete solution is sought in a subspace of the space of the
true solution, the approximation is called conforming. In this case,
the convergence to the true solution can be shown [10,14]. Below
we will review conforming approximations of H(div). Nonconform-
ing approximations can also be applied, but is less common, since it
is more difficult to prove stability of the numerical method [15]. For
other applications requiring approximations in H(div), see, e.g.,
[6,10,28,38].

Raviart and Thomas [29] and Thomas [36] considered second
order elliptic partial differential equations, with the Poisson equa-
tion as a model problem. They developed a mixed finite element
method for rectangles conforming in H(div), the so-called lowest
order Raviart–Thomas elements (RT0-elements), using the Hellin-
ger–Reissner variational principle from elasticity. Nédélec [25]
considered H(div) conforming extensions of these elements to
three dimensions on rectangular parallelepipeds with application
to the Maxwell’s equations. These elements are commonly denoted
RTN-elements. Brezzi et al. [9] improved on the RT-elements and
developed the BDM family of mixed finite elements on rectangles
and Nédélec [26] introduced a new family of mixed finite elements
in 3D for rectangular parallelepipeds conforming in H(div) with
application to the Stokes’ equation. Brezzi et al. [7] developed
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simplifications of the RT-elements on rectangular parallelepipeds,
called the BDDF elements. Brezzi et al. [8] considered new versions
of the BDM and BDDF elements. Brezzi and Fortin [10] and Roberts
and Thomas [31] discuss H(div) approximations and the relations
between the RT, RTN, BDM, and BDDF elements. Later, Douglas
and Wang [17] developed a new family of spaces for rectangular
elements, the DW elements, and Chen [13] derived a new mixed
formulation based on the BDM-elements.

For distorted elements, subspaces of H(div) are constructed
from a space of reference shape functions on a unit element [36].
Shen [34] and Wang and Mathew [37] seemed to be the first to
consider general convex quadrilateral grids. Kuznetsov and Repin
[21] introduced a composite mixed finite element for convex quad-
rilaterals, in which the quadrilateral was subdivided into two tri-
angles. The space of functions corresponding to the subdivided
quadrilateral was the space of H(div)-functions on the quadrilat-
eral such that the restriction to each of the two triangles was in
RTN0 of the triangle and such that the divergence of the function
was constant over the entire quadrilateral. Arnold et al. [2] have
also considered mixed finite elements for convex quadrilaterals.

The problem of developing mixed finite elements for irregular
hexahedral grids have been addressed by many authors in the last
years. It is well known that the lowest order RT-elements on gen-
eral hexahedral grids do not converge, see, e.g. [3,4,11,19]. This is
related to the fact that the lowest order RT functions cannot repre-
sent the constant vector field on a general hexahedron [18,24,32].
Convergence in H(div) can still be obtained for hexahedrons with
flat surfaces [32] or grids which asymptotically tend to a parallel-
epiped mesh [3]. Kuznetsov and Repin [22] extended the idea of
[21] to elements that are three-dimensional polygons with flat sur-
faces. Sboui et al.[32] developed a mixed finite element method on
three-dimensional general hexahedral meshes with flat surfaces.
The method was composite, meaning that each convex hexahedron
was subdivided into five tetrahedra. Boarkine et al. [5] consider a
mixed finite elements on non-matching distorted hexahedral
meshes. They perform a fault interface reconstruction algorithm
in order to construct a conforming polyhedral mesh in the whole
domain and then apply the method of [22].

The problem with general hexahedral meshes is not restricted
to the mixed finite element method. The control-volume mixed fi-

nite element method [12] also needs to define shape functions
based on six face fluxes on general hexahedral meshes, see [24].
The last reference clearly shows the difficulty of treating general
hexahedral meshes. In addition, many other locally conservative
methods are also closely related to the mixed finite element meth-
od [20,39]. Note that recent research by Brezzi et al. [11] shows
promising results on hexahedral grids for the mimetic finite differ-
ence method [33]. Other methods which rely on velocity construc-
tions to obtain accurate flow results, include references [1,23,30].
One example where this local reconstruction of the velocity is
needed, is streamline generation. Streamlines are used, e.g., in
computational fluid dynamics for visualization of vector fields
[27], in ground water flow for simulation of advective transport
[35,40], and in hydrocarbon reservoir simulation [16].

A streamline tracing algorithm should satisfy certain tracing
quality criteria, e.g., no crossing of streamlines, independence of
starting point, reproduction of a uniform flow field, reproduction
of symmetry, no premature termination of streamlines in cells or
at cell boundaries, good approximation to the true solution, and
computational efficiency. The importance of reproduction of
uniform flow for the convergence of a streamline method, was
shown in [18]. In this note, we also demonstrate the impor-
tance for a streamline method to use a flow field which lies in
H(div).

2. Hexahedrons with curved surfaces

We will now, by construction of a counter-example, prove the
following:

Theorem. The following properties are incompatible, i.e., they cannot
all be satisfied at the same time:

(1) A local velocity reconstruction based on total cell face fluxes.
(2) Reproduction of uniform flow for general hexahedral cells.
(3) A flow field in H(div).

Note that the properties can in fact be satisfied for a subclass of
problems, e.g., for hexahedrons with flat surfaces, or for uniform
flow fluxes. What we show, however, is that they cannot be satis-
fied in general. Our findings are consistent with, and significantly
generalize those of, [24].

Proof. We will assume that properties (1) and (2) hold, and then
show, by example that property (3) cannot hold in general.
Consider the cubic domain, X ¼ ½0;1�3. Discretize this domain with
two cells, such that the first cell X1 has four corners coinciding
with the corners of X where z ¼ 0, while the remaining corners are
given by (0,0,1/3), (0,1,2/3), (1,1,1/3), and (1,0,2/3). The second cell,
X2, fills the rest of the domain such that the grid is a conforming
hexahedral grid, with one internal curved surface, see Fig. 1.

Let ex ¼ ½1;0;0�T . For unit flow q ¼ ex parallel to the x-axis, the
flux through the surfaces of X perpendicular to ex will be 1. Thus
the surfaces of X1 and X2 perpendicular to ex have fluxes equal to
1/2. All other faces have zero integral flux, although the curved
internal surface will have point-wise nonzero normal fluxes
through the surface at all points except (1,1,1)/2.

Clearly, for our domain and flow field, a method satisfying
property (2) will give correct, linear, velocity reconstruction.
Property (1) ensures that this reconstruction is done individually
for each cell. For this case, neither the flow field, nor the
reconstructed field have any divergence, thus property (3) is not
violated.

We now modify the example, by applying different flux
boundary conditions on the surfaces perpendicular to ex. Let the
lower cell, X1, still have fluxes equal to 1/2, as in the previous
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Fig. 1. A curved surface in a cubic domain.
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example. But for X2, we impose fluxes equal to �1/2 at the faces
perpendicular to ex. Due to mass conservation, the internal
interface between X1 and X2 must have zero integral flux.

Note that, for X1, all integral fluxes used in the velocity
reconstruction is identical to our first example, thus the recon-
structed flow field must be equal to the flow field q in the first
example. However, for X2, the fluxes now corresponds to a uniform
flow field equal to �q, and a method satisfying property (2) will
reproduce this velocity.

Since the normal component of the velocity almost everywhere
at the internal boundary is now non-zero and has opposite sign on
each side of the boundary, the velocity field itself will not lie in
H(div) in the neighborhood of the boundary. h

3. Remarks

In [24], it was shown that a local velocity field derived from the
Piola-transformed RT0 shape functions, or any 3D shape function
that preserves a constant normal component across surfaces, can-
not contain the constant vector fields on general hexahedra. Our
findings are consistent with this observation, but more general,
since it is valid for any local velocity interpolation using only the
six local face fluxes as degrees of freedom.

In [18], a velocity interpolation scheme for general hexahedral
grids was proposed for streamline tracing. The method was based
on a corner point velocity interpolation (CVI), and it was shown
to reproduce uniform flow on general hexahedral cells. Reproduc-
tion of uniform flow was shown to be essential for the conver-
gence of streamlines and time-of-flight for nonuniformly refined
grids.

The CVI method satisfied point-wise continuity in the normal
component of the velocity across planar cell faces. However, the
paper did not comment on the lack of continuity of the normal
component for curved surfaces. The example of the previous sec-
tion shows clearly that lack of normal continuity may cause pre-
maturely termination of streamlines on cell boundaries. Hence,
the conclusions of [18] is strictly only valid only for hexahedral
cells with planar cell faces. Even if the numerical experiments in
[18] revealed no problems for curved faces, the example of this
note shows that there exist cases where the method will fail.

By taking into account fluxes in the six neighbouring cells of a
hexahedron, thus relaxing property (1), it is possible that a modi-
fied CVI method satisfying properties (2) and (3) can be obtained.
These ideas will be discussed in a separate paper.

4. Conclusion

We have shown by counter-example that the following three
properties cannot be simultaneously satisfied: (1) a local velocity
reconstruction based on integral cell face fluxes; (2) reproduction
of uniform flow for general hexahedral cells; and (3) a flow field
in H(div). This result has consequences for streamline tracing and
for mixed finite element methods attempting to approximate
H(div), and at the same time include the constant vector fields
on general hexahedral meshes.

For streamline tracing, using a flow field which is not contained
in H(div) may cause streamlines to terminate incorrectly on cell
boundaries. Whereas, failure to reproduce uniform flow, may cause
convergence problems [18]. In this note, we have shown that a local
flow field with degrees of freedom taken from six face fluxes, cannot
achieve both reproduction of uniform flow and point-wise continu-
ity in the normal component across cell boundaries, in general. The
convergence of mixed finite element methods seems also to be clo-
sely related to the application of a flow field which both reproduce
uniform flow and which lie in H(div). We have shown that the latter

properties cannot be obtained simultaneously for distorted hexahe-
drons and flow fields which are based six face fluxes.
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Abstract

Streamline simulation relies on an efficient and accurate calculation of streamlines and
time-of-flight coordinates (TOF). Computation of streamlines are commonly done on a
cell-by-cell basis using flux interpolation in the semi-analytical Pollock’s method. An
alternative method is to use corner-point velocity interpolation in each grid-cell, which
reproduces uniform flow in three spatial dimensions. For this method, numerical integra-
tion of streamlines is required. In previous work, streamlines for irregular hexahedrons
have been obtained by numerical integration in a reference cube, which facilitates easy
detection of cell boundaries. The disadvantage of this method is the computational cost of
transforming the velocity from physical space to a reference element, involving multiple
evaluations of the Jacobian matrix. In this work, we propose an adaptive method for
integration of streamlines directly in physical space, which aims at higher computational
efficiency by reducing the number of evaluations of the Jacobian matrix.

1. Introduction

For a given velocity field q = q(x), a family of streamlines s = s(τ ; x0) is defined by

ds

dτ
= q(x), s(0; x0) = x0, (1)

where τ parameterizes the streamline passing through the starting point x0.
We consider streamline tracing in the context of streamline simulation of (multiphase)

flow in hydrocarbon reservoirs [Batycky , 1997; Bratvedt et al., 1993; King and Datta-
Gupta, 1998]. Multiphase flow in porous media can be modelled by a set of partial
differential equations. Using the so-called fractional flow formulation, the flow of e.g.,
two phases can be described by a parabolic equation for the fluid pressure and a (hyper-
bolic) transport equation for fluid saturations. The basis for any streamline method is a
sequential splitting of the coupled system of pressure and saturation equations, in which
one first fixes the saturation and solves the pressure equation. The velocity field, which is
linked to the pressure through Darcy’s law, is then used as a parameter while advancing
the transport equation a given step forward in time. The new saturation field is then used
as input parameter for a new pressure solution step, and so on.

1
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Introducing the time-of-flight coordinate [Batycky , 1997] as an integral along a stream-
line,

τ(x, y, z) =

∫ s

s0

φ

|q|ds, (2)

the multidimensional saturation equation can be transformed into a family of one-dimensional
equations along streamlines, which can the be used to speed up the numerical solution of
fluid transport. In this work we will consider how to compute streamlines and time-of-
flight from the solution of the pressure equation. The pressure equation will be solved by
a mass-conservative scheme, e.g. an MPFA (O-method) [Aavatsmark , 2002], providing
continuous fluxes on grid cell edges. We consider applications on 2D quadrilateral grids,
where a continuously defined velocity field is commonly obtained by interpolation of the
quadrilateral edge-fluxes [Jimenez et al., 2005; Prévost et al., 2002]. The extension of the
proposed method to 3D is indicated.

2. Streamline Tracing on Irregular Grids

2.1. Introduction: Tracing on Cartesian Grids. We start with a discussion of stream-
line tracing on 2D Cartesian grids, commonly referred to as Pollock’s method [Pollock ,
1988] in the literature. Pollock’s method builds a streamline as a series of line segments
that each crosses a grid cell in physical space. The segments are constructed such that
the exit point of the streamline in one cell is the entrance point in the next cell. By
introducing a coordinate transformation, each rectangular grid cell is transformed into a
unit square. Linear interpolation of (scaled) edge fluxes is then used to define a velocity
field:

qI(x, y) ≡
[
Fx0(1− x) + Fx1x
Fy0(1− y) + Fy1y

]
, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. (3)

Having defined a velocity field, the streamline s(τ) = [x(τ), y(τ)] (on the unit square) is
found by integrating the system of ODEs in (1):





dx

dt
= qI

x(x), x(0) = x0,

dy

dt
= qI

y(y), y(0) = y0,
(4)

where qI
x and qI

y are the x- and y-components of qI. Since qI
x depends only on x, and qI

y

depends only on y, the streamline can be found analytically [Pollock , 1988]. Finally, the
streamline is mapped back to the original grid cell.

2.2. Streamline and Velocity in Curvilinear Coordinates. Irregular grids are com-
monly used in reservoir description, due to ease of discretization and improved mesh
quality. We consider irregular quadrilaterals in 2D, which are images of a unit square
under the bilinear transformation,

x(x̂) ≡
4∑

i=1

xiφi(x̂, ŷ), 0 ≤ x̂, ŷ ≤ 1 (5)

where xi = [xi, yi], i = 1, . . . 4, are the four corner points of the quadrilateral, x̂ = [x̂, ŷ] is
a point in the unit square (the reference space R); x(x̂) = [x(x̂, ŷ), y(x̂, ŷ)] is a point in the
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Figure 1. Left: Transformation of a streamline and velocity from reference
space R to physical space P. Right: Reconstructing velocities from fluxes

quadrilateral (physical space P); and φi(x̂, ŷ), i = 1, . . . 4, are the standard bilinear shape
functions on the unit square. Note that the extension of the method to 3D will consider
hexahedral grid cells that are images of a unit cube under a trilinear transformation.

Velocity Transformation. Commonly, streamlines are integrated (traced) in R and then
mapped back to P. To integrate a streamline ŝ(t) in R, the velocity must be given in
bilinear coordinates. An expression for this velocity may be derived as follows: To obtain
the streamline s(t) in P, the bilinear transformation is applied to the streamline ŝ(t) in
R; see Figure 1 (left). We then use the chain rule to determine the velocity in R,

q ≡ ds

dt
=

dx(ŝ(t))

dt
=

dx

dx̂

dŝ

dt
= Jq̂. (6)

Here q̂ = dŝ/dt is the velocity in R, q is the velocity in P, and J = dx/dx̂ is the Jacobian
matrix of the transformation. Thus, the transformed velocity is given by

q̂ = J−1q. (7)

3. Corner Velocity Interpolation

The standard methods [Cordes and Kinzelbach, 1992; Jimenez et al., 2005; Prévost
et al., 2002] for streamline tracing on irregular grids are based on integration in R, ap-
proximating q̂ in Eq. (7) using a linear interpolation of the edge fluxes. In [Hægland
et al., 2005] it was shown that these methods may fail to reproduce uniform flow on ir-
regular grids in 3D. To remedy this situation, a velocity interpolation scheme denoted
corner velocity interpolation (CVI) was introduced. A central idea of this method is the
shift from flux interpolation to corner-point velocity interpolation.

Reconstruction of Corner Velocities. The method is described here for the 2D case, see
[Hægland et al., 2005] for details of the 3D case. Consider the cell shown in Figure 1
(right), where four fluxes Fi, are given on the edges Ei, i = x0, x1, y0, y1. Normal vectors
ni with direction consistent with the sign of the edge fluxes are defined for each edge Ei.
The length (absolute value) of the normal vectors are assumed to be equal to the length
of the corresponding edge. Corner velocities qi, i = 1, . . . , 4, at the corners xi, can then
be obtained by solving 2× 2 linear systems on the form

{
qi ·nx(i) = Fx(i),
qi · ny(i) = Fy(i),

i = 1, . . . , 4, (8)
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where {x(i)}4
i=1 = {x0, x1, x1, x0} and {y(i)}4

i=1 = {y0, y0, y1, y1}, refer to edges in the
x- and y-direction, respectively, adjacent to corner xi. This means that to determine q1,
we solve {

q1 · nx0 = Fx0,
q1 · ny0 = Fy0,

(9)

since Ex0 and Ey0 are adjacent to corner x1. The systems (8) are well-conditioned as long
as the quadrilateral does not degenerate. If the fluxes have been computed exactly for a
uniform flow field q, then qi = q. See Hægland et al. [2005] for more details.

The CVIR Method. The method of corner velocity interpolation in reference space (CVIR)
is based on integration of (7) in R, where the unknown quantity is the velocity q in P.
We approximate q by a bilinear interpolation of the corner velocities qi in Equation (8),

qI
CVIP(x(x̂, ŷ)) ≡

4∑

i=1

qiφi(x̂, ŷ), (10)

where φi and x have the same meaning as in Eq. (5). Note that (10) is exact for
uniform flow. The method of corner velocity interpolation in physical space (CVIP) to
be described in the next section, integrates the velocity in (10) directly in physical space,
hence the subscript CVIP in (10). The difficulty with this approach is to determine when
cell boundaries are crossed, especially in 3D. Thus, integration on a reference element
was suggested in Hægland et al. [2005], leading to the CVIR method characterized by the
following velocity interpolation in R,

q̂I
CVIR ≡ J−1qI

CVIP, (11)

where we have used (7). The disadvantage of the CVIR-method is the expensive evaluation
of the inverse Jacobian matrix at each integration point.

4. Tracing in Physical Space. The CVIP Method

In [Hægland et al., 2005], a forth-order Runge-Kutta method (RK45) was used for inte-
gration with the CVIR method, which requires six function evaluations (i.e. evaluations
of velocity) per time step. For each velocity evaluation we need to determine the inverse
of the Jacobian, see (11). In order to avoid this expensive step, we would like to consider
integration in the physical space. Integration in P involves the difficulty of determining
the exit point from a cell, additionally, if we use a Runge-Kutta method, function eval-
uations (velocity) at intermediate points in physical coordinates are needed, whereas the
velocity at these points is given in reference coordinates, see (10). This means that an
inverse bilinear transformation must be used to determine the velocity at these points,
which is even more expensive than evaluating the inverse Jacobian matrix.

In this paper we instead apply an Euler predictor-corrector method for integration in
P, which only requires the velocity at points on the cell boundaries. At such points, the
inverse bilinear transformation will simplify to a linear relation, and the velocity in (10)
can be easily evaluated. Adaptivity is implemented using a recursive mesh refinement
procedure. Similar ideas have been explored in [Bensabat et al., 2000; Cheng et al., 1996].
Consider the quadrilateral grid cell shown in Figure 2 with reconstructed corner velocities
qi at the corners xi, i = 1, . . . , 4, respectively. Within the cell, the velocity q is given
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(a) Original grid cell

p0

pe

(b) Refined grid cell

Figure 2. Criterion for grid refinement

by the bilinear interpolation in (10). A particle enters the cell at p0 with velocity v0

(determined by the interpolation). If the flow field is uniform, the streamline through the
cell will be a straight line, as indicated in the figure. An approach to check the validity
of the assumption of uniform velocity is to compare the velocity ve at the exit point pe

with v0. Accordingly, we define the relative velocity error as

Ev =
‖v0 − ve‖
‖v0‖

(12)

If Ev is less than some prescribed tolerance ǫ, we accept the constant approximation
q ≈ v0 (Euler method), or we rather use the improved estimate q ≈ (1/2)(v0 + ve)
(Euler predictor-corrector). If Ev is not less than ǫ, i.e., ǫ < Ev < Emax, where Emax is
a prescribed maximum error, an adaptive refinement of the grid cell will be employed. If
Ev is greater than Emax, we expect a high degree of refinement, and it would probably be
more efficient to apply the RK45 method in reference space.

Mesh Refinement. The mesh refinement is based on a recursive splitting of a cell into four
sub-cells. The splitting is defined by the coordinates of the bilinear transformation for a
splitting of the the unit square in R into four sub-squares of equal size, see Figure 2(b). If
Ev exceeds ǫ for a given sub-cell, that sub-cell is recursively split into four new sub-cells.
Note that the remaining three sub-cells may be left unrefined by this procedure.

5. Numerical Experiments

To illustrate the method we consider numerical experiments in 2D. The extension to
3D is work in progress.

5.1. A Synthetic Case. Consider the test case in Figure 3. The domain has unit per-
meability, except in the cross-hatched area, where K = 10−3. The boundary conditions
are of Neumann type, with no-flow on top and bottom, inflow at edge AC, and outflow
at edge BD. A single-phase pressure equation is solved using an MPFA-method on an
irregular grid with 10× 10 cells to provide continuous fluxes on each grid cell edge. The
irregular grid is obtained from a Cartesian uniform grid, where each cell is a square with
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Figure 3. Domain used in the first numerical test case. Streamlines for a
Cartesian grid of the domain are shown to the right.

Relative tolerance 0.050000

CVIP
CVIR

Relative tolerance 0.500000

CVIP
CVIR

Figure 4. Streamlines for the first test case. Left: ǫ = 0.05. Right: ǫ = 0.5.

side length su. In order to keep the physical properties of the domain the same for different
grid perturbations, only grid points in the interior of the left and right parts of the grid
are perturbed. These points are perturbed within squares with side length sp centered at
the original grid point. For a p% perturbation we have 100sp/su = p, see Figure 4, where
we have used a 50% perturbation.

Test 1: 10 Streamlines. Corner velocities for each grid cell are obtained from the fluxes
using the recovery method from Section 3. For each integration method (CVIP/CVIR),
ten streamlines are traced from ten fix points on the inflow boundary until they exit
the domain at edge BD, see Figure 4. For the CVIR method, a fourth-order Runge-
Kutta method with relative tolerance of 10−8 is used for integration in R. Thus the
streamlines traced with the CVIR method can be viewed as reference solutions for the
given interpolated velocity field. Streamlines for CVIR and for CVIP with ǫ = 0.05 and
ǫ = 0.5 are shown in Figure 4. The circles indicate the length of each local step in the
CVIP method. We see the benefit of using the CVIP method for uniform flow (the middle
of the domain in Figure 4), where no grid refinement is needed and the method is also
exact. The influence of the streamline launching point on errors in streamline shape and
time-of-flight has been investigated by Matringe and Gerritsen [2004]. They found that
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streamlines should be started as far away from singularities (wells/fractures) as possible.
In our test case we have a region with high streamline density (the fracture in the middle
of the figure) and two regions with low streamline density (the inflow boundary and the
outflow boundary). If we start the streamlines at the inflow boundary they will converge
into the fracture, which will reduce errors. On the other hand, as the streamlines exit the
fracture, they will diverge to the outflow boundary and the errors will increase, see Figure
4 (right). Still, it would be worse to launch the streamlines in the fracture and trace
forward and backwards: For this case we then get the same errors at outflow boundary,
but in addition we get errors at inflow boundary of the same size as for the outflow
boundary.

Test 2: 100 Streamlines. We consider a sequence of relative tolerances {ǫ8
i=1} = {0.005,

0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64}. We increase the number of streamlines to 100, still
starting at equally spaced points at the inflow boundary, and measure the error in the
CVIP method at the right boundary BD compared to the reference solution given by the
CVIR method. Two different error measures are applied: error in the exit position and
error in time-of-flight at the exit point. We consider a sequence of grids with perturbations
{p6

i=1} = {0, 10, 20, 30, 40, 50}. For each pi and each ǫi, we take the average of the errors
over the 100 streamlines. The resulting position errors are shown in Figure 5 (left). The
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Figure 5. Left: Error in position. Right: Runtime for CVIP for different
values of ǫ.

results for the time-of-flight error look similar. As expected, the errors are not sensitive
to grid perturbation and increase with increased relative tolerance. Finally, we compare
the runtime required for the CVIP and CVIR methods to trace all 100 streamlines for a
given ǫ. We measure the runtime relative to the standard flux mapping (SFM) described
in [Prévost et al., 2002]. This is a semi-analytical method for streamline tracing, and is
commonly used in the industry due to its speed. Note that the extended flux mapping
(EFM) by Jimenez et al. [2005], which is able to reproduce time-of-flight for uniform flow
in 2D, is about as fast as the SFM method. The runtime for the CVIR and CVIP will be
given in fractions of the runtime of the SFM method. For a MATLAB implementation,
results for base-ten logarithm of the fraction for different tolerances ǫi, are shown in
Figure 5 (right). A value of zero corresponds to the same runtime as the SFM. The
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runtime of the CVIR method is approximately 15 times as long as the runtime of the
SFM method. We see that the runtime of the CVIP method decreases as ǫ increases.
The CVIP method is faster than the CVIR method for ǫ > 0.04. For this specific case,
there is a large reduction in runtime when going from ǫ = 0.04 to approximately ǫ = 0.32,
where the CVIP method is about 12 times as fast as the CVIR method. In this region
of ǫ, the position error also increases slowly. For ǫ > 0.32 the opposite is true: there is
not so much to gain in runtime, whereas the error increases more rapidly. So a choice of
ǫ ≈ 0.3 could be reasonable in order to balance accuracy and speed. In other situation,
other considerations might apply; for instance, for the special case of uniform flow, any ǫ
might be used.

5.2. The SPE 10 case. This test case is taken from the tenth SPE comparative solution
project, Model 2, see http://www.spe.org/csp/datasets/set02.htm. The original fine scale
model is a Cartesian grid of 60× 220× 85 grid cells.

Test 1: Layer 14. To set up a 2D simulation, we pull out layer number 14 and ignore the
z-coordinates. Each interior grid point of the resulting grid is perturbed slightly (20%)
to get an irregular grid. The original permeability is left unchanged in each perturbed
cell. No-flow boundary conditions are applied, with an injector in the lower left corner
and a producer in the upper right corner, see Figure 6. Streamlines are then initiated at
the injector cell and traced to the producer. We consider four streamline starting points
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Figure 6. SPE 10 case. CVIP with ǫ = 0.05 (Left). CVIP with ǫ = 0.5 (Right)

at the injector cell. For each starting point we trace the streamline with three different
methods: CVIR, CVIP, and SFM. The only difference between the two plots in Figure 6,
is the relative tolerance used with the CVIP method. For ǫ = 0.5 in Figure 6 (right),
we get large errors in the CVIP method compared to the CVIR method (and the SFM
method). For ǫ = 0.05 in Figure 6 (left), there is hardly any difference between the
methods. In Table 1 the time-of-flight at the producer is shown for all the methods.
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Table 1. Time-of-flight at the producer for the different methods

SL1 SL2 SL3 SL4
SFM 1.8016e+06 2.1706e+06 1.6297e+06 1.3567e+06
CVIR 1.7990e+06 2.2308e+06 1.6556e+06 1.3584e+06
CVIP (ǫ = 0.05) 1.7985e+06 2.2613e+06 1.6562e+06 1.3575e+06
CVIP (ǫ = 0.5) 2.2433e+06 2.5604e+06 1.6655e+06 1.3842e+06

Test 2: All Layers. For each layer in the SPE case we consider the same setup as in
the previous test. We increase the number of streamlines to ten, and trace from equally
distributed starting points on the two injector faces. Let τR and τP be the time-of-flight
at the producer for a particular streamline computed by CVIR and CVIP, respectively.
Then the error for that streamline is measured as |τR − τP |/τR. For each layer we take
the average over all ten streamlines. The base-ten logarithm of the resulting error is
shown in Figure 7 (left) for different values of ǫ. In Figure 7 (right) we have plotted the
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Figure 7. SPE 10 case. Left: Error in CVIP for different layers and
different ǫ. Right: Average error of CVIP over all layers for different ǫ.

average of the errors over all layers. A value of -2 corresponds to a 1% relative error in
the time-of-flight. This is achieved on average for ǫ ≈ 0.07. The results show that the
relative errors vary from 100% to 0.1% for different layers, streamlines, and tolerances ǫ.
The right figure shows that the average error increases with ǫ, as expected. We believe
that the high values for, e.g., ǫ = 0.05 (red curve) in some layers (Figure 7 (left)) are
not related to the tolerance, or the tracing method (CVIP). By following a particular
streamline with a large error, we found that the error was a result of large variations in
permeability, which for some grid cells caused the streamline to be extremely sensitive to
the entry point.

5.3. Conclusion. We have tested the CVIP method on 2D irregular grids and compared
it with the CVIR, SFM, and EFM methods. Experience with the 2D case can be valuable
when extending the method to 3D. For uniform or almost uniform flow, CVIP is as
efficient as the EFM method. Since the CVIP method is adaptive, it is possible to shift
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to a more efficient and accurate method (e.g., the EFM, which is as accurate as CVIR
in 2D) when the velocity field becomes less uniform. Similarly, in 3D one could make
an adaptive method in which CVIP is the default choice and the more accurate CVIR
is applied in regions where the velocity field changes rapidly. We have seen that if the
tolerance of the CVIP method is chosen too high, meaning that we accept large errors
in our approximation of the velocity, we are likely to get large errors in the streamlines.
Accordingly, an error estimate for the CVIP method that can be used to control the
tolerance, would be of great value.
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Abstract

Geological storage of CO2 in possibly fractured and faulted media, involves the risk of
leakage. The extent of leakage may be assessed with statistical methods through analysis
of simulations of multiple realizations of a stochastic model. Numerical simulation of
numerous such realizations typically requires considerable computational cost, motivating
the use of fast numerical methods, such as streamline simulation, for screening. Streamline
methods have shown to be effective for reservoir characterization and simulation. In this
work we will develop methodology which allows for tracing of streamlines in fractured or
faulted media. The work is motivated in part by the need to assess potential of geological
storage of CO2 and is also highly relevant for reservoir simulation.

1. Introduction

Carbon dioxide (CO2) storage is considered to be a potential key strategy to reduce
anthropogenic CO2 emissions. The principle of carbon dioxide storage is to capture CO2

produced with the conversion of fossil fuels and sequester the CO2 in a geological reservoir.
Understanding of the risks (see [Damen et al., 2004] for an overview) associated with CO2

sequestration is one of the key factors affecting public acceptance. The main research
topic in risk associated with underground CO2 sequestration, is leakage. Locally, leakage
of CO2 may be dangerous (in elevated concentrations) to humans, animals and ecosystems,
whereas globally, high leakage rates may render the sequestration of CO2 ineffective as
a mitigation option. Typically leakage occurs either as diffuse seepage through the cap-
rock and subsequent overlaying formations, or as concentrated leakage through potentially
highly conductive paths such as (abandoned) wells or fractures. From a risk assessment
perspective, abandoned wells and fractures form a major challenge since their properties
are often at best known statistically [Celia et al., 2004].

Numerical simulation of CO2 sequestration for risk assessment is typically done in a
statistical framework, where evaluation and screening of multiple realizations of a model
requires fast numerical methods. Streamline methods have shown to be effective for

1



2 Hægland, Celia, Dahle, Eigestad, Nordbotten and Assteerawatt

reservoir characterization and simulation. In this work we will develop methodology which
allows for tracing of streamlines in fractured or faulted media. The basis for a streamline
method is a sequential splitting of the coupled pressure and saturation equations. A mass-
conservative discretization, which handles general faulted grids in a consistent manner,
will be used for the pressure equation. In earlier work we have developed streamline
tracing on structured and unstructured matching grids. Here we present an extension to
grids adapting to faulted media.

Governing equations. For simplicity, the model equations for CO2 sequestration will be
given for two-phase flow, neglecting gravity and capillary pressure. Inclusion of these
effects has been discussed elsewhere, e.g. [Gerritsen et al., 2005]. The pressure equation
can then be written as [Settari and Aziz , 1972]

ct∂tp +∇ · q = bp, (1)

where q is the total velocity (sum of phase velocities), ct is the total compressibility, and bp

is a source term. Equation (1) is linked to a transport equation for the fluid saturation S

φ∂tS +∇ ·
(
qf(S, x)

)
= bs, (2)

through Darcy’s equation for the volumetric flow density,

q = −λ(S, x)∇p. (3)

Here, φ, λ, f , and bs denote porosity, total mobility, fractional flow function, and source
terms, respectively. By introducing the time-of-flight [Batycky , 1997; Blunt et al., 1996]
as an integral along a streamline,

τ(x, y, z) =

∫ s

s0

φ

|q|ds, (4)

the saturation equation, Equation (2), reduces to the one-dimensional hyperbolic equa-
tion,

∂tS + ∂τf(S) = bs − f(S)∇ · q. (5)

The last term on the right-hand side accounts for compression or expansion of fluids in
the case of compressible flows and is identically zero for incompressible flows. Solving
the family of one-dimensional problems (5) on a discrete set of streamlines is often much
faster than solving Equation (2) over a grid in physical space. Streamlines s = s(τ ; x0)
are defined for a given velocity field q = q(x), by

ds

dτ
= q(x), s(0; x0) = x0, (6)

where τ parameterizes the streamline passing through the starting point x0.
In this work, the domain will be discretized into an unstructured grid, capable of

representing faults and fractures. We consider single-phase tracer flow in 2D, where an
incompressible version of the pressure equation (1) will be solved on quadrilateral, possibly
nonmatching grids, using an MPFA (O-method) [Aavatsmark , 2002]. The MPFA-method
supplies continuous fluxes on each quadrilateral edge, and a continuously defined velocity
field is obtained by interpolation of these edge-fluxes. Tracing of streamlines (integration
of (6)) for use in flow simulations has been investigated in [Hægland et al., 2005; Jimenez
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et al., 2005; King and Datta-Gupta, 1998; Matringe, 2004; Matringe and Gerritsen, 2004;
Matringe et al., 2005; Prévost , 2003; Prévost et al., 2002; Sun et al., 2005].

2. Streamline tracing on faulted grids

2.1. Introduction: Tracing on Cartesian grids. To motivate the description of stream-
line tracing on faulted grids, we start by discussing the basic version on 2D Cartesian grids,
which is commonly referred to as Pollock’s method [Pollock , 1988]. Pollock’s method
builds a streamline as a series of line segments that each crosses a grid cell in physical
space. The segments are constructed such that the exit point of the streamline in one cell
is the entrance point in the next cell. By introducing a coordinate transformation, each
rectangular grid cell is transformed into a unit square. Linear interpolation of (scaled)
edge fluxes is then used to define a velocity field:

qI(x, y) ≡
[
Fx0(1− x) + Fx1x
Fy0(1− y) + Fy1y

]
, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. (7)

2.2. Tracing on faulted grids.

Solving the pressure equation. For faulted 2D grids we will use a flux continuous control-
volume method [Aavatsmark et al., 2001] for the pressure equation. A discrete linear
system for cell centre pressures is obtained by assuming a linear potential in each grid
cell, and by requiring potential and flux continuity in interaction regions surrounding grid
points. The solution procedure will automatically give continuous fluxes on half-edges of
each grid cell.

Streamline tracing. Pollock’s method cannot be immediately applied to faulted grid cells,
since the input is half-edge fluxes. A simple approach may be to add the half-edge fluxes.
However, this simple approach causes streamlines to terminate at a no-flow half-edge; see
[Jimenez et al., 2005]. This is because adding two half-edge fluxes where one is zero and
the other nonzero, will produce a nonzero whole-edge flux, and the information about the
non-flow boundary has been lost. A better approach is a subdivision of the cell such that
the half-edge fluxes become whole-edge fluxes in the new cells. Mass conservation is used
to determine the fluxes on the unknown edges [Jimenez et al., 2005].

3. Streamline tracing for fractured media

Solving the pressure equation. A discretization of a fractured medium domain with volu-
metric elements in the fractures requires a grid which resolves the geometry of the problem.
Due to the small fracture widths, the resulting grid will either consist of a very large num-
ber of grid cells or the grid will contain cells with a very large aspect ratio [Reichenberger
et al., 2006].

A solution to this is to apply a mixed-dimensional discretization method which realizes
fractures as lower-dimensional elements. Solution of the pressure equation for such a
model is described in [Martin et al., 2005; Reichenberger et al., 2006].
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Figure 1. Section of a grid with a vertical fracture along (BH) (left). The
fracture is associated with a 2D virtual element of width d for computational
purposes (right).

Streamline tracing. In a 2D domain, a fracture will be modelled as a 1D object associated
with a small width, see Figure 1. By the 2D fracture we will mean the 1D fracture
associated with a small width, d, see Figure 1, where the size of d has been exaggerated
for illustration purposes. Each edge of the 2D fracture will have an associated flux. Note
that horizontal edges for the 1D fracture reduce to a single point in the left part of Figure
1. There is still a flux associated with these edges. Consider tracing a streamline for this
simple grid, see Figure 2. A streamline reaching the point N in the fracture, is traced

M

N

(a) A streamline enters the grid
at the point M, and reaches the
fracture at point N.

M

NO

PQ

(b) The streamline tracing
through the fracture is done in
the 2D fracture.

Figure 2. Streamline tracing through a fracture.

through the 1D fracture using the 2D fracture fluxes. The entry point N is associated
with a starting point O. The streamline exits the 2D fracture at P, which is associated
with a point Q in the 1D fracture. Points O and P are hence pictures in order to calculate
exit/entry points of the fracture.

4. Tracer flow modelling

When acid CO2 is dissolved in water prior to injection in an aquifer for sequestration
[Bachu and Gunter , 2004], a one-phase miscible displacement will take place. We will
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assume a simplified model of this displacement, where we consider two fluids, which
are completely miscible. The amount of the first fluid contained in the mixture has no
influence on the flow of the mixture, hence the name tracer. The volume fraction C(x, t)
of the tracer is defined as [Bastian, 1999]

C(x, t) =
volume of tracer in REV

volume of mixture in REV
(8)

Further, we assume that the fluids have the same density ρ. The conservation of mass for
tracer can then be modelled by

∂(φρC)

∂t
+∇ · {ρqC −D∇C} = ρqT (9)

where the velocity q is the Darcy velocity for the single phase, and D is the hydrody-
namic dispersion tensor. Equation (9) is simplified by assuming incompressible flow and
neglecting dispersion, which leads to

φ
∂C

∂t
+ q · ∇C = 0 (10)

away from sources and sinks.
We observe that the advection equation for the tracer resembles the saturation equation

for two phase flow, i.e., Eq. (2). By introducing the time-of-flight relation (4), Eq. (10)
simplifies to a one dimensional linear advection equation along the streamlines,

∂C

∂t
+

∂C

∂τ
= 0. (11)

If we use the initial condition C(0, τ) = C0H(τ) where C0 is a constant, and H(·) is the
Heaviside function, the solution is C(t, τ) = C0H(τ − t). Tracer flow modelling using
streamline simulation has been investigated in [Crane and Blunt , 1999].

5. Numerical experiments

We are working on the implementation of a streamline tracing method using a mixed-
dimensional finite volume method for the pressure equation. In this paper we simulate
the pressure solution of such a method using an MPFA-method.

We consider the test case in Figure 3(a). In that figure the solution domain is the
rectangle BFOL, where the heavy black lines are no-flow boundaries. The fracture is the
cross-hatched area in middle. A source is located in corner B and edge IL and edge FG
are outflow boundaries. We have a lower, upper, and a fracture region, with permeability
K1 = I, K2 = 10I, and K3 = 1000I, respectively, where I is the identity matrix, see
Figure 3(a). A single-phase pressure equation will be solved on a given discretization
of the domain using an MPFA-method, which here, due to a Cartesian grid, reduces to
TPFA. The fracture is discretized as a 2D element with a small width d. The solution will
give fluxes on each grid cell edge. Some streamlines for this solution is shown in Figure
3(b).

Next, the 2D fracture cells are collapsed into corresponding 1D elements, with asso-
ciated fluxes taken from the 2D solution. Now we apply the streamline tracing method
for fractures, see Section 3. The result is shown in Figure 3(b). The heavy streamline
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(a) The fracture case. (b) Streamlines traced for the refer-
ence solution

Figure 3. Generating a reference solution

(a) Streamlines traced through a frac-
ture
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(b) Tracer arrival time contours

Figure 4. Streamline tracing through a fracture

in Figure 4(a) is drawn to indicate where a particular streamline enters and exits the
fracture.

Tracer arrival times (see Section 4) are easily computed from the traced streamlines in
Figure 4(a). Recall that when tracing streamlines, we can also compute the time-of-flight
(TOF) for each grid cell a streamline traverses. If we use the model in Section 4, we
get from Eq. (11) that the TOF is equal to the tracer arrival time. Tracer arrival time
contours for the case are shown in Figure 4(b).

6. Summary and conclusions

We have described a streamline method for handling flows on irregular grids mod-
elling faulted and fractured media. An important application of this methodology may
be risk assessment related to geological storage of CO2. Potentially this application will
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require numerous calculations of multiple realizations of geological formations described
in a stochastic fashion. Traditional reservoir simulators, based on e.g. finite difference or
finite volume methods, require considerable computational cost. In contrast, streamline
methods and semi-analytical calculations constitute promising tools for this type of sim-
ulations. However, in the case of streamline simulations, this requires that the streamline
methods are able to handle potential conduits for leakage like faults and fracture zones.

In this work we have described some preliminary steps in this direction. First, in the
case of grids representing faults, special care is needed to handle sections of grid-edges
(or faces) representing no-flow conditions, such that streamlines crossing the faults are
represented accurately. Second, fractures are usually handled as lower dimensional objects
in the computational grid. To determine exit times for streamlines entering a fracture,
the fractures are virtually expanded to fully dimensional objects using the measure of the
aperture of the fractures. We have illustrated these developments through a numerical
experiment.
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Abstract. Simulations of flow for a discrete fracture model in frac-
tured porous rocks have gradually become more practical, as a conse-
quence of increased computer power and improved simulation and char-
acterization techniques. Discrete fracture models can be formulated in
a lower-dimensional framework, where the fractures are modeled in a
lower dimension than the matrix, or in an equi-dimensional form, where
the fractures and the matrix have the same dimension.

When the velocity of the flow field is needed explicitly, as in stream-
line simulation of advective transport, only the equi-dimensional ap-
proach can be used directly. The velocity field for the lower-dimensional
model can then be recovered by post-processing which involves expan-
sion of the lower-dimensional fractures to equi-dimensional ones.

In this paper, we propose a technique for expanding lower-dimensional
fractures and we compare two different discretization methods for the
pressure equation; one vertex-centered approach which can be imple-
mented as either a lower- or an equi-dimensional method, and a cell-
centered method using the equi-dimensional formulation. The methods
are compared with respect to accuracy, convergence, condition number,
and computer efficiency.

1. Introduction

Fractured formations occur commonly in nature. Folding, faulting, and
subsidence of sediments over geologic time cause fracturing. The more brittle
the rock, the more intensely it fractures. Fractures can range in size from mi-
crons to hundreds of kilometers, and the accurate modeling of flow through
such systems is important for many types of problems, including the man-
agement of water and energy resources and CO2-sequestration [14, 15, 27].

Mathematical models based on continuum theory for quantifying flow
and transport through fractured rocks can be classified into 1) continuum
models, or 2) discrete fracture models, or 3) hybrid models, see e.g. [11, 14,
27, 51, 55, 60]. The models differ in their representation of the heterogeneity
of the fractured media, and whether they are formulated in a deterministic
or a stochastic framework.

In this paper we consider a discrete fracture model for flow in fracture-
matrix system in two space dimensions (2D). Discrete fracture models [4,
23, 27, 60] allow quantification of many flow and transport phenomena that
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are not adequately captured by single- or multi-continuum models. An
advantage of the discrete fracture approach is that it can account explicitly
for the effects of individual fractures on fluid flow and transport.

However, the contrast in permeability between fractures and the porous
matrix may span many orders of magnitude and can vary highly in space
[27], which is a major difficulty in modeling fluid flow in fractured rock [23].
Furthermore, due to the complex geometry of the model, unstructured grids
are required for the discretization of the domain. Also, the heterogeneous
and anisotropic behavior of the permeability is challenging for the numerical
modeling of the system, and proper averaging of permeability between the
computational cells is crucial [29].

Transport models are used for understanding and predicting the geolog-
ical system using tools like break-through curves, arrival time and storage
behavior. The outcome of transport simulations strongly depends on the dis-
tribution of velocities in the fractures [23]. The velocity distribution cannot,
in general, be determined analytically, and must be obtained numerically
from the solution of a flow (pressure) equation. Hence, desirable properties
of a numerical scheme for flow simulation include: a) efficient approxima-
tion and solution of the flow (pressure) equation, b) local mass conservation,
and c) high-accuracy approximation of the velocity field. The importance
of efficiency is further increased by the need for considering Monte Carlo
simulations.

Two approaches exist for discrete fracture models. If the matrix is (al-
most) impermeable and only interconnected fractures contribute to the flow,
discrete fracture network models are appropriate [4, 23]. In this work we will
consider a discrete-fracture-matrix (DFM) model [27]. This approach ap-
ply when both fractures and matrix play a significant role for the flow and
transport processes and the model can not be homogenized. Two model
approaches exist for the DFM model: In the DFM lower-dimensional for-
mulation (DFML) [41, 44, 45, 49, 58], fractures are modeled as line segments
in 2D, and as planar regions in 3D, whereas in the DFM equi-dimensional
formulation (DFME) [13, 19, 46, 57, 58, 66], fractures are modeled in the
same dimension as the matrix. The DFML has been more common than the
DFME, since modeling fractures as lower-dimensional objects simplifies grid
generation and data requirements. However, when the velocity of the flow
field is needed explicitly, as in streamline simulation of advective transport
[24], only the equi-dimensional approach can be used directly. The velocity
field for the lower-dimensional model must be recovered by a post-processing
step which involves an expansion of the lower-dimensional fractures to equi-
dimensional ones [38].

In this paper, we consider a discrete fracture model where fractures are
modeled as lower dimensional objects [58] in a geostatistical fracture genera-
tor [8]. The domain is assumed to be in 2D, such that fractures are modeled
as line segments. A technique for expanding lower-dimensional fractures is
proposed, and we investigate different discretization methods for flow on
both DFML grids and DFME grids. Extensions to 3D is briefly discussed
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Figure 1. Left: A realization from the geostatistical frac-
ture generator FRAC3D [62]. The fractures in black are mod-
eled as lower dimensional objects, i.e. line segments. Right:
Discretization of the realization in the left figure using the
mesh generator ART [34]. Note that some estimate of frac-
ture width (or aperture) must be provided by the fracture
generator.

in the next section. A vertex-centered box scheme is compared with a cell-
centered multi-point flux approximation. Section 3 introduces the vertex-
centered and cell-centered finite volume methods. Section 4 compares the
methods numerically for several test cases of increasing complexity. To il-
lustrate that the fracture expansion also facilitate tracing of streamlines, we
provide streamline calculations which demonstrate the convergence of the
numerical velocity field. Finally, Section 5 concludes the paper.

2. Expansion of fractures

We consider fractures modeled as lower dimensional objects [58] by a geo-
statistical fracture generator [8]. A sample 2D realization is shown in Figure
1 (left). When fractures in a lower-dimensional model are subsequently ex-
panded to have the same dimension as the matrix, we obtain a so-called
equi-dimensional fracture model.

The fractures may be expanded before, or after the discretization of the
fracture field. Usually the fractures will be very thin compared to the size of
the domain. If a relative coarse mesh is being used around the fractures, e.g.,
as in Figure 1 (right), the size of the mesh elements will be much larger than
the fracture aperture. In this case the fracture must be expanded after the
grid generation. For a very fine mesh, however, the size of the triangles may
be similar to the fracture aperture, or smaller. In this case, the fractures
should be expanded before the grid is generated.

We will henceforth only consider cases where the fractures are expanded
after the triangulation. We also assume that a constant aperture can be
associated with each fracture segment, using a parallel plate model for the
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1 2 3 4

Figure 2. The cases % = 1 and % = 2. Sub figure 1) and 2):
A single fracture ending. Sub figure 3) and 4): Two fractures
meeting

1 2 3 4

Figure 3. The cases % = 3 and % = 4. Sub figure 1) and 2):
Three fractures meeting. Sub figure 3) and 4): Four fractures
meeting

fractures [12]. The fractured domain is in 2D and will be discretized with tri-
angles, such that the fractures coincides with the triangle edges. To simplify
the presentation, we will assume that all fractures have the same aperture.

2.1. Interior points. The expansion algorithm is based on the number %
of fractures meeting at a vertex. We consider the cases of % equal to 1, 2,
3, 4, and 5. Higher degrees are treated similar to degree 5. The reason for
considering case 3, 4 and 5 separately, is related to the type of acceptable
elements in the grid: triangles and quadrilaterals are permitted and can be
used for the central element when % = 3 and % = 4, respectively. For % ≥ 5,
the central element must be split into sub triangles, as shown later.

The case % = 1, corresponds to a single fracture ending at an interior
vertex, see Figure 2. A single fracture can be expanded in variety of ways,
see e.g. [35, 53, 52, 54, 59]. This topic will not be investigated further
in this work, here we use a single triangle as shown in Figure 2 (Left).
The case % = 2 is handled using two trapezoidal elements, see Figure 2
(Right). The case % = 3, is shown in Figure 3 (Left). If the permeability
of the three fractures is the same, this case can be handled using three
trapezoids and a central triangle. If the permeability of the three fractures
is different, the permeability of the central triangle can be calculated using
a generalized harmonic mean [45], or the central triangle can be split into
three sub triangles, each of which correspond to one of the fracture edges.
The case % = 4 is shown in Figure 3 (Right). In this case four trapezoids

and a central quadrilateral are used, if the permeability of the fractures is
different, the central quadrilateral may be split into four sub triangles. The



COMPARISON OF DISCRETIZATION METHODS 5

Figure 4. Five fractures meeting

case % = 5 is shown in Figure 4. Cases of % > 5 are handled in a similar
fashion.

2.2. Boundary points. Boundary vertices with ending fractures are han-
dled similar to interior vertices. If the boundary is flat at the vertex and
only a single fracture is ending at the vertex, see e.g. the vertical fracture in
Figure 4 (Right), then no extra element at the boundary is needed. If the
boundary is not flat, or two or more fractures are meeting at the vertex, ex-
tra elements, either triangles or quadrilaterals are inserted at the boundary
vertex, see also Figure 4 (Right).

2.3. Extension to 3D. Obviously, the expansion procedure in 3D is more
complicated than for the 2D case. In the lower-dimensional form, each
fracture will be modelled as a plane. A single plane not crossing any other
planes, can then be expanded with hexahedral elements. Two planes will
cross each other along a line if they are not parallel. The intersection line can
also be expanded with hexahderal elements. Three non-parallel planes (with
normal vectors not lying in the same plane) cross each other along three lines
and in a single point, see [68]. The crossing point would be discretized with
a hexahedral element. Four planes will cross each other along six lines and
in three points. The points corresponds to intersections of the three possible
groups of three planes taken from a group of four planes. It is highly unlikely
that four planes cross in a single point. More than 4 planes will cross along
lines and in points corresponding to groups of 3 planes.

3. Finite volume methods for elliptic problems

The flow equation for a single phase flowing in a porous medium is given
by

−∇ ·K∇P = f,(1)

for a permeability tensor K, pressure P , and a source term f .
For general anisotropic and inhomogeneous medium, the permeability ten-

sor is represented by a space-dependent full tensor. Layered and fractured
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media involving large discontinuities in the permeability require numerical
schemes with a continuous flux and a proper definition of transmissibility
across cell-edges. Furthermore, the discrete features of the media and the
general geometry of the media require the use of general unstructured grids.
Since a simple two-point flux approximation is only applicable for the special
case of a K-orthogonal grid [2], more robust methods must be considered
in our context.

Many schemes that preserve flux continuity on general unstructured grids
have been developed, like mixed-finite element methods [16, 7, 6, 5], discon-
tinuous Galerkin methods [20], mimetic finite difference methods [43, 61]
and control-volume mixed finite element methods [17].

In this paper, we focus on two different finite volume methods (FVMs)
[33] applicable to the discrete fracture model. The idea of a FVM is to
discretize the domain into a mesh of finite volumes (or control volumes).
Then the divergence form of the equation is exploited by integrating over
a finite volume and using Gauss’ theorem to convert the result into surface
integrals which are discretized [50].

The most common FVM schemes are either cell-centered (block-centered),
in which the primal grid cells are used to define the control volumes, or
vertex-centered (point-distributed), in which control volumes are constructed
around the primal grid vertices.

3.1. The box method. The box methods [48] are vertex-centered FVMs
that can be formulated as a finite element method. Generally, a finite el-
ement method involves two spaces, the test- and the trial-space. The box
method can be cast in the finite element setting with a trial space of piece-
wise polynomials over the primary grid, and a test space over the dual grid
[48]. Since the trial functions will be different from the test functions, the
box scheme can be treated as a Petrov-Galerkin finite element method [21].

For the box-scheme considered herein, the test functions are piecewise
constant, and the trial functions are conforming piecewise linear polyno-
mials. This kind of box scheme has also been called control-volume finite
element method [9], finite volume element method [18], generalized differ-
ence method [48], and subdomain collocation method [42, 69].

Consider first the case of no fractures. The domain is discretized with
triangular and/or quadrilateral elements Ej , j = 1, . . . , N e, and vertices
V i, i = 1, . . . , Nv, where Ne is the total number of elements in the grids,
and Nv is the total number of vertices in the grid. In the box method, one
algebraic equation corresponds to every vertex in the primary mesh. The
boxes are usually constructed as a dual mesh of an underlying grid. There
are various ways to introduce the dual mesh, e.g., the Voronoi mesh based
on the circumcenter [18, 48], or the Donald-mesh, based on the barycenter
[10, 21, 32].

For the Donal-mesh the secondary dual mesh is defined by connecting
the barycenter (centroid) of each element Ej with edge midpoints. The dual
mesh divides each element into three or four sub quadrilaterals depending on
the type of element (triangle/quadrilateral). The union of all sub quadrilat-
erals adjacent adjacent to a vertex V i is denoted ΩB

i , or the control volume
associated with V i, see Figure 5 (left).
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VI

VJ

Figure 5. Left: Sample grid with no fractures consisting of
a primary grid of two quadrilaterals and four triangles. The
dual grid is indicated by dashed lines. The control volume as-
sociated with the central vertex (black circle) is indicated by
the heavy dashed line. Right: Grid with fractures; intersec-
tion points indicated with red circles. A fracture intersects
the dual mesh at its midpoint. The vertices VI and VJ are
the end points of a fracture.

As for the finite element method, the unknown in Equation (1), P =
P (x, y) is approximated using basis functions φi, i = 1, . . . , Nv, weighted
by discrete values P̂i ≡ P (V i), i.e., P ≈ P̃ =

∑
φiP̂i. A basis function

is a piecewise continuous function such that its restriction to a triangular
element will be a linear function, whereas its restriction to a quadrilateral
is an isoparametric mapping of a bilinear function on a reference element
[22, 64]. As usual, the basis functions φi are local functions, meaning that
they are identically zero outside ΩB

i .
The approximation of P with P̃ now leads to a residual in Equation (1),

∇ · q̃ − ∇ · q = ∇ · q̃ − f , where q̃ = −K∇P̃ . In the method of weighted
residual [69], the weighted integral of the residual over the whole domain is
set to zero,

(2)
∫

Ω
Wi(∇ · q̃ − f)dV = 0, i = 1, . . . , Nv,

for each weight function Wi, i = 1, . . . , Nv. The Box-method uses the simple
form,

(3) Wi(x) =

{
1 x ∈ ΩB

i

0 x 6∈ ΩB
i .

The application of the divergence theorem to (2) now leads to a set of
Nv surface integrals over the boundaries of each control volume ΩB

i . For
triangular elements, these integrals can be evaluated analytically, whereas
for quadrilateral elements the gradient of the pressure is not constant on each
element, and numerical integration is required. In the numerical experiments
in this paper we used a midpoint rule to evaluate the fluxes for quadrilateral
elements.



8H. HÆGLAND, A. ASSTEERAWATT, H. K. DAHLE, G. T. EIGESTAD, AND R. HELMIG

Assuming an element-wise constant permeability, the Nv integrals can be
expressed as

(4)
Nt,i∑

j=1

3∑

k=1

γi,j,kP̂i,j,k = fi i = 1, . . . , Nv.

Here, we have assumed a grid of only triangular elements, and the sum on
k is running over the three vertices of each triangle j contributing to the
control volume ΩB

i . There are Nt,i triangles contributing to ΩB
i , and P̂i,j,k

refers to the pressure at local corner number k of triangle j. Furthermore,
fi is the integral of the source term f over ΩB

i , and γi,j,k can be expressed
as

(5) γi,j,k =
[
Ki,j

2Ti,j
νi,j,k

]
· (n1

i,j + n2
i,j).

Here n1
i,j and n2

i,j are the two outward normal vectors (having length equal
to the length of the interface) associated with the part of ∂ΩB

i lying within
triangle j, Ki,j and Ti,j are the permeability tensor and the area of triangle
j, respectively. The vectors νi,j,k and the area Ti,j results from taking the
gradient of the linear pressure variation in triangle j as shown in, e.g., [3].

The last part of the box method consists of the assembly of the coefficient
matrix and the right hand side of the linear system for the discrete (vertex)
pressures giving Nv linear equations for the Nv unknown vertex pressures
P̂i. Note that, for Dirichlét boundary conditions, the number of Dirichlét
boundary nodes must be subtracted from Nv, see [37] for a discussion of
boundary conditions.

The linear system can be written in matrix form as

Au = b,(6)

where A is the Nv × Nv coefficient matrix, u is an Nv × 1 vector of the
unknown vertex pressures, and b is an Nv×1 vector representing the source
terms or boundary conditions. Since the linear system is symmetric positive
definite, it can be solved rapidly using, e.g., the preconditioned conjugate
gradient method.

3.2. Discrete fractures. Fractures are approximated using the parallel
plate model [12]. In n-dimensional space, fractures are often modeled as
(n − 1)-dimensional objects [27, 58]. In 2D, this means that fractures are
associated with the edges of the finite element mesh. Hence, edges are ei-
ther matrix edges (edges containing no fractures), or fracture edges (edges
containing a fracture), see Figure 5 (right). The fracture edges are denoted
by Fk, k = 1, . . . , Nf , where Nf is the number of fracture edges. A fracture
edge intersects a control volume boundary of the dual mesh at its midpoint,
see Figure 5 (right).

Each fracture edge Fk will also have an associated aperture ak, perme-
ability kk, and length lk. The length lk is the length of the fracture edge, the
permeability kk is assumed to be isotropic such that a two-point flux can be
applied inside the fracture and the aperture ak is not resolved explicitly in
the grid, but used for computing fracture fluxes, as discussed next.
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Consider a fracture edge Fk with end points at nodes VI , 1 ≤ I ≤ Nv,
and VJ , 1 ≤ J ≤ Nv, as in Figure 5 (right). Then the flux Qi,j,k out of ΩB

I
at the midpoint of Fk is approximated as a two-point flux

(7) Qk =
kkak
lk

(P̂I − P̂J).

The above fluxes are then taken into account when evaluating the surface
integrals resulting from Equation (2), and when assembling the linear system
(6).

The lower-dimensional treatment of fractures in the box methods has been
popular since it allows for easy mesh generation and a well-conditioned linear
systems. However, streamlines cannot be traced directly for this approach,
since there is no transversal flow information in the lower-dimensional frac-
tures. It is therefore of interest to consider equi-dimensional methods. In the
next section we consider the MPFA method for equi-dimensional fractures.
Note that the MPFA method also has been used with lower-dimensional
fractures [40], however this approach can only be used for low-permeable
fractures.

3.3. The MPFA O-method. In cell-centered finite volume methods the
control-volumes are associated with the primary grid. This is convenient
compared to vertex-centered methods, when considering discontinuous me-
dia properties combined with a quadrilateral or triangular primary mesh.
In this case it is easy to align the grid edges, and hence, the control-volume
boundaries with media discontinuities.

Here we use a multi-point flux O-method (MPFA O-method), briefly de-
scribed below. For an overview of different MPFA schemes see [2, 1, 3, 28,
67], and references therein. The letter “O” comes from the shape of the
polylines connecting the involved grid points in a cell-stensil [2]. The MPFA
O-method is based on full flux continuity across cell edges, continuity of the
pressure at the midpoint of the cell edges, and mass conservation for each
cell. The pressures at cell edges is eliminated locally using the flux continu-
ity constraints, and the global system is expressed in terms of the cell center
pressures.

For the MPFA O-method the control volumes are associated with the
original mesh, whereas for the box method, control volumes were associated
with the dual mesh. By integrating Equation (1) over a control volume ΩM

i
and applying Gauss’ theorem we have

(8) −
∫

∂ΩM
i

K∇P · ndS =
∫

ΩM
i

fdV, i = 1, . . . , N e,

where n is the unit outward normal vector to ∂ΩM
i . The only unknown in

the last equation is the pressure, which will be approximated at the center
of each cell (cell-centered method), in contrast to the Box-method, where
the pressure is approximated at the vertices of the grid (vertex-centered
method). Hence, Equation (8) gives us N e equations to determine the N e

unknown cell center pressures. By assuming a constant permeability Ki

for each control volume, we can write the integral on the left hand side of
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12

3

4 5

6

Figure 6. An interaction region, variational triangles, half-
edges and pressure nodes, respectively, for the central ver-
tex of a simple grid. Variational triangles are cross hatched;
the half-edges are the heavy line segments numbered 1-6;
solid circles indicate auxiliary (temporary) pressure nodes,
and non-solid circles indicate cell center pressures.

Equation (8) as

(9)
∫

∂ΩM
i

−Ki∇p · ndS =
Ne,i∑

j=1

∫

Γi,j

−Ki∇p · ni,jdS =

Ne,i∑

j=1

Qi,j , i = 1, . . . , N e,

where Ne,i is the number of boundary edges of ΩM
i , i.e., Ne,i=3 for a triangle

and Ne,i=4 for a quadrilateral, Γi,j is boundary edge number j of ΩM
i , ni,j

is the corresponding outward unit normal vector, and Qi,j is defined by
Equation (9). In order to determine the fluxes Qi,j in Equation (9) in terms
of the cell center pressures, we use a multi-point flux approximation (MPFA).

The MPFA method is based on dividing the grid into so-called interaction
regions Ii, i = 1, . . . , Nv, associated with each vertex V i of the grid. The
interaction regions are equal to the control-volumes for the box method,
see the previous section. For each interaction region Ii there is a set of
half-edges Ei,j , see Figure 6. On each side of a half-edge there will be two
grid cells, denoted “L” and “R”. Furthermore, each interaction region also
contains a set of variational triangles T αi,j , α = L,R, one for each cell α of
half-edge Ei,j , see Figure 6.

Within each T αi,j , a linear pressure variation is assumed. This is done by
fixing the pressure at the corners of each T αi,j . Thus, in addition to the cell
center pressures, we introduce (temporary) pressures at the points indicated
with the solid circles in Figure 6. The linear pressure in each T αi,j is now
assumed to be valid also for calculating the flow across each of the two half-
edges within Ii that are closest to T αi,j , i.e., those with a common point with
T αi,j .
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Hence, the pressure gradient will be constant on each side of a half-edge.
From Equation (8) we see that the flow rate q must be given as

q = −K∇P.(10)

Substituting the constant pressure gradient into the last equation, we can
express the flux across each half-edge Ei,j as

qαi,j =
3∑

k=1

tαi,j,kP (xαi,j,k),(11)

where

tαi,j,k =
|Ei,j |
2Tαi,j

(
Kα

i,jν
α
i,j,k

)
· ni,j ,(12)

and P (xαi,j,k) is the pressure at corner k of T αi,j . The sign of the unit normal
vector ni,j to Ei,j is not important, but the same sign must be chosen for
each value of α. In the last equation, |Ei,j | is the length of Ei,j ; Tαi,j and ναi,j,k
are the area and normal vectors of T αi,j , resulting from taking the gradient
of a the linear pressure, see, e.g., [3].

Flux continuity across edge Ei,j can now be expressed as qLi,j = qRi,j , or

Aiui +Bivi = Ciui +Divi, i = 1, . . . , N e,(13)

where ui is a vector of cell center pressures, and vi contains the auxiliary
pressures (which we want to eliminate), and the matrices Ai, Bi, Ci, and
Di, contains the t-coefficients. Note that since the pressure is required to
be continuous at the auxiliary pressure nodes, i.e., at the solid circles in
Figure 6, there will be only one unknown at these points, and hence each vi
has exactly NE

i components, where NE
i is the number of half-edges within

Ii. It can also be shown that the matrices Bi and Di are square NE
i ×NE

i
matrices.

We here assume that the interaction region Ii correspond to an interior
corner; for boundary corners and implementation of boundary conditions,
see [37, 31]. For interior corners, the vectors ui and vi will also contain
the same number (NE

i ) of unknowns, such that Ai and Ci are also square
NE
i ×NE

i matrices.
Due to the continuity condition in Equation (13), the flux qi,j across

edge Ei,j is well defined as either qLi,j or qRi,j , and can be expressed as, e.g.,
qi,j = qLi,j , which is expressed in matrix form as

qi = Aiui +Bivi,(14)

where the j-th component qi is qi,j . Finally, we eliminate vi in Equation
(14) by using Equation (13),

qi = (Ai +Bi(Bi −Di)−1(Ci −Ai))ui = Tiui(15)

Since the components of qi represents fluxes over half edges adjacent to a
given corner V i, the flux over edge Γk,j of grid cell ΩM

k (see Equation (9))
can be found be combining certain components qi, i = A,B, where VA and
VB are the end points of Γk,j .
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Figure 7. Left: Initial grid. Right: Level 2 refined grid.

In this way, we assemble expressions for each of the Qi,j in Equation (9)
and inserting these into (8), we obtain N e linear equations that can be solved
for the N e unknown cell center pressures. The linear system is expressed as

Au = b,(16)

where A is the N e × N e coefficient matrix, u is an N e × 1 vector of the
unknown cell center pressures, and b is an N e × 1 vector representing the
source terms for each ΩM

k , k = 1, . . . , N e, see Equation (8).

4. Numerical experiments

In this section we solve Equation (1) numerically, using the box method
and the MPFA method.

4.1. Homogeneous case. We first consider the homogeneous case with no
fractures. By investigating this simple case first, we will get a feeling of how
the methods perform, including the sensitivity of the solution to different
boundary conditions and to grid perturbation, before extending to the more
complex cases including fractures.

Assume K ≡ 1, no source terms (f ≡ 0), and Dirichlet boundary con-
ditions in a domain Ω = [0, 2] × [−1, 1]. The boundary conditions were
imposed by one of three different analytical solutions,

P1(x, y) = x2 − y2 + xy + x+ y + 1,(17)

P2(x, y) = x3 − 3xy2 + 3x2y − y3 + x2 − y2 + xy + x+ y + 1,(18)

P3(x, y) = cos(x) cosh(y).(19)

The influence of the following boundary conditions were investigated:
• Type 1: Dirichlét boundary conditions on the whole boundary,
• Type 2: Neumann boundary conditions on the whole boundary, and

the pressure fixed at an interior point, and
• Type 3: Mixed boundary conditions, with Neumann boundary con-

ditions at the top and bottom, and Dirichlét at the left and right
boundary.

The convergence tests were performed on a sequence random grids, starting
with the coarsest grid, as shown in Figure 7 (left). Five refinement levels was
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Table 1. Convergence rates for pressure and flux in terms of DOFs.

MPFA1 MPFA2 MPFA3 BOX1 BOX2 BOX3
Pressure

P1 -.96 -1 -.99 -.91 -1 -.93
P2 -.97 -1 -.99 -.91 -1 -.97
P3 -.97 -.94 -.99 -.95 -1 -.97

Flux
P1 -.57 -.52 -.52 -.46 -.49 -.47
P2 -.57 -.5 -.5 -.47 -.49 -.48
P3 -.58 -.49 -.5 -.47 -.49 -.48

MPFA1 MPFA2 MPFA3 BOX1 BOX2 BOX3
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Figure 8. Accuracy at 3950 DOFs obtained by interpolat-
ing between the two closest grids. Left: Pressure. Right:
Flux.

considered; each refinement was obtained by splitting each triangle of the
original grid into four sub triangles, leading to a refined grid with four times
as many cells as the original. Then each grid vertex was given a random
perturbation. The level 2 refined grid is shown in Figure 7 (right). The
smallest angle of any element were 36, 32, 24, 18, 14, and 9 degrees, for the
coarsest to the finest grid.

The convergence rates for pressure and flux based on the discrete L2 error
[31] are shown in Table 1. The number after the method name refers to the
boundary condition, e.g., MPFA1 is the MPFA method using boundary
condition of type-1. Note that the MPFA method has more degrees of
freedom (DOFs) than the box method for the same grid, since we use a
triangular grid and the MPFA method is a cell-cent red method, whereas
the box method is vertex-centered. We therefore display convergence results
as a function of the DOFs; the convergence rate in terms of the mesh size
parameter h can be obtained approximately by a multiplication by -2.

The results in Table 1 are in agreement with the theoretical results pre-
sented in the literature for the box method [32] and for the MPFA method
[47]. The results show a second order convergence in pressure and first order
in flux.

The accuracy at 3950 DOFs are shown in Figure 8. The results show that
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Table 2. Runtime in seconds per degree of freedom
(R.T./DOF) for each method as a function of grid refinement
level.

G0 G1 G2 G3 G4 G5 G6

R.T./DOF
BOX 0.04 0.0044 0.0027 0.0024 0.0024 0.0025 0.0032

MPFA 0.0025 0.0031 0.0027 0.0027 0.0028 0.0038 0.014

the MPFA method is most accurate for flux, and the BOX method is most
accurate for the pressure.

As noted in Section 3.1, the system matrix for the box method is sym-
metric and positive definite, and we used a Cholesky factorization to solve
the corresponding linear system. An other alternative would be the precon-
ditioned conjugate gradient method, see [25] for a comparison. The system
matrix for the MPFA method is, however, not symmetric [30], and the UMF-
PACK [26] LU-factorization is used for this system. Table 2 shows runtimes
for the methods obtained for the Dirichlét boundary condition. The run-
times are divided by the degrees of freedom to provide a fair comparison
between the methods. Note also that an extra refinement level, G6, is in-
cluded in the table. The number of elements for Gi, i = 0, . . . , 6 was 8× 4i,
respectively. Hence G6 contained 32768 elements. The table shows that the
runtime per degree of freedom is almost constant for the box method for
refinement levels 3, 4, and 5, and then starts to increase slightly for the last
refinement level. For the MPFA method, the runtime is almost constant
for first 4 refinement levels, and then starts to increase. For the last refine-
ment (G6), the box method is approximately 4 times faster than the MPFA
method.

The numerical test in this section indicates that:

• For fine grids (more than 20000 DOFs), the box method will be faster
the MPFA method;
• The box method is most accurate for the pressure, whereas the MPFA

method is most accurate for the flux;
• The convergence rate of the MPFA method and the box method were

similar for both flux and pressure.

4.2. Single fracture. In this section we solve Equation (1) for the case
where the permeability tensor K is assumed to be the piecewise constant
scalar,

(20) K(x, y) =





1, (x, y) ∈ Ω1

kF , (x, y) ∈ Ω2

1, (x, y) ∈ Ω3.

The solution domain Ω = Ω1 ∪ Ω2 ∪ Ω3 is shown in Figure 9 (left). The
domain Ω2 will act as a single horizontal fracture with aperture ε.
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Figure 9. A domain with a single horizontal fracture.

We will consider the following analytical solution,
(21)

PF (x, y) =





kF cos(x) cosh(y) + (1− kF ) cosh(ε) cos(x) (x, y) ∈ Ω1

cos(x) cosh(y) (x, y) ∈ Ω2

kF cos(x) cosh(y) + (1− kF ) cosh(ε) cos(x) (x, y) ∈ Ω3,

where the source term in Equation (1) is given by

(22) f(x, y) =





(1− kF ) cosh(ε) cos(x), (x, y) ∈ Ω1

0, (x, y) ∈ Ω2

(1− kF ) cosh(ε) cos(x), (x, y) ∈ Ω3.

The boundary conditions will be determined by the analytical solution, and
we consider the type-1, type-2, and type-3 boundary conditions as described
in the previous section.

The numerical solution is computed in five different ways. First, we rep-
resent the fracture in Figure 9 using a lower dimensional object, i.e., a hori-
zontal line segment at y=0. This method will be denoted the BOXL (“L” for
lower-dimensional) method. The other four methods are based on the equi-
dimensional representation of the fracture. As discussed in Section 2, the
equi-dimensional fractures are obtained by expanding the fracture after the
domain has been triangulated. Two alternatives are investigated. The first
uses quadrilateral elements in the fracture. This is shown in Figure 10 (left)
for the coarsest grid and for an exaggerated fracture aperture. Using this
grid, we solve the pressure equation using both the MPFA method and the
box method, leading to the methods BOXQ and MPFAQ (“Q” for quadri-
lateral). The last alternative uses triangular elements in the fracture, shown
in Figure 10 (right), leading to the methods BOXT and MPFAT.

However, as it turned out that the errors for the methods using triangular
elements in the fracture could not be distinguished visually from the errors of
the same method using quadrilateral elements in the plots presented below.
Hence, to simplify the presentation, we do not display any results for BOXT
and MPFAT methods in the following.
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Figure 10. Different discretizations of an expanded frac-
ture. The aperture of the horizontal fracture at the center
of the domain is exaggerated for illustration purposes. Left:
Quadrilateral elements in the fracture. Right: Triangular
elements.
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Figure 11. Errorbar plot for the L2 error in pressure at
3950 DOFs. Left: Pressure. Right: Flux

We would like to investigate both the influence of the thickness of fracture,
and the influence of the permeability contrast between the fracture and the
matrix on the system behavior. However, in a later section we show that
these two factors are not independent in their influence on the condition
number of the system. We have therefore chosen to investigate only the
permeability contrast here. Then, in order to include a range of both low-
permeable fractures and high-permeable fractures we consider the following
cases for the fracture permeability:

kF,i = 10i−6, i = 1, 2, . . . , 11,(23)

and we chose to fix the fracture fracture aperture to

ε = 1e-4(24)

for all cases.
The results for accuracy are shown in Figure 11. As in the previous

section, we evaluate the accuracy at 3950 DOFs, and the last figure in the
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Table 3. Convergence rates for pressure in terms of DOFs.
Note that the rates for the BOXQ1, BOXQ3, MPFAQ1, and
MPFAQ3 are not included in the table below since they were
-1 for all cases of the fracture permeability.

Perm. BOXL1 BOXL2 BOXL3 BOXQ2 MPFAQ2
1e-05 -0.99 -1.1 -1 -0.9 -0.5
1e-04 -0.99 -1.1 -1 -0.92 -0.49
1e-03 -0.99 -1.1 -1 -0.92 -0.53
1e-02 -0.99 -1.1 -1 -0.92 -0.99
1e-01 -1 -1.1 -1 -0.91 -1.1
1e+00 -1.3 -0.91 -0.92 -1 -1
1e+01 -0.75 -0.92 -0.91 -1 -1
1e+02 -0.76 -0.93 -0.91 -1 -1
1e+03 -0.75 -0.96 -0.92 -1 -1
1e+04 -0.78 -0.99 -0.95 -1 -1
1e+05 -1 -1 -1 -0.99 -1

method names gives the type of boundary condition used, e.g., BOXL1
corresponds to the BOXL methods using boundary conditions of type 1.

The bars on the accuracy plots are obtained by considering the different
results for each kF,i, i = 1, . . . , 11. The central points on the errorbars corre-
spond to the average over all kF,i, and the extrema on the bars corresponds
to the minimum and maximum value over all kF,i. The results show again
that the box method is the most accurate for pressure, whereas the MPFA
method is most accurate for the flux. However, there are relatively large
variation over the different fracture permeabilities.

The convergence rate for pressure was second order (-1 in DOFs) for
the BOXQ1, BOXQ3, MPFAQ1, and MPFAQ3 methods. However, for the
other methods the convergence rate depended on the fracture permeability
as shown in Table 3.

The convergence rates for flux are shown in Table 4. All the BOXL meth-
ods showed a similar behavior; we only show the BOXL2 method in Table
4. The BOXQ methods showed a similar behavior as the BOXQ2 method
in Table 4, and all the MPFAQ methods all showed different behavior, also
see Table 4.

4.3. Accuracy of the BOXL method. Note that the convergence rates
for the BOXL method in Tables 3 and 4 were obtained at the last, i.e.
fifth, refinement level of the grids in Figure 10. For this grid the error
in the BOXL method was larger than approximately 1e-5. However, for
finer grids we observed a lack of convergence for the BOXL method. The
convergence for the BOXL method ceased when the errors got smaller than
approximately 1e-5.

To explain this, we consider the square domain of size d × d in Figure
12. For a homogeneous scalar permeability K(x, y) = 1 the flux stencil for
the central vertex in the figure (corresponding to mass conservation for the
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Table 4. Convergence rates for flux in terms of DOFs.
Convergence rates for the BOXL1, BOXL3, BOXQ1, and
BOXQ3 methods are not shown here, but discussed in the
main text.

Perm. BOXL2 BOXQ2 MPFAQ1 MPFAQ2 MPFAQ3
1e-05 -0.75 -0.51 -0.94 -0.71 -0.85
1e-04 -0.75 -0.51 -0.94 -0.71 -0.85
1e-03 -0.75 -0.51 -0.93 -0.71 -0.83
1e-02 -0.75 -0.51 -0.94 -0.73 -0.86
1e-01 -0.75 -0.51 -0.94 -0.74 -0.88
1e+00 -0.76 -0.51 -0.93 -1 -1
1e+01 -0.76 -0.52 -0.93 -0.77 -0.84
1e+02 -0.91 -0.71 -0.87 -0.9 -0.83
1e+03 -1.4 -1.2 -0.95 -1 -0.96
1e+04 -1.4 -1.3 -0.99 -1 -1
1e+05 -1.3 -1.3 -0.99 -1 -1

P1

P2
P3 P4

P5

Figure 12. A square domain of size d× d, discretized with 8 triangles.

shaded control volume) is given by

−P1 − P2 + 4P3 − P4 − P5 = 0.(25)

Consider now a horizontal (lower dimensional) fracture of aperture ε ex-
tending from P2 to P4 in the figure. Let the permeability of the fracture be
kF = 1. Then the flux stencil for the BOXL method becomes

−P1 − (1 +
2ε
d

)P2 + (4 +
4ε
d

)P3 − (1 +
2ε
d

)P4 − P5 = 0.

The introduction of the additional terms in the last equation, introduces an
error of size O(ε/d) into the system matrix for the BOXL method. This error
is not reduced as the grid is refined, and explains why the BOXL cannot
converge.
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Γ3

Γ1 Ω Γ2

Γ4

Figure 13. Left: A square domain with a vertical fracture.
Right: Initial discretization (Ref0) of the domain to the left.

4.4. Low-permeable fractures. In this and the following sections, we will
use boundary conditions of type-3, but they will not be determined from an
analytical solution as in the previous sections, rather we solve the following
problem:

∇ · (K∇P ) = 0, in Ω(26a)

P = 1, on Γ1(26b)

P = 0, on Γ2(26c)

(K∇P ) · n = 0, on Γ3 ∪ Γ4.(26d)

The domain Ω = [0, 1]× [0, 1] is shown in Figure 13 (left). The boundary of
the domain consists of the union of the four straight lines, Γi, i = 1, . . . , 4,
shown in Figure 13 (left).

We will assume that the permeability tensor is a piecewise constant scalar
given as

(27) K(x) =

{
kM , x in matrix,
kF , x in fractures

We will show that the BOXL method should not be used when fractures
are barriers to flow, i.e. for the case kF < kM . Consider a vertical fracture
(drawn in black) located in the center of the domain, see Figure 13 (right).
We will assume a matrix permeability of kM=1, and the fracture permeabil-
ity kF < 1. The the domain is discretized as shown in Figure 13 (right),
and a fracture width of ε=1e-4 is assumed. We first solve Problem (26)
with the MPFAQ method, using a fracture permeability of kF=1e-10. The
result is shown in Figure 14 (left). Here we have traced 40 streamlines for
the pressure solution. Refer to [38] for details about the streamline tracing
algorithm. We see that the flow correctly avoids the barrier. We now solve
the same problem using the BOXL method. The result is shown in Figure
14 (right). We see that the barrier is not respected by the box solution. The
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Figure 14. Streamlines in a domain with a low permeable
vertical fracture. Left: MPFAQ method, Right: BOXL
method

streamlines penetrates the barrier as it did not exist. Note that in order to
trace streamlines with the box solution, a flux recovery procedure was used,
see [38] for details.

The behavior of the box method can be explained by considering Figure
12. Assume first a homogeneous domain, i.e. kF = kM = 1. Then the
flux stencil for the central vertex in the figure is given by Equation (25)
Consider now a vertical fracture of aperture ε extending from P1 to P5 in
the figure. Let the permeability of the fracture be kF , and the permeability
of the matrix be kM=1. Then the flux stencil for the box method becomes

−P2 − (1 +
2kF ε
d

)P1 + (4 +
4kF ε
d

)P3 − (1 +
2kF ε
d

)P5 − P4 = 0.

As kF approaches zero, the last expression approaches Equation (25). Hence,
the influence of a low permeable fracture (kF < kM ) on the flow behavior
will be neglected by the box method, see Figure 14 (right).

We note that the type of boundary conditions can make the error in the
BOXL method less noticeable. This can be seen in the results from Section
4.2 in Tables 3 and 4. Here, it seems like the BOXL method converges for
the low permeable cases. However, the behavior of the system is here dom-
inated by the boundary conditions, and the true solution does not change
significantly from the homogeneous case to the case where kF=1e-5.

4.5. Investigation of the condition number. The condition number of
a matrix A is defined as

κ = ‖A‖‖A−1‖,
where the norm is usually taken to be the 2-norm. The condition number is
important due to its relation to the propagation of round-off errors and to
the convergence rate of an iterative solver [36, 39, 63].

In our case, the condition number of the system matrix resulting from dis-
cretizing the problem in Equation (26a), depends on many factors. Firstly,
the condition number depends on the number of degrees of freedom (DOFs)
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Table 5. Number of unknowns and condition number for
each method as a function of grid refinement level.

Ref0 Ref1 Ref2 Ref3 Ref4 Ref5

DOF
BOX 3 15 63 255 1023 4095

MPFA 8 32 128 512 2048 8192

COND
BOX 3.7 15 58 220 855 3371

MPFA 9 31 120 479 1919 7683

ε

hT ≈ h

Figure 15. Left: A “thin” rectangle and a triangle with
a small angle. Such “thin” elements tend to cause ill-
conditioned systems. Right: Illustration of the parameters
ε and h. Two elements from a larger grid are shown. The
triangle is a matrix element, and the rectangle is a fracture
element. The side length hT of the triangle is approximately
the same size as h. Note that hT is equal to the “length” of
the fracture element.

in the solution. To illustrate this, consider the case of a homogeneous do-
main with no fractures and permeability K ≡ 1. A sequence of grids with
increasing DOFs is obtained starting with a grid similar to that shown in
Figure 7 (left). The refinements are obtained in the same way as explained
in Section 4.1, without random perturbation of the corners. The results for
the condition number in Table 5 reveal an almost exact linear relation on
the form

κ = aN + b,

where N is the number of degrees of freedom, and a and b are constants. A
least-square fit to the data shows that a ≈ .822 for the box method, a ≈ 1.10
for the MPFA method.

In equi-dimensional fracture models, “thin” elements (see Figure 15 (left))
typically occur in the fracture. It is well known that for triangular grids,
small angles tend to produce a high condition number. For quadrilaterals,
“thin” elements, e.g. a rectangle with one side length much larger than the
other side length, may also cause problems. A common way to eliminate
“thin” elements is to use adaptive grid refinement. Drawbacks of the adap-
tive method may be an increased number of unknowns, and more difficult
mesh generation. In this paper we will not consider the adaptive method
further.
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The fracture aperture ε and the grid size parameter h are illustrated in
Figure 15 (right). Note that for a coarse mesh, we typically have h� ε, and
the elements in the fractures tend to be very “thin”. However, as the grids
are refined and ε is kept fixed, h will approach ε in size, and the fracture
elements will become more and more regular in shape. This effect tends to
reduce the condition number, but since the condition number also increase
with the number of degrees of freedom, or with the grid refinement level,
there is a trade-off here.

The parameters h and ε, are not independent in their influence on the
condition number. If h � ε the condition number only depends on the
single parameter α = h/ε (all other parameters held fixed). This is also true
for the fracture permeability kF and the matrix permeability kM , which can
be substituted for by the single parameter β = kF /kM . At last, it was found
that for the box method all of the previous parameters could be substituted
for by the single parameter

γ =
hkF
εkM

Hence the influence of the different parameters on the condition number
for a given grid G can be summarized as

(28) κ =

{
fGM (γ,N), M=BOXL, BOXQ, BOXT
fGM (α, β,N), M=MPFAQ, MPFAT

for an unknown function fGM and number of degrees of freedom N . Here G
refers to a grid with a particular fracture configuration.

To sum up, if we also allow the grid parameter G to vary, the following
factors may have an influence on the condition number:

• the parameters α, β, and γ
• number of fractures
• number of crossing fractures,
• fractures ending at the boundary of the domain, and
• how fracture endpoints are discretized.

In theory, the effects of each parameter on the condition number could be
determined by looking at the coefficient matrix A and how parameters enter
the matrix, and relations between the different elements. However, using
this approach we were only able to discover the general relation in Equation
(28); the form of the function fGM in that equation could only be determined
from extensive numerical simulations for given fracture configuration G and
selected values of the parameters α, β and γ.

The influence of β and γ is in the following investigated by changing the
fracture permeability kF . We consider 14 different test cases, as shown in
Figure 16, corresponding to different number of fractures crossing each other
at a point. For each grid we solve Equation (26a), with kM ≡ 1. We also
tried to improve the condition number for the MPFA method by using a
simple diagonal scaling preconditioner. The scaling was done by dividing
each row of the system matrix by the maximum element in absolute value
in that row (typically the diagonal element). The effect of the scaling is to
normalize the coefficient matrix, which may be efficient in the case where
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1 2 3 4 5

6 7 8 9 10

11 12 13 14

Figure 16. 14 different test cases.

the elements of each row considered separately are of approximately the
same magnitude, but at the same time, relatively large differences between
different rows exists. In order to keep the symmetry, the system matrix of
the box method was not scaled.

The results for the condition number as a function of fracture permeabil-
ity is shown in Figure 17. In the test, the grids in Figure 16 were refined one
level, such that the DOFs of the box methods were approximately 65, and
the number of degrees of freedom for the MPFA methods were around 130.
It was found that the condition number for the BOXQ and BOXT methods
could not be distinguished visually on the figures. Hence, the condition num-
ber of these methods are represented by the BOXE (box equi-dimensional)
curve in the figure. Also, several of the cases showed very similar behavior
for the condition number, e.g., case-1 and case-2 were similar, and are repre-
sented by the single subfigure with title “case1-2”. In addition, the condition
number for the BOXL method is only calculated for the cases kF > kM = 1,
due to its deficiency for the low permeable cases, confer with the discussion
in Section 4.4.

The test showed that the condition number for the BOXE and BOXL
methods for all cases increased steadily with fracture permeability when
fracture permeability was larger than approximately 10−3, see Figure 17.
For low fracture permeability, the condition number was low for all equi-
dimensional methods for cases 1-5, cases 7-8, and case 10. The MPFA
methods had low condition number for all the high-permeable cases. We
also note that the BOXL method was better conditioned than the BOXE
method for all the high-permeable cases.

4.6. Convergence study for a synthetic test case. In this section we
show how the methods perform on a more realistic test case. We compare
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Figure 17. The condition number for the 14 different test cases.

the BOXL method and the MPFAQ method on a coarse and a fine grid
of a fracture realization, see Figure 18 (top). The coarse grid consist of
163 elements, and the fine grid has 8211 elements. We solve the boundary
problem given in Equation (26), and use a fracture permeability of kF = 103,
a matrix permeability of kM ≡ 1, and a fracture aperture of ε = 10−4.

A number of 40 streamlines was traced for each method on each grid. The
streamlines for the BOXL method are red, and streamlines for the MPFAQ
method are black. The streamlines are distributed uniformly on the left
hand edge according to the inflow flux, and hence started at exactly the
same points for each method.

We see that the streamlines converge as the grid is refined.

5. Summary and conclusions

In this paper we have compared discretization methods for a discrete frac-
ture model in 2D. Two conceptually different finite volume methods were
considered for the pressure equation: A vertex-centered box method based
on a Donald-mesh, and a cell-centered MPFA O-method. We considered
accuracy and numerical convergence of flux and pressure for homogeneous
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Figure 18. Grids and streamlines for the synthetic test
case. Top Left: Coarse grid. Top Right: Fine grid. Bot-
tom Left: Streamlines for the coarse grid. Bottom Right:
Streamlines for the fine grid.

and fractured systems. In addition, the effects of fracture aperture, perme-
ability contrast, and number of crossing fractures, on the condition number
were investigated.

The MPFA method used an equi-dimensional treatment of the fractures,
whereas the box method was tested with both lower-dimensional and equi-
dimensional fractures. A procedure for expanding a lower dimensional dis-
crete fracture-model to an equi-dimensional model was proposed.

The box methods produced a symmetric positive definite matrix, which
enabled a fast and efficient solution of the corresponding linear system. The
MPFA method produced an asymmetric matrix which excluded the use of
high-efficient solvers. The box method were in general the most accurate
methods for the pressure, whereas the MPFA-methods were the most accu-
rate methods for the flux variable.

The lower-dimensional box method could only be used for high-permeable
fractures. Also, this method could not achieve high-accuracy results, due
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to the simplified treatment of the fractures. However, for most cases, the
high-accuracy deficiency will probably not be an issue due to coarse meshes
or other more important errors.

Several relations between different parameters in the fracture model, and
the condition number was found. The numerical tests indicated that the
MPFA-methods have well-behaved condition number for the case of high-
permeable fractures in low-permeable matrix.
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[49] V. Martin, J. Jaffré, and J.E. Roberts. Modeling fractures and barriers as interfaces
for flow in porous media. SIAM J. Sci. Comput., 26(5):1667–1691, 2005.
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Abstract. Simulations of flow and transport in fractured porous rocks using a discrete
fracture model have gradually become more practical, as a consequence of increased
computer power and improved simulation and characterization techniques. Fractures in
a discrete model are generally described with one dimension less than the surrounding
matrix, the so-called lower-dimensional approach. However, high numerical diffusion in
the transport simulation causes an increased computational demand due to the fine-grid
requirement. A streamline method for transport for a lower dimensional discrete fracture
model (DFML) is proposed in this paper. By solving the mass conservation equation us-
ing a vertex-centered finite volume scheme, a pressure field is obtained. Then, a fracture
expansion and a flux recovery method are carried out to determine new mass conser-
vative fluxes on a hybrid grid of triangles and quadrilaterals, on which streamlines are
traced. Only the advective transport is assumed for the streamline method. The results
of the streamline method are compared with a grid-based finite volume method using
two different fracture-matrix systems: simple systems (a single fracture or systemati-
cally distributed fractures) and complex fracture-matrix systems. Significantly different
transport behavior can be observed in the two types of systems. The numerical diffusion
in the grid-based transport simulation smears out the heterogeneity effect (fast trans-
port in the fractures and slow transport in the matrix) and delays the plume migration.
Whereas, the purely advective transport without numerical diffusion in the streamline
method leads to faster transport.

1. Introduction

Simulations of flow and transport in fractured porous rocks using a discrete fracture
model have gradually become more practical, as a consequence of increased computer
power and improved simulation and characterization techniques. In a discrete fracture
model, fractures may either be discretized with the same dimension as the surround-
ing matrix elements, the so-called equi-dimensional approach, or with one dimension less
than the matrix, the so-called lower-dimensional approach. The comparison study of the
two discretization approaches presented in Neunhäuserer [19] revealed a number of local
differences for the flow and transport, but and only minor differences globally. Suffi-
cient accuracy of global solutions with reduction of the computational time have lead to
wide-spread application of the lower-dimensional approach, see e.g., [23, 17, 14, 16], and
references therein.
In advective dominated problems like transport in fracture-matrix systems, grid-based
methods such as finite difference, finite element and finite volume methods all using the
Eulerian approach, suffer from numerical diffusion. High numerical diffusion in the trans-
port simulation, as shown in the associated paper, gives rise to an increased computational
burden since a very fine grid is required. Streamline methods have become a viable al-
ternative to traditional finite element or finite difference reservoir simulation during the
last decade ([15, 27]). The advantages of streamline simulation are lower computational
demand and less numerical diffusion compared with a grid-based transport model. On

1
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the reservoir scale where fractures and matrix are treated as two interacting continua,
promising results from streamline tracing have been presented by Huang et al. [12] and
Al-Huthali and Datta-Gupta [1]. Their results showed a close agreement with the results
from a grid-based finite difference simulation with a significant reduction in run time. In
this work, we propose a streamline method for transport for the lower dimensional dis-
crete fracture model (DFML). Similar to the grid-based methods, the streamline method
is based on the velocity field determined from a flow simulation.
The precision of streamline tracing strongly depends on the accuracy of the velocity field
([18]). For finite element based solutions, approximating the velocity from pressure gra-
dients results in discontinuous fluxes at element boundaries and hence lack of mass con-
servation ([8]). Many papers have considered this problem recently, see e.g. [7, 5, 26],
and references therein. Cordes and Kinzelbach [6] proposed an inexpensive technique for
deriving a continuous distribution of fluxes from the finite element solutions. The method
solves a local problem for each grid node to obtain conservative fluxes in a patch surround-
ing the node. This technique was extended by Prévost et al. [22] for the control-volume
finite element scheme on unstructured grids. A flux continuous velocity for a sub cell of a
control volume (triangular or quadrilateral in 2D, and tetrahedron or hexahedron in 3D)
were reconstructed. In this work, a flux recovery for a two-dimensional fracture-matrix
system based on the work of Cordes and Kinzelbach [6] and Prévost et al. [22] is in-
troduced. Continuous and mass conservative fluxes for all sub cells of a control volume
denoted as sub control-volumes are recorded and are later used for streamline tracing.
Additionally, when streamline tracing is considered, lower-dimensional fractures, which
are assumed in the flow simulation have to be extended to equi-dimensional fractures to
obtain well-defined velocities in the fractures.
Due to the post processing and the use of unstructured grids, streamline tracing for gen-
eral quadrilateral grids are required. For a regular quadrilateral mesh (rectangular mesh),
Pollock’s method [20] has been widely used. The extension of Pollock’s method to un-
structured grids has been presented in several studies. Cordes and Kinzelbach [6] extended
Pollock’s method to linear and bilinear finite element methods for groundwater flow, and
later Prévost et al. [22] extended it for streamline tracing with the control volume finite
element method, flux continuous scheme and the multipoint flux approximation (MPFA)
method.
The objective of this paper is to present a streamline method for a lower dimensional
discrete fracture model (DFML). In the next section, the streamline method is presented
stepwise. First, the governing equation and numerical discretization for the flow process
are summarized. Second, the flux recovery together with fracture expansion are described.
Later, the streamline tracing using Pollock’s method on unstructured grids and the evalu-
ation of the breakthrough curve from the time-of-flight are introduced. Finally, the results
obtained from the streamline method and from the grid-based finite volume method are
compared.

2. Streamline Method

2.1. Solution of the flow equation. The continuity equation for an incompressible fluid
in a nondeformable matrix is given as

(1) ∇ · q = 0 ,
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where q is the Darcy velocity. Combining Equation (1) with Darcy’s law and neglecting
the gravitational effect yields

(2) ∇ · q = −∇ · K

µ
∇p = 0 ,

where K is the permeability, µ is the dynamic viscosity and p is the pressure, [4].
A vertex-centered finite volume method, also called box method, is used in this study since
it can be applied to unstructured grids of a fracture-matrix system and is locally mass
conservative ([23]). The spatial discretization of the box method, described in more detail
in Hægland et al. [10], is based on a primary finite element (FE) mesh and a secondary
finite volume (FV) mesh. First, the domain is discretized into a FE mesh, where matrix
properties are assumed to be constant on each element. Next, by connecting element
barycenters with edge midpoints, a FV mesh is constructed, see Figure 1. With each vertex
of the FV mesh there is an associated control volume. Each control volume consists of a set
of sub cells denoted sub control-volumes as illustrated in Figure 1. Fractures are described
by a one-dimensional line in a two-dimensional domain with an associated virtual width
equal to their aperture, the so-called lower-dimensional approach ([23]).

Fracture
subcontrol volume face

Matrix
subcontrol volume face

Fracture

Barycenter

Control volume
(Box)

FE mesh

FV mesh

Node

Element

Subcontrol volume

Figure 1. Finite Element (FE) and Finite Volume (FV) mesh.

The pressure is assumed to vary linearly within each element, and fluxes are evaluated
using Darcy’s law at the exterior boundary of a control volume. denoted as sub control-
volume faces (see Figure 1). After the linear system of equations for the pressure field has
been solved, conservative fluxes over all control volume faces can be determined. Note
that fluxes are in general discontinuous at element boundaries, but they are continuous at
the control volume boundaries.

2.2. Flux recovery. The precision of streamline tracing strongly depends on the accuracy
of the velocity field. Approximating the velocity field using pressure gradients from the
flow simulation results in discontinuous fluxes at element boundaries, not only when the
permeabilities of neighboring elements are different but also when they are the same ([25]).
On the basis of Cordes and Kinzelbach [6] and Prévost et al. [22], a flux recovery for a two-
dimensional fracture-matrix system is introduced in this work to obtain continuous fluxes
on a sub-quadrilateral grid. Additionally, lower-dimensional fractures, which are assumed
in the flow simulation, have to be extended to equi-dimensional fractures to obtain well-
defined velocities in the fractures (not only parallel to the fractures orientation), see [10].
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Fractures are expanded such that the resulting 2D fractures have a width equal to the
associated fracture aperture d and the 1D fracture is the center line, see Figure 2.

(a) Lower-dimensional 1D frac-
ture

d

(b) Equi-dimensional 2D frac-
ture

Figure 2. Expanding a 1D fracture with associated aperture d to a 2D fracture.

Figure 3 shows the five cases that are most likely to occur in a discretized fracture-matrix
system. The control volumes are classified as: (type 1) no fractures, (type 2) a single
crossing fracture, (type 3) two crossing fractures, (type 4) a single ending fracture and
(type 5) an ending fracture and one passing through. The flux recovery for control volumes
is presented here in detail for type 2, and is briefly discussed for the other types afterwards.
The expansion procedure for the general case is discussed in Hægland [10].

Type 5Type 3Type 1 Type 2 Type 4

Figure 3. The different types of control volumes in a discretized fracture-
matrix system. Fractures are indicated with heavy lines.

A simple prototype control volume of type 2 is shown in Figure 4(a). The control volume
Ωcv of the central vertex V5, indicated with the dashed line, is the union of parts of
four triangular elements together with a segment of a single fracture, indicated by the
heavy line. The control volume comprises a total of N quadrilateral sub control-volumes
denoted Qj , where j = 1, . . . , N (in this simple case N = 4). We order Qj counter clock-
wise such that the common edge between Q1 and QN coincides with the fracture. The
1D fracture is expanded to a 2D fracture with aperture d, such that two new rectangular
sub control-volumes Qf

1 and Qf
2 are created inside the control volume, see Figure 4(b).

Each quadrilateral Qj is split into two triangles, one interior T int
j and one exterior T ext

j ,
relative to the central node of the control volume, see Figure 4(b). The lines separating the
triangles T int

j and T ext
j are denoted Eext

j . Only the part of the control volume composed
of the interior triangles T int

j and the fracture sub control-volumes Qf
1 and Qf

2 is considered
in the flux recovery, see Figure 4(c).
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V1

V2

V3

V4

V5

C1

C2

C3

C4

Q1
Q2

Q3
Q4

(a) Four elements (triangles) with ver-
tices V1, . . . , V5. A control volume
(dashed line) is associated with V5.

C3

C4

C1

C2

T ext
3

T ext
4

T ext
1

T ext
2

T int
3

T int
4

T int
1T int

2

Qf
2

Qf
1

(b) The control volume in the left fig-
ure. The fracture has been expanded
to a 2D element with aperture d.

Eext
3

Eext
4

Eext
1

Eext
2

Eint
1

Eint,f
2

Eint,f
3 Eint

3

Eint,f
4

Eint,f
1

Ef
2

Ef

Ef
1

(c) Control-volume edge numbering

n3

n4

n1

n2

νf
2,3

ν3,4

νf
1,1

ν1,2

(d) Control-volume normal vectors

Figure 4. Flux recovery for a control volume with an internal fracture.

From the flow simulation, fluxes are given over the exterior faces of the control volume
Ωcv, as indicated by the dashed line segments in Figure 4(b). The recovery procedure
calculates additional conservative fluxes on the interior matrix edges (Eint

j and Eint,f
j )

and the interior fracture edge (Ef ), see Figure 4(c). These fluxes on Eint
j and Eint,f

j are
obtained indirectly by computing a constant Darcy velocity qj of each interior triangle
T int

j .
The constant Darcy velocities qj and the fracture interior fluxes F f must satisfy the
following conditions

• mass conservation for the exterior triangle T ext
j :

(3) qj · nj = Fj,1 + Fj,2 , j = 1, . . . , N ,

where nj is the outward normal vector to Eext
j relative to T ext

j with its length
equal to the length of the edge Eext

j , see Figure 4(d). Fluxes Fj,1 and Fj,2 are the
given fluxes with respect to the outward normal vector of T ext

j at the two edges of
T ext

j which coincides with the ∂Ωcv, see Figure 4(b).
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• the flux over the interior boundaries not coinciding with the fracture edges must
be continuous:

(4) qj · νj,j+1 = qj+1 · νj,j+1 , j = 1, . . . ,M − 1,M + 1, . . . , N − 1 ,

where M is the number of the last interior triangle belonging to Ω1, νj,j+1 is the
normal vector of the interior boundary Eint

j pointing from T int
j to T int

j+1 and has
length equal to Eint

j , see Figure 4(d).
• mass conservation in one fracture Qf

k is required:

(5) −qj · νf
k,j + qj+1 · νf

k,j + F f + F f
k = 0 ,

where F f is the unknown flux over the fracture interior edge Ef , F f
k is the given

flux over the edge of the expanded fracture Qf
k , which coincides with a part of

the boundary of the expanded control volume. The sign of the fluxes are chosen
according to the outward normal vector of Qf

k . Further, νf
k,j is a normal vector to

the edge Eint,f
j between the fracture k and the interior triangle T int

j and has its

length equal to the edge. The sign of νf
k,j is chosen as shown in Figure 4(d). Note

that we consider only one mass conservation for one of the fracture quadrilaterals;
mass conservation for the other is automatically fulfilled since the sum of the fluxes
out of Ωcv is zero.

A system of 2N − 1 linear equations has now been set up, however, a total number of
unknown components 2N+1 (2N from the qj and 1 from the flux F f ) must be determined.
To close the system, we need two more equations, which can be derived by requiring the
gradient of the pressure field to be irrotational ([6]). From Equation (2), the Darcy velocity
q can be written as

(6) q = −K

µ
∇p .

Rearranging Equation (6) and taking the curl of a gradient yield

(7) ∇× µK−1q = −∇×∇p .
Since the curl of a gradient is always zero and the dynamic viscosity µ is constant in this
study, we have from Stokes theorem

(8)
∫

Ω
∇×K−1qdΩ =

∮

Γ
K−1q · ds = 0 .

Here, Ω may be any 2D subdomain of the whole solution domain, and Γ is the 1D boundary
of Ω. Equation (8) is now applied over two subdomains, Ω1 and Ω2, separated by the
fracture.
For this simple case shown in Figure 4(c), the subdomain Ω1 contains T int

1 and T int
2 with

its boundary Γ1 corresponding to the counter clockwise sequences of edges Eext
1 , Eext

2 ,
Eint,f

2 and Eint,f
1 . Then, Equation (8) can be written as

(9)
∮

Γ1

K−1q · ds =
M∑

j=1

∫

Eext
j

K−1
j qj · ds+

∫

Eint,f
2

K−1
F qf

2 · ds+
∫

Eint,f
1

K−1
F qf

1 · ds = 0 ,

where the orientation of integration is counter clockwise, M is the number of the last
interior triangle belonging to Ω1 (here M = 2), and the fracture permeability KF is a
scalar.
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p2
1

p2
2

p2
3

p2
4

F f
2

F f

Qf
2

p1
1

p1
2

p1
3

p1
4

F f

F f
1

Qf
1

Figure 5. The four corners points and the direction of fluxes of the frac-
ture rectangles.

In the first term of Equation (9), both Kj and qj are constant; hence,

(10)
M∑

j=1

∫

Eext
j

K−1
j qj · ds =

M∑

j=1

K−1
j qj · tj =

M∑

j=1

K−1
j tj · qj ,

where the tangent vectors tj corresponds to a 90 degrees counter-clockwise rotation of the
normal vector nj having the length of Eext

j .
The second and the third terms in Equation (9) are integrals along the fracture edges.
The velocities in the fracture quadrilaterals qf

1 and qf
2 are given by linear interpolation of

the edge fluxes using Pollock’s method [20]. This yields

(11)
∫

Eint,f
2

K−1
F qf

2 · ds =
(−F f

2 − F f )‖u2‖
2KF ‖v2‖

,

and

(12)
∫

Eint,f
1

K−1
F qf

1 · ds =
(F f

1 − F f )‖u1‖
2KF ‖v1‖

,

where

uk = pk
2 − pk

1 and vk = pk
4 − pk

1 , k = 1, 2 .(13)

As shown in Figure 5, pk
i is the coordinate of the corners i of an extended fracture Qf

k

and F f
i is the flux over the fracture exterior edge Ef

k given from the flow simulation. The
details of the calculation leading to Equations (11) and (12) are presented in the Appendix.

Substituting Equations (10) - (12) in Equation (9) yields

(14)
∮

Γ1

K−1q · ds =
M∑

j=1

K−1
j tj · qj +

(−F f
2 − F f )‖u2‖
2KF ‖v2‖

+
(F f

1 − F f )‖u1‖
2KF ‖v1‖

.

A similar argument can be used to show that the line integral along Γ2 can be given as

(15)
∮

Γ2

K−1q · ds =
N∑

j=M+1

K−1
j tj · qj −

(F f
1 − F f )‖u1‖
2KF ‖v1‖

− (−F f
2 − F f )‖u2‖
2KF ‖v2‖

.

The general case of a discretized fracture-matrix control volume is described by % fractures
meeting at a vertex (% = 0, 1, 2, ...). A new mesh of expanded fractures is constructed by
introducing a polygon M with % edges at the overlapping area of the % expanded fractures.
The % fractures now becomes % trapezoidal elements and the central polygon M is divided
into % triangles, each having one vertex at the centroid of the polygon. A sketch of a case
for % = 5 is shown in Figure 6. The flux recovery method for two fractures described
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previously can now be extended to the case of % fractures. The exterior flux continuity
shown in Equation (3) remains the same. However, the interior continuity equations shown
in Equation (4) is reduced from N−2 to N−% due to the presence of more fractures within
the control volume. Furthermore, there are now % fractures for which Equation (5) has
to be imposed. These increased constraints are counterbalanced by an increased number
of unknown fracture fluxes F f

k in Equation (5). Next, Equations (14) and (15) have to
be extended to % curl relations, instead of two. Finally, after the system of equations are
solved, the solution of the fracture fluxes F f

k are then used to compute the interior fluxes
of the triangles of the central polygon M by following the original method of Cordes and
Kinzelbach [6].

Figure 6. Five fracture meeting. Left: Unexpanded fractures. Right:
Expanded fractures.

For other types of control volumes, a similar concept of the fracture extension and the
flux recovery are applied. The system of equations are solved based on Equations (3), (4),
(5), (14) and (15).
This work do not consider the 3D case, however extension of the flux recovery procedure
to the 3D case without fractures has been considered by Prévost [21]. A difficulty with
the 3D case compared to the 2D case is that in 3D there are more faces connected to a
vertex than there are elements. In 2D, the number of edges and the number of elements
connected to a vertex were the same, which allowed a straight forward derivation of the
linear system. In 3D, additional constraints must be devised to close the system, or the
system can be solved in least-square sense, see [21]. The expansion of the fractures for the
3D case is discussed in Hægland [10].

2.3. Streamline tracing. A streamline s(τ) is defined by requiring that the tangent of
the streamline should be equal to the velocity,

(16)
ds

dτ
=

q(x)
φ

,

where τ is the streamline parameter denoted the time-of-flight (TOF), q is the Darcy
velocity, and φ is the porosity. By rearranging Equation (16) and integrating with respect
to the arc length of a streamline, the TOF that a particle need to travel a given distance
s is given by,

(17) τ(s) =
∫ s

0

φ

‖q‖ds
′,
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where s measures arc length along a streamline. Note that, due to the appearance of
the porosity in Equation (17), the TOF is related to the particle velocity, not the Darcy
velocity.
Methods for streamline tracing on quadrilateral grids when fluxes are known have been
investigated by several authors. For a regular quadrilateral mesh (rectangular mesh)
Pollock’s method has been widely used. The method assumes a piece-wise linear approx-
imation of the velocity over the entire grid. Within a single grid cell taken to be the unit
square for simplicity, the velocity is given as

(18) q(x) =
[
fx0(1− x) + fx1x
fy0(1− y) + fy1y

]
, 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 ,

where fk are fluxes over the cell faces (see Figure 7). Solving Equation (16) by inserting
the velocity from Equation (18) yields two separate expressions for the TOF:

(19) τx(xi, xj) =
φ

fx1 − fx0
ln
(
fx0 + (fx1 − fx0)xj

fx0 + (fx1 − fx0)xi

)
,

and

(20) τy(yi, yj) =
φ

fy1 − fy0
ln
(
fy0 + (fy1 − fy0)yj

fy0 + (fy1 − fy0)yi

)
.

The TOF that a particle travels from the entry point xen to the exit point xex of the
grid cell is determined by calculating the time that a streamline requires to cross the grid
boundaries. Inserting xj = 0 and 1 in Equation (19) and yj = 0 and 1 in Equation (20),
and replacing xi and yi with xen yield four different times that the streamline requires to
cross the left, the right, the bottom and the top boundaries respectively. The TOF is the
minimum positive time of the calculated times. By rearranging Equations (19) and (20)
and inserting the TOF in τex, the exit point xex is then given as

(21) xex =
1

fx1 − fx0

{
qen,x exp

(
τex
φ

(fx1 − fx0)
)
− fx0

}
,

(22) yex =
1

fy1 − fy0

{
qen,y exp

(
τex
φ

(fy1 − fy0)
)
− fy0

}
,

where qen is the velocity at the entry point xen calculated from Equation (18).

fx0 fx1

xex

fy0

xen
fy1

y

x0

1

1

v(x)

Figure 7. Pollock tracing for a unit square.
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A complex fracture-matrix system can only be discretized precisely with unstructured
grids. Hence, streamline tracing which performs well on unstructured grids is required.
The extension of Pollock’s method on unstructured grids has proven successful in several
studies [6, 22, 11]. The spatial coordinates together with the velocity in the physical space
P are transformed to a reference space R by using the bilinear iso-parametric transforma-
tion, see Figure 8.

1

2

4

3

y1f

x1f

y0f

x0f

y

x

v

(a) Physical space P
y0f’

y1f’

x0f’ x1f’

1 2

34

0 1 x’

y’

1

v’

(b) Reference space R

Figure 8. Transformation of an unstructured grid and edge fluxes from a
physical space P to a reference space R.

According to Hægland et al. [11], the velocity field v′ in R is related to the linear flux
interpolation as

(23) q′ =
dx′

dt
=

1
det J

[
fx0(1− x′i) + fx1x

′
i

fy0(1− y′i) + fy1y
′
i

]
,

where JJJ is the Jacobian transformation matrix

(24) JJJ =




dx

dx′
dx

dy′
dy

dx′
dy

dy′


 .

The velocity in Equation (23) is rewritten in terms of a pseudo time τ in R as shown by
Jimenez et al. [13] as

(25) dτ =
dt

det J
=




dx′

fx0(1− x′i) + fx1x′i
dy′

fy0(1− y′i) + fy1y′i


 ,

where t is real time in P. The actual time-of-flight tex is then evaluated by integrating
Equation (25) from x′en to x′ex:

(26) tex =
∫ t(τex)

0
dt =

∫ τex

0
det J(x′(τ), y′(τ))dτ .

Recently, some problems with the method have been reported and resolved. Inaccuracies
in computing TOF due to errors in the absolute value of the interpolated velocity field
have been reported in [13, 9, 11]. Jimenez et al. [13] proposed an extension of the method
that allowed for exact reproduction of time-of-flight for uniform flow in 2D. In this paper,
we utilize this latter approach, see [9, 11, 13] for more details of the method.
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2.4. Evaluation of the breakthrough curve. We assume purely advective transport
of a solute tracer in the streamline method and visualize each streamline as a flow channel
or a streamtube. Due to the pure advective transport in the streamline method, no mass
exchanges between neighboring streamtubes. The TOF measures the time that the tracer
needs to travel along the streamtube, see Figure 9. Streamlines are distributed equally
according to the total flux along the inflow boundary, such that each streamtube contains
the same flux.
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Figure 9. Mass transport in a streamtube as a block.

The transport behavior characterized from the results of the streamline method are de-
scribed using a breakthrough curve (BTC) and an accumulated breakthrough curve (Ac-
cBTC). The latter is the sum of the total mass leaving the domain at the outflow boundary
until a time t and BTC is the rate of change of AccBTC during the time interval ∆t

BTC(t) =
AccBTC(t)−AccBTC(t−∆t)

∆t
,(27)

AccBTC(t) = AccBTC(t−∆t) + ṁs
n∑

i=1

Ti ,(28)

where ṁs is the normalized mass flux, which is determined by the mass flux in each
streamtube over the total injected mass, and n is the total number of the streamtubes.
The arrival time condition Ti, for a streamtube i, is given as

(29) Ti(t) =





0 ; t < TOFi

t− TOFi ; TOFi ≤ t ≤ TOFi + dt
0 ; t > TOFi + dt

where the time of flight TOFi is the time that a block mass in a streamtube i travels until
it reaches the outflow boundary and dt is the duration of mass injection.
The TOF of each streamtube is a discrete value, which can be the same for all streamtubes
or highly varied depending on the geometries and structures of a domain. The overall
transport behavior of the system is presented as a histogram BTC which evaluates the
rate of change of the normalized mass flux over a specified interval of time.

3. Comparison Results

3.1. Preliminary test case. In order to understand the difference arising from simulat-
ing the transport process using grid-based advective transport (ADT) and the streamline
method (STR), three preliminary test cases are set up: a single short fracture, a single
long fracture and systematically distributed fractures, see Figure 10 (top). For all test
cases, a two-dimensional domain of 1.0 × 1.0 m is set up. The fluid properties and the
domain properties correspond to the data presented in Table 1.
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We consider transport of a solute tracer without dispersion and the governing equation
can be written as

(30)
∂c

∂t
+∇ · q

φ
c = 0 .

where c is the concentration of the tracer. For the ADT, Equation (30) is discretized using
a box method with upwinding formulation ([19]). For the STR, the transport of solute
tracer is obtained directly from the streamline time-of-flight and Equation (28).
The boundary conditions are no-flow on the top and the bottom. For the flow simulation, a
Dirichlet boundary in terms of pressure is given on the left-hand side (the inflow boundary)
and on the right-hand side (the outflow boundary). For the grid-based transport simulation
(ADT), tracer is given for a very short time at the inflow boundary. A free-flow boundary
is given at the outflow for the transport simulation, which means that a tracer arriving
at the boundary is allowed to leave freely. A total of 500 streamlines are traced and
distributed equally according to the fluxes at the inflow. We used 500 streamlines because
the AccBTC from 500 streamlines showed visual convergence to the AccBTC from 10000
streamlines.
The ADT and the STR are carried out on different mesh sizes (measured in terms of
the average length of the sides of a grid cell) of approximately 0.01, 0.02 and 0.03 m to
investigate the influence of numerical diffusion.

Domain Properties
matrix fracture

Permeability, K [m2] 1.0 · 10−13 8.33 · 10−10

Eff. porosity, φ [-] 0.13 0.30
Aperture, b [m] - 1.0 · 10−4

Fluid Properties
Viscosity, µ [kg/(m · s)] 1.814 · 10−5

Density, ρ [kg/m3] 1.21
Table 1. Domain and fluid properties for all simulations.

Some streamlines of the fine mesh (0.01 m) are shown in Figure 10 (bottom). In all cases we
observed that high permeability in fractures resulted in flow paths towards the fractures.
These flow paths yield a faster tracer transport within their streamtubes, whereas the
other flow paths in the surrounding matrix lead to a slower tracer transport.
The results of the accumulated breakthrough curves (AccBTCs) and the breakthrough
curves (BTCs) are presented in Figure 11. In all test cases, the AccBTCs and the BTCs
of the ADT differ considerably between different mesh sizes due to numerical diffusion.
Whereas, the AccBTCs from the STR are rather similar for all mesh sizes and their slight
local differences come from the fact that the velocity field obtained from the flow simulation
is locally grid dependent, especially near the fractures.
In the short fracture case, the BTCs of the ADT in Figures 11a1 show that using a coarser
mesh size results in a higher variance and a lower peak value. This indicates that the
numerical diffusion increases the spreading of the tracer plume in the matrix and smears
out the concentration front, especially the double-continuum effect due to fast transport
in the fracture and slow transport in the matrix has disappeared. On the contrary, for the
STR having no numerical diffusion, the double-continuum effect results in the two jumps
of the AccBTCs (Figure 11a2) and the two peaks of the BTCs (Figure 11a3). The large
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Figure 10. Top: Domains with fractures. Middle: Discretization domains
(top) for a mesh size of 0.01 m corresponding to ca. 11700 vertices. Bottom:
25 of the 500 streamlines traced for the grids in the middle row.

part of the tracer transported in the matrix arrives about the same time at the outflow
and results in a very high mass flux in the second peak of the BTC and a sharp rise of the
second jump in the AccBTC.
When the fracture becomes longer (Figure 11b), the double-continuum effect can also be
noticed for the ADT, in spite of the numerical diffusion, see Figures 11b1 and 11b2. The
fast transport in the long fracture results in the first peak of the BTCs; later, the part
of the tracer plume transported in the matrix leads to the second peak. The numerical
diffusion in the transversal flow-direction causes spreading of mass transported in the
fracture to the surrounding matrix. Therefore, the value of the first peak of the BTC
of the STR is higher than that of the ADT (see Figure 11b3) and the AccBTCs show a
sharp rise for the STR, but only a gradual increase for the ADT (see Figures 11b2). This
effect delays the arrival time of the mass transported in the fracture. The influence of the
numerical diffusion on the part of the tracer transported through the porous matrix shows
the same behavior as that observed in the BTCs for the single short fracture, as discussed
above.
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(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

Figure 11. Transport simulation results of ADT and STR for the test
cases: a) (left column) a single short fracture, b) (middle column) a single
long fracture and c) (right column) systematically distributed fractures.
Top row (a1/b1/c1): BTC of ADT for different mesh sizes. Middle row
(a2/b2/c2): AccBTC of ADT and STR for different mesh sizes. Bottom
row (a3/b3/c3): BTC of ADT and STR at a mesh size of 0.01 m.

Increasing the number of horizontal fractures with a vertical fracture connecting all hori-
zontal fractures (Figure 11c) increases the part of tracer transported in the fractures and
decreases the part transported in the matrix. Therefore, the BTCs in Figure 11c1 show a
high peak and the AccBTCs in Figure 11c2 show a high first jump. Due to the influence of
the numerical diffusion in the ADT, the BTCs of the coarse mesh size of 0.03 and 0.02 m
show only a long tail, whereas the BTC of the fine mesh size of 0.01 m has a small second
peak (see Figure 11c1), more similar to the BTC of the STR showing a double-continuum
effect as can be seen in Figure 11c3. The effect of the numerical diffusion along fractures
in the transversal flow-direction can be better noticed in this case than in the single long
fracture case. As the mesh gets finer and the numerical diffusion decreases, the tracer
transported in the fractures remains more confined to the fractures and arrives faster at
the outflow and this yields a BTC with a slightly higher peak concentration shifted some-
what to the left compared to the BTCs of the coarser mesh sizes (see Figure 11c1). The
AccBTCs of the ADT seem to converge to the result of the STR when the mesh becomes
finer and the numerical diffusion decreases, see Figure 11c2.
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3.2. A complex fracture-matrix system. After a basic understanding of the transport
behavior for ADT and STR has been gained from the preliminary test cases, the next step
is to perform a comparison study between the two approaches in a complex fracture-matrix
system. The fracture networks are generated by the fracture generator FRAC3D based on
statistical geometries and geostatistical parameters taken from a study site in Pliezhausen,
Germany, see [2, 3]. Boundary conditions, fluid properties, and domain properties are the
same as for the test cases in the previous section.
We consider five different cases (GFG-A, GFG-B, GFG-C, SFG-A and SFG-B) where their
fracture networks are generated from five different geometries and spatial characteristics
using a statistical or geostatistical approach as described in the associated paper ([3]).
Several realizations of a fracture network with the same fracture geometries and spatial
characteristics can be obtained when a fracture network is generated based on a stochas-
tical approach. In this study, for each of the five cases we consider five fracture-network
realizations. We first consider the five realizations from the GFG-A, and subsequently
consider the average behavior of the five realizations from each of the cases.
We start by generating five realizations R1-R5 from the GFG-A. The streamline distribu-
tion taken from realization R1 is shown in Figure 12. In a complex fracture-matrix system,
the increased number of fractures and varying orientations lead to a high dispersion of the
tracer plume. As shown in Figure 12, no streamlines are transported only in the sur-
rounding matrix, but rather they are partly transported in the fractures and partly in the
matrix. Hence, the AccBTCs of the five realizations do not show a clear double-continuum
behavior, see Figure 13. For all realizations, the AccBTCs of the STR shift to the left
compared with the ADT which means that in the STR simulation mass transports faster
than in the ADT simulation. This corresponds with the results presented in the case of
systematically distributed fractures. The numerical diffusion in the ADT leads to a delay
of mass transport in the fractures.

Figure 12. Streamlines traced for one realization (R1) of a complex
fracture-matrix system of the GFG-A.

The transport behavior is characterized by the effective travel time, the variance and the
skewness and they are evaluated from the moment and the central moment of the BTC
([3]). The variance and the skewness of the BTC depend highly on the distribution of
the tracer concentration. A high variance means a high degree of spreading of the plume.
The skewness represents the asymmetry of the spreading. A positive skewness indicates
that a larger part of tracer plume first transports to the outflow, and then the rest of the
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Figure 13. AccBTCs of ADT and STR for the complex fracture-matrix
systems for five realizations (R1-R5) of the GFG-A.

plume arrives gradually. The faster mass transport in the STR leads to a less effective
travel time compared with the transport in the ADT (see Figure 14a). For all realizations,
higher variances and higher skewnesses are seen in the STR compared to the ADT (see
Figures 14b and 14c). This is due to the fact that the fast transport in the fractures and
the slow transport in the matrix are better captured with the STR, whereas the numerical
diffusion in the ADT smears out this contrast.
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Figure 14. Quantitative results of ADT and STR for the complex
fracture-matrix systems of five realizations from the GFG-A.

In the last part of this section we consider the average behavior for the five cases GFG-
A, GFG-B, GFG-C, SFG-A and SFG-B. The details about the fracture generation are
presented in the associated paper ([3]). For each case, five realizations are generated and
the results presented for each case are the average values over all five realizations.
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The average AccBTCs from the STR and the ADT for the five cases are shown in Figure
15. For all five study cases, the average AccBTCs from the STR shifts to the left compared
with the ADT which means that the STR leads to a faster mass transport compared to the
ADT. This agrees with the average values of the effective travel times of the STR being
less than those of the ADT, as shown in Figure 16a. In all cases, a physical dispersion
due to fast and slow transport can be identified from the positive skewness in Figure 16c.
Due to the purely advective transport and no numerical diffusion in the STR, the variance
and the skewness for the STR are larger than for the ADT, indicating a larger physical
dispersion. On the other hand, the numerical diffusion in the ADT delays plume migration
in the fracture-matrix system. As a result, the difference between AccBTCs and BTCs
of the two approaches is clearly noticed for all study cases of the fracture-matrix system.
Most of the values obtained from the STR show larger extreme values than from the ADT,
particularly for the variance of the SFG-B. Hence, more realizations might be required to
represent the transport behavior using STR.
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Figure 15. Average AccBTCs of ADT and STR for the complex fracture-
matrix systems for the five different cases GFG-A, GFG-B, GFG-C, SFG-A
and SFG-B.

4. Conclusion

The precision of streamline tracing strongly depends on the accuracy of the velocity field.
Approximating the fluxes from pressure gradients obtained from the flow simulation results
in discontinuous fluxes at element boundaries. A flux recovery for a two-dimensional
fracture-matrix system is proposed for calculating mass conservative fluxes over boundaries
of quadrilateral sub control-volumes. Lower-dimensional fractures, which are assumed in
the flow simulation, have to be extended to equi-dimensional fractures to obtain well
defined velocities and streamlines in the fractures (not only parallel to the orientation of
the fractures).
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Figure 16. Average and extreme values (min./max.) obtained from the
ADT and the STR for the complex fracture-matrix systems for the five
different cases.

The applicability of a streamline method (STR) for the study of the transport behavior in
a fracture-matrix system is investigated by comparing with the results from a grid-based
advective transport (ADT) model. In the simple cases of one fracture or systematically
distributed fractures, the effect of fast flow in the fractures and slow flow in the matrix
is smeared out due to the numerical diffusion in the ADT. The preferential flow paths in
the fracture-matrix system are clearly noticed in the STR from the double-peak BTCs
and two sudden rises in the AccBTCs. In the complex fracture-matrix system consisting
of a large number of fractures with varying orientations, numerical diffusion in the ADT
delays plume migration, whereas purely advective transport in the STR leads to fast
solute transport and maintains a high physical dispersion due to the fast transport in the
fractures and slow transport in the matrix. As a result, we observe a less effective travel
time, higher variance and higher skewness from the STR than from the ADT as well as a
shift of AccBTC of the STR to the left.
Further investigations involving comparisons with experimental or field studies have to be
carried out in order to validate the results of the STR. If the assumption of the purely
advective transport in the STR leads to an acceleration of the tracer transport in the
system compared with the measurement results, including dispersive transport in the
STR could be considered to improve the STR approach.

5. Appendix

The integral of the velocity along the fracture edge is computed by assuming that the
velocities in the quadrilateral fracture are given by linear interpolation of the edge fluxes
similar to Pollock’s method ([20]). Following Prévost et al. [22] and Jimenez et al. [13],
the rectangle Qf

1 (see Figure 4(b)) in P is transformed to a unit square in a reference
space R using the bilinear transformation x(x̂, ŷ), which simplifies for a rectangle (Figure
17 (right)) to,

(31) p(x̂, ŷ) = p1 + (p2 − p1)x̂+ (p4 − p1)ŷ ,

with the constant Jacobian matrix,

(32) J =
[
x2 − x1 x4 − x1

y2 − y1 y4 − y1

]
=
[
u v

]
,

where u and v are the shape vectors of the rectangle, and xi is the point at corner i
see Figure 17 (left). Edge fluxes Fx0, Fx1, Fy0, and Fy1, are defined for Qf

1 with positive
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Figure 17. The extended fracture rectangle. Left: Shape vectors. Right:
Corners and direction of fluxes.

direction as shown in Figure 5 (right). Then, the interpolated velocity qf in Qf
1 is defined

in R by ([22])

(33) q̂f =
1

det J

[
Fx0(1− x̂) + Fx1x̂
Fy0(1− x̂) + Fy1x̂

]
,

where the determinant of the Jacobian, detJ , is simply equal to the area A of the rectangle.
The fluxes Fy0 and Fy1 over the edges for the expanded fracture segment Qf

1 are given by
the dot product of the constant velocity in the neighboring interior triangle of the fracture
and the normal vector of the edge. The sign of the fluxes are indicated in Figure 17 (right).
The flux Fx1 and Fx0 are given by the unknown interior fracture flux F f and the flux at
fracture flux point respectively. For the expanded fracture segment Qf

1 in Section 2.2,
Fx0 = −F f , Fx1 = F1, Fy0 = −qN · νf

1,1, and Fy1 = −q1 · νf
1,1. The relation between the

velocity in P and R is ([11])

qf = Jq̂f =
1
A1

[(Fx0(1− x̂) + Fx1x̂)u + (Fy0(1− ŷ) + Fy1ŷ)v] .

The last term in Equation (8) can now be evaluated. We parameterize the path along the
fracture edge from p4 to p3 (Figure 17 (right)) as

(34) α(x̂) = p(x̂, 1), 0 ≤ x̂ ≤ 1 .

Then α′(x̂) = u1, and using that u1 · v1 = 0, u1 · u1 = ‖u1‖2, and A1 = ‖u1‖‖v1‖, we
have
∫

Eint,f
1

K−1
F qf

1 · ds =
∫ 1

0
K−1

F qf
1(α(x̂)) ·α′(x̂)dx̂

=
1
A1

∫ 1

0
(Fx0(1− x̂) + Fx1x̂)K−1

F u1 · u1dx̂+
Fy1

A1

∫ 1

0
K−1

F v1 · u1dx̂

=
(Fx0 + Fx1)‖u1‖

2KF ‖v1‖
.(35)
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[19] Neunhäuserer, L., Diskretisierungsansätze zur Modellierung von Strömungs- und Transportprozessen
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Abstract

Aquifer-analogue studies established in the petroleum industry have been widely used
for characterizing fractured aquifer systems. Detailed analysis can be performed practi-
cally on an analogue scale and characteristics of fractured systems obtained on this scale
can be upscaled to field scales. A discrete fracture-matrix model is an attractive alter-
native for studying on the analogue scale compared with single- and multi-continuum
models since the effect of individual fractures can be explicitly investigated. The critical
step for the discrete fracture model is the generation of a “representative” fracture net-
work. In general, fracture networks are generated by describing fracture geometries in
terms of statistical distribution and often neglecting the spatial variability. This tool is a
so-called statistical fracture generator. In this study, we develop a geostatistical fracture
generator which integrates statistical geometries and spatial characteristics in terms of
a standardized variogram, neighborhoods and a fracture-cell density. Later the flow and
transport behavior of a fracture-matrix system is investigated. We show that fracture
networks generated by the GFG, to some extent, represent not only the included spatial
characteristics but also a desired fracture-distance distribution (which is not considered in
the GFG itself), and can better capture the flow and transport behavior of the fracture-
matrix system (discharge, peak arrival time, and mean arrival time) than the fracture
networks generated by the SFG. Hence, integrating the spatial characteristics and the
statistical geometries in the GFG have improved the discrete fracture generation and the
flow and transport behavior of the fractured system can be better predicted.

1 Introduction

For many countries worldwide, fractured rock systems have provided important natural re-
sources such as petroleum, gas, water and geothermal energy. Many recent studies investi-
gate the suitability of fractured systems as storage/disposal sites for high-level nuclear waste
([10, 11, 30, 12]). The resource exploitation and potential utilization have led to extensive
studies with the aim of understanding, characterizing and finally predicting the behavior of
fractured rock systems. Aquifer-analogue studies have been widely used for characterizing
fractured systems ([2]). In the analogue studies, the detailed analysis of fractured systems
such as borehole samplings, hydraulic measurements or exposed wall investigations can be
performed practically, and the flow and transport properties obtained on the analogue scale
can be upscaled to the field scale ([18]). On the large reservoir scale, the fractured system is
considered as a single- or double-continuum, however, on the analogue scale, this assumption
is not always valid. Long et al. [25] showed that the validity of considering a fractured system
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as a continuum depended on the geometries of the fractured system, e.g. density and orien-
tation. For the aquifer analogue studies, a discrete fracture model is an attractive alternative
compared with a continuum model because there is no a priori assumption that the fractured
system behaves as a continuum, and the effect of individual fractures can be explicitly inves-
tigated. The increased speed of computers nowadays makes even computationally demanding
simulations, which is the main drawback of the discrete approach, feasible on the analogue
scale. The critical step for the discrete model approach is the generation of a “represen-
tative” fracture network ([28]). In general, fracture network generators can be categorized
as: a) deterministic fracture generators (DFG), and b) statistical fracture generators (SFG).
The geometries of a fracture network (e.g. size, aperture, orientation and location) are deter-
mined exactly for the individual fractures in DFG, whereas they are represented by statistical
distribution functions in SFG ([23, 19, 36, 13]). Due to the intensive data requirements in
DFG, SFG is generally more practical. In the case where dominating fractures are known, a
combination of SFG with DFG is required. However, SFG often fails to capture spatial vari-
ability and connectivity of fracture networks, which is related to interconnected flow paths
that may dominate flow and transport processes in fractured systems ([8]). Spatial variability
of fracture networks has been observed in many studies. La Pointe and Hudson [22] showed
that fracture density and fracture orientation can follow a systematic spatial pattern. For a
large scale problem, the attempt to incorporate spatial variability was presented by Long and
Billaux [24]. They evaluated the experimental variogram of fracture traces from a drift wall
and generated a two-dimensional heterogeneous fracture network which contained statisti-
cally homogeneous sub-domains. This concept was extended to generate a three-dimensional
fracture network of circular-disc fractures by Billaux et al. [9]. However, on the analogue
scale, assuming fracture geometries to be variable in the whole domain and homogeneous in
sub-domains is not applicable because the domain size relative to the fracture size is relatively
small.
The objective of this study is to develop a geostatistical fracture generator (GFG) which
directly handles the statistical geometries as well as the spatial variability. We characterize
spatial variability and connectivity of a fracture network from exposed walls (outcrops, tun-
nels or drifts) and consider these parameters in the geostatistical fracture generator (GFG).
To our knowledge this is the first time that spatial connectivity of fractures is directly included
in fracture generators. In the GFG, first a fracture network is generated by the statistical
fracture generator (SFG) developed by Silberhorn-Hemminger [32] and then its spatial char-
acteristics are included using a global optimization method known as Simulated Annealing
(SA). A successful application of SA in optimizing spatial problems concerning fractured sys-
tems have been reported by several authors ([17, 4, 16, 34]). The flow and transport behavior
of a fractured system are investigated to compare the fracture network generated by the GFG
and the SFG. In this study, the fractured system describes a fracture network embedded in a
surrounding matrix which is permeable to flow, although less permeable than the fractures by
several orders of magnitude. This type of a fractured system is commonly called a fractured
porous media or a fracture-matrix system (FMS).
The paper is organized as follows. In Section 2, we introduce the methodology to quantify
spatial characteristics from exposed walls. In Section 3, the GFG based on the statistical
geometries and the analyzed spatial variability is presented. A comparative study of fractured
systems where fracture networks are generated by the GFG and by the SFG is performed in
Section 4. In Section 5, we summerize the results and discuss future research work.
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Figure 1: Procedure of evaluating an indicator field from a fracture-trace map.

2 Analysis of Spatial Characteristics

We quantify the spatial characteristics of the fracture network from fracture-trace maps
of exposed walls by the modified scanline technique (MS) ([18]). In Figure 1, the scanline
method is illustrated. First, a set of parallel and equally-distributed scanlines are overlayed on
a fracture-trace map, where the direction of scanlines is arranged perpendicular to the main
orientation of the fracture traces. The scanlines are divided into segments of equal length
l. The fracture trace map is hence divided into a grid of cells, see Figure 1b. Then, along
each scanline, the existence of intersection points between fracture traces and the scanline
segment itself are recorded and described with an indicator variable I(xxx):

I(xxx) =
{

1 intersection fracture-scanline exists (called fracture cell)
0 no intersection fracture-scanline exists (called matrix cell) .

(1)

Here xxx is a discrete variable that represents the midpoint of a cell. In this way, the fracture
trace map is transformed into an indicator field. The distance d between scanlines, and
the length l of the scanline segment, are defined depending on the size of the fracture-trace
maps and the characteristics of the fracture traces. Different scanline distances and scanline
segments should be investigated in order to find suitable values ([18]).
The study site in this work is a field block of 8 × 10 × 2 m located at Pliezhausen, Germany
(see Figure 2). The field block is characterized by dense fractures and high porosity and
permeability of the matrix. The fracture trace maps are recorded from a surface of five ex-
posed walls by performing stereophotogrametric shooting ([18]). Figure 3 shows the fracture
traces recorded on the five exposed walls: the north, the east, the south-east, the south-west
and the west walls. Three main fracture clusters, one with almost horizontal orientation
and two with almost vertical orientations, are identified from the 3D field block using stere-
ographic projection, however only two main directions of fracture traces are observed on the
2D exposed walls: one horizontal, and one vertical. Since the scanline direction has to be
perpendicular to the main direction of the fracture trace, two scanline directions are required.
Two indicator fields are evaluated from each exposed wall: one for the horizontal scanline di-
rection considering vertical fracture traces and another one for the vertical scanline direction
considering horizontal fracture traces. According to the analysis of the Pliezhausen exposed
walls presented in Silberhorn-Hemminger [32], the experimental variogram evaluated from
the scanline distance d = 0.10 m (for the horizontal scanline) and d = 0.20 m (for the vertical
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Figure 2: The field block and scanned view of the field block from the south-east (modified
from Dietrich et al. [18]).

scanline) showed similar characteristic for either segment length of 0.04 or 0.10 m. Therefore,
the segment length l = 0.10 m is selected in this study because it economizes computation
time for our further spatial analysis.
The spatial variability is analyzed from indicator fields considering the vertical and the hor-
izontal fracture trace. The first parameter is a standardized experimental variogram, which
measures the average of an increment of values between two points, and at the same time,
considers the variability of the indicator fields in terms of the variance σ2:

γs(hhh) =
1

2σ2

(
1
nh

nh∑

α=1

[I(xxxα + hhh) − I(xxxα)]2
)

, (2)

where the separation vector |hhh| is measured parallel to the main direction of the fracture trace
(perpendicular to the scanline direction) and nh is the total number of pairs of variables at
a distance |hhh| apart. Since the indicator variables can have two possible outcomes 0 and 1,
its variance is then described according to a Bernoulli trial, which relates to a trial that can
have two possible outcomes. The variance of the indicator field is then given by

σ2 = p(1− p) , where p =
1
n

n∑

α=1

I(xxxα) , (3)

where p is the probability of being a fracture cell and n is the total number of cells.
Figure 4 shows that the standardized variograms of the five exposed walls increase within a
specific distance hhh, known as the correlation length or the range, and later reach a constant
value, known as the sill. This means that a spatial dependency of the fracture trace exists
within that range. Only the separation vector hhh parallel to the main direction of the fracture
trace is considered in this paper; for hhh perpendicular to the fracture-trace direction, the
experimental variograms of all exposed walls show only the nugget effect which means no
spatial dependency, see Assteerawatt [3]. The average of the standardized experimental
variograms of the five exposed walls are fitted with variogram models by VARIOWIN ([29]).
The average experimental variograms show best fit with a combination of the exponential
and the nugget variogram model ([14]):

γ(hhh) = C0 + C1 (1 − e

“
− |hhh|

a

”
) for a > 0 . (4)
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Figure 3: Fracture trace maps of the five exposed walls obtained from a Pliezhausen field
block (modified from Dietrich et al. [18]).
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a) Vertical fracture trace b) Horizontal fracture trace
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The parameters C0, C1 and a, are 0.14, 0.86 and 0.80, respectively, for the horizontal-scanline
indicator fields and 0.48, 0.52 and 1.67, respectively, for the vertical-scanline indicator fields.
In this case, the sum of C0 and C1 is 1 because the experimental variograms are normalized
by the variances. The best-fit variograms for the average values of all five standardized
experimental variograms are shown in Figure 5. The standardized variogram only consider the
spatial variability in the direction of the fracture trace, therefore, the additional parameters
called neighborhoods are used to characterize the spatial connectivity of the fracture traces
related to other directions. The fracture neighborhood Nf and the matrix neighborhood Nm

describes the probability of finding a fracture cell or a matrix cell in the eight adjacent cells
of a centered cell I(xxxα):

Nf (k) = 1
nf

∑n
α I(xxxk

α)I(xxxα) ,

Nm(k) = 1
nf

∑n
α I(xxxk

α)(1− I(xxxα)) .
(5)

Here n is the total number of cells, nf is the total number of fracture cells, xxxk
α is the adjacent

cell located in direction k of xxxα. The directions k, illustrated in Figure 6, are represented by
the digits 0 to 7.
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Figure 6: Illustration of neighborhood directions in connection with the digits 0 to 7.

The neighborhoods Nf and Nm of the five exposed walls from the vertical and the horizontal
fracture trace are presented in Figure 7 and 8, respectively. Due to the values assigned in
Equation (1), a high value of neighborhoods corresponds to a large number of fracture cells.
A high value of Nf is clearly observed in the fracture-trace direction (k = 2, 3) as expected
because neighboring cells of a fracture cell in the fracture direction have a tendency to be
fracture cells. The Nm are significantly lower in the direction of fracture traces meaning that
neighboring cells of a matrix cell in the fracture direction tend to be a matrix cell. The values
of the neighborhoods in the other directions are related to the number of the fracture and the
matrix cells found in those directions. If a center cell is a fracture cell and a neighboring cell
in a non-fracture-trace direction (k 6= 2, 3) is also a fracture cell, this could indicate existence
of a fracture trace in that direction, hence the spatial connectivity of fracture traces is related
to the values of the neighborhoods.
Due to the weathering process acting on the exposed outcrop, the largest number of vertical
fractures is observed on the top. For representing this fracture structure, we set up a param-
eter called fracture-cell density H(z), where the z-coordinate increases towards the top of
the outcrop. It is defined by the number of fracture cells relative to the total number of cells
along each horizontal scanline. The fracture-cell density is only considered for the vertical
fracture traces in the horizontal scanline direction. In Figure 9, the results from the five
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Figure 7: Fracture neighborhood of the five exposed walls.
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Figure 8: Matrix neighborhood of the five exposed walls.

exposed walls clearly show an increase of the number of fracture cells with increased vertical
position z, which is in agreement with our observation.
The probability p expressed in Equation (3) is included as one of the parameters in the GFG
in order to control the number of fracture cells and matrix cells. It is assumed to be constant
and the average p evaluated from the horizontal- and vertical-scanline indicator fields are
0.2112 and 0.2377, respectively.
The spatial parameters which are analyzed from the outcrop block are considered as spatial
characteristics of the outcrop fracture network. The geostatistical fracture generation (GFG)
is carried out in the next section by integrating the spatial characteristics which are discussed
in this section and the statistical geometries of the fracture network such as the fracture
orientation, the fracture density and the fracture size.
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3 Geostatistical Fracture Generation

The success of a simulated annealing (SA) as a global optimization method in integrating
multiple characteristics of discrete fractures ([4, 35]), and its flexibility to incorporate addi-
tional information (if needed), make the SA attractive as a methodology for fracture-network
generation. Additionally, the SA can locate good approximations to global optimum of a
given objective function in a large search space ([1]). The application of SA in optimization
problems concerning fractured systems have been reported by several authors ([26, 16, 34]).
The objective function of the SA is defined as the difference between a set of reference
properties from a desired configuration and from a candidate realization. The SA starts
at an initial state, and the system is modified randomly to a new state. The new state is
accepted if the change decreases the objective function or if the change increases the objective
function, it is accepted with the probability

pacc =

{
1 if O(S2) ≤ O(S1)

e

“
−O(S2)−O(S1)

T

”
, if O(S2) > O(S1) .

(6)

Here the constant parameter T , called annealing temperature, is used for controlling the
acceptance of the new state, and O(S1) and O(S2) are the values of the objective function
of the current state (S1) and the new state (S2), respectively. At each temperature, the
perturbation is repeated for a large number of iterations M before decreasing the temperature.
The temperature T is then reduced linearly to a new temperature Tnew with the cooling factor
α, Tnew = α T . When the temperature T becomes lower, the probability of accepting changes
which cause high objective functions, becomes smaller. This allows the problem to converge.
The SA is used as a methodology in the GFG for integrating the desired spatial characteristics
in the generated domain. The GFG was implemented in the existing 3D-fracture generator
FRAC3D developed by Silberhorn-Hemminger [32]. The FRAC3D originally offers two dif-
ferent approaches: the deterministic fracture generator (DFG) and the statistical fracture
generator (SFG). The DFG requires exact information of a fracture network and the SFG
assumes that a fracture network can be described by theoretical distribution of its geometries
such as orientation, size and density. The SFG starts with generating a random midpoint
of a fracture and determines the location of the fracture from its orientation and size. The
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newly generated fracture is included into the global list of fractures until the desired fracture
density is reached. This approach is based on univariate statistics and does not include any
information about the spatial variability. Optimizing the fracture distance, which is defined
by distances between two directly adjacent fractures measured along a reference line, is an
optional step in the SFG that can be used to include spatial information in the generation of
a fracture network ([32]).
The GFG takes into account the statistical geometries and the spatial variability of the
indicator fields (the standardized experimental variogram, the neighborhoods, the fracture-
cell density and the variance), see Assteerawatt [3]. The GFG starts by generating an initial
state of the fracture network using the SFG. Thus, the generated fracture network obeys
the statistical geometries (size, orientation and density). By defining several investigated
cross-sections in the generated domain, the spatial parameters can be evaluated from the
investigated cross-sections. The objective function O(k) of the randomly generated system
is defined as the sum of normalized differences between the spatial parameters of the target
fracture network (γ̂s(hhh), N̂f (j), N̂m(j), Ĥ(z) and σ̂2) and of the generated fracture network
at state k (γk

s (hhh), Nk
f (j), Nk

m(j), Hk(z) and σk2) from all Ne investigated cross sections:

O(k) =
Ne∑

i=1

(w1

nγs∑

j=1

|γ̂s(hhhj)− γk
s (hhhj)|

γ̂s(hhhj)
+ w2

7∑

j=0

|N̂f (j)−Nk
f (j)|

N̂f (j)

+ w3

7∑

j=0

|N̂m(j)−Nk
m(j)|

N̂m(j)
+ w4

nH∑

j=1

|Ĥ(zj)−Hk(zj)|)
Ĥ(zj)

+ w5
|σ̂2 − σk2|

σ̂2
) , (7)

where wi is the weighting function and
∑

wi = 1. By introducing the weighting function,
the influence of each spatial parameter on the objective function can be controlled. After
evaluating the objective function of the current state from Equation (7), the fracture net-
work is modified to a new configuration and a new objective function value is calculated.
Comparing the two objective functions, the new network is accepted with the acceptance
criteria mentioned in Equation (6). The fracture network is modified at each iteration step
by adding/removing one fracture, or randomly selecting one fracture and changing its ge-
ometries (location, orientation or shape). All fractures are convex polygons consisting of four
to seven edges. The fracture shape is modified by adding/removing a corner point under
the constraint of a total number of the corner points, or by moving a corner point. The
perturbation is carried out for M iterations and then the temperature T is reduced related to
the cooling factor α. Finally, the SA stops when the objective function remains unimproved
after a couple of temperature steps, or the minimum temperature Tstop is reached. The con-
figuration with a minimum objective function is regarded as the solution to the problem of
finding a realization which has spatial characteristics closest to the target fracture network.
The major difficulty in applying SA is that there is no obvious analogy for defining the initial
temperature T0, the number of iterations M , and the cooling factor α at each temperature
step. In accordance with Bárdossy [5], the value of the initial temperature T0 is selected so
that the initial acceptance probability of a new stage is approximately 0.80 for assuring that
many ”bad” configurations which do not improve the objective function are accepted in the
beginning. The number of iterations M is defined as half of the total number of fractures, to
ensure a high probability of the generated fractures to be involved in the exchange processes.
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Typical values of the cooling factor α for moderately slow cooling rates are 0.90 through 0.99.
In this work, the cooling factor of 0.90 is selected and remains constant for all temperature
steps.

4 Comparison of Geostatistical and Statistical Fracture Gen-
eration

In this section, the fracture networks generated by the GFG and the SFG are compared. The
distribution functions of fracture geometries observed on the Pliezhausen block are summa-
rized in Table 1.

Parameters of Distribution Function
Orientation:
Fisher Distribution f(θ, φ) = κ

4π sinh κ e[κ (sin θ sin α cos(φ−β) + cos θ cos α)] sin θ

Azimuth (A) Dip (D) Spherical Aperture (ω)

A = 360◦ − φ D = θ − 90◦ ω = arcsin
√

21−1/n
κ

Set1 201◦ 85◦ 11.22◦

Set2 146◦ 7◦ 12.05◦

Set3 229◦ 8◦ 10.20◦

Fracture Trace:
Erlang-2 Distribution f(x) = λ2xe−λ x

lambda (λ)
horizontal -5.37
vertical -3.93
Fracture Distance:
Exponential Distribution f(x) = λe−λ x

lambda (λ)
-4.57

Fracture Density:
Uniform Distribution f(x) = 11.34 m2/m3

Table 1: Statistics of the fracture geometries observed from the Pliezhausen field block.

Two study cases of SFG (SFG-A and SFG-B) and two study cases of GFG (GFG-A and GFG-
B) are considered. The two cases of SFG are set up according to two different assumptions
on defining the fracture size. As the fracture size cannot be measured directly from borehole
samples or exposed wall surveys, it has to be approximated from the fracture trace observed
on the exposed walls by assuming a relation between the fracture size and the observed trace
length. In both SFG-A and SFG-B rectangular fractures are assumed. Hence the fracture
size can be described by distributions for two of its side-lengths. In SFG-A, the fractures
are assumed to have the size directly defined by the fracture-trace distribution shown in
Table 1. The length and the width of the horizontal fractures are described by the horizontal
trace distribution, whereas the height and the width of the vertical fractures are given by
the vertical and the horizontal trace distribution. In SFG-B, the fracture-size distribution
is adjusted until the same fracture-trace distribution as for the field block is obtained. The
parameter lambda in the erlang-2 distribution describing the horizontal and vertical length
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distribution in the SFG-B are 4.28 and 1.70 respectively, instead of 5.37 and 3.93 as in the
SFG-A. Reducing the parameter lambda leads to an increase of the fracture size. After the
fracture network of the specified fracture geometries (size, orientation and density) has been
obtained, the fracture distance is optimized according to the distribution observed from the
field block. In the two cases of GFG (GFG-A and GFG-B), an initial configuration of the
fracture network is taken from the SFG, where the fracture-distance optimization option is
not used, (GFG-A from SFG-A and GFG-B from SFG-B) and then the fracture network
is modified by the SA until its spatial parameters similar to those observed from the field
outcrop.
Fracture networks are compared in this section by considering two different aspects; one
is the structure of the generated fracture networks, and another is the flow and transport
behavior of the fracture-matrix systems (FMS). From a stochastic point of view, it is possible
to generate multiple realizations of fracture networks such that each realization represents
the specified descriptions, however, no single realization can exactly match the real system.
The structure of the fracture network and the behavior of the FMS can be quantitatively
predicted from the ensemble average which is obtained only when the number of realizations
is large enough to assure convergent results. We intend to study but not to predict the
characteristics and the behavior of the fractured system, therefore, twenty realizations (five
from each study case) are generated. Even though the number of realization seems to be
very low, the results of the four cases, which are presented later, show significant differences.
For comparing different cases, parameters of each study case are evaluated by averaging over
the five exposed walls of each realization and again over all five realizations. The south-west
cross-section of one realization from each study case is shown in Figure 10.
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Figure 10: Fracture-trace maps of the south-west exposed wall obtained from the four study
cases.

12



4.1 Structure of a Fracture Network

The fracture networks generated from the four study cases (the SFG-A, the SFG-B, the
GFG-A and the GFG-B) are compared with the field block by focusing on the fracture
size (fracture trace-length) and the spatial characteristics. The only spatial structure of the
fracture network which is considered in the SFG is the fracture distance. On the other hands,
the GFG takes into account the spatial characteristics such as standardized experimental
variogram, the neighborhoods and the fracture-cell density.

Fracture trace
The average of the cumulated fracture-trace distribution is presented in Figure 11.
The result from the SFG-A shows that approximating the fracture size directly from
the fracture trace results in a too short trace length distribution, which means the
fracture size is underestimated in this case. The SFG-B enlarges the fracture size to
fit the fracture-trace distribution, therefore its results show a good agreement with
the outcrop. The trace length distribution of the GFG-A changes slightly compared
with the SFG-A after optimizing the spatial characteristics. For the GFG-B, the trace-
length distribution is smaller than for the SFG-B, which means that optimizing spatial
characteristics in this case leads to a reduction of the fracture size.

a) Vertical trace distribution b) Horizontal trace distribution
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Figure 11: Comparison of the cumulative distribution functions of trace length averaged from
the five exposed walls of fracture networks generated from the four study cases.

Fracture distance
Figure 12 shows the cumulated distribution of the fracture distance of the four study
cases compared with the field block. The SFG-A and the SFG-B optimize the fracture
distance, therefore, they show better agreement with the field value than the GFG-A
and the GFG-B. A larger size of fractures in the SFG-B and the GFG-B compared with
the SFG-A and the GFG-A means that a less number of fractures are given for the
same fracture density, therefore, the distance between two adjacent fractures tends to
become longer in the SFG-B and the GFG-B than in the SFG-A and the GFG-A. We
do not include the fracture distance as one of the spatial parameter in the geostatistical
fracture generator, however, this parameter could be included (if needed).

Standardized experimental variogram
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Figure 12: Comparison of the cumulative distribution functions of fracture distance averaged
from the five exposed walls of fracture networks generated from the four study cases.

The standardized experimental variogram of the GFG-A and the GFG-B are closer to
the outcrop target value than the SFG-A and the SFG-B for the vertical and horizontal
fracture-trace directions (Figure 13).

a) Vertical fracture trace b) Horizontal fracture trace
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Figure 13: Comparison of the standardized experimental variograms averaged from the five
exposed walls of fracture networks generated from the four study cases.

Neighborhoods
The neighborhoods of a fracture and a matrix cell for the vertical fracture trace of the
GFG-A and the GFG-B are closer to the field block than the SFG-A and the SFG-B
(Figure 14a and 15a). However, the neighborhoods for the horizontal fracture trace
of the GFG-A and the GFG-B closely match only in the fracture direction (k = 2, 3)
but not in the other directions, where the SFG-A and the SFG-B show better results
(Figure 14b and 15b). The reason could be that the neighborhoods for the horizontal
fracture trace are varied in a range broader than for the vertical fracture trace and
tend to be directionally dependent on the south-west walls (see Figure 7b and 8b).
Correct representation of a parameter which has this peculiarity might need a more
complicated approach. The directional dependence of the neighborhoods is observed
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from all realizations generated from the GFG-A and the GFG-B. As shown in Figure
16 and 17, the Nf and the Nm from the field block are close to the values from the
north, the east and the west exposed walls but not to the values from the south-east
and south-west exposed walls.

a) Vertical fracture trace b) Horizontal fracture trace
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Figure 14: Comparison of the fracture neighborhood averaged from the five exposed walls of
fracture networks generated from the four study cases.

a) Vertical fracture trace b) Horizontal fracture trace
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Figure 15: Comparison of the matrix neighborhood averaged from the five exposed walls of
fracture networks generated from the four study cases.

Fracture-cell density
The fracture-cell density H evaluated from all cases is shown in Figure 18. The greater
number of vertical fractures on the top according to the field outcrop, is only observed
from the GFG-A and the GFG-B. The SFG-A and the SFG-B show relatively constant
H due to equally distributed fracture cells.

Even though the geostatistical approach (the GFG-A and the GFG-B) does not consider the
cumulative distribution of the fracture distance, it still reflects the cumulative distance fairly
well. On the other hand, the statistical approach can adequately reproduce the neighbor-
hoods, but not the standardized variogram and the fracture-cell density.
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Figure 16: Neighborhoods of one realization of the GFG-A from vertical-scanline indicator
fields of the five exposed walls, scanline segment length l = 0.10 m and scanline distance
d = 0.20 m.
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Figure 17: Neighborhoods of one realization of the GFG-B from vertical-scanline indicator
fields of the five exposed walls, scanline segment length l = 0.10 m and scanline distance
d = 0.20 m.
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Figure 18: Comparison of the fracture-cell density averaged from the five exposed walls of
fracture networks generated from the four study cases for the vertical fracture trace.
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4.2 Flow and Transport in a Fracture-matrix System

A comparative study of flow and transport behavior is carried out using the numerical model
MUFTE-UG (MUltiphase Flow, Transport and Energy Model - Unstructured Grids) ([15]
and [6]).

4.2.1 Formulation of Flow and Transport Equation

For simplicity, steady-state flow of an incompressible single phase in a nondeformable matrix
is considered, and source/sink terms are neglected. The continuity equation based on mass
conservation can be described as:

∇ · qqq = 0 . (8)

Here the velocity qqq is defined by Darcy’s law as a function of the pressure p and the perme-
ability tensor KKK:

qqq = −KKK

µ
(∇p− ρggg) , (9)

where µ is the fluid viscosity, ρ is the fluid density, and ggg is the gravitational vector with
absolute value equal to the gravitational constant g. Neglecting the gravitational effect in
Equation (9) results in

qqq = −KKK

µ
∇p. (10)

For fractures a scalar permeability is assumed given by the parallel-plate concept ([33]):

K =
b2

12
, (11)

where b is the fracture aperture.
The governing equation for solute conservative transport process without source/sink terms
is given as:

∂c

∂t
+∇ · (vvvsc−DDD∇c) = 0 . (12)

Here the seepage velocity vvvs is a function of the effective porosity φ and the Darcy velocity:

vvvs =
1
φ

qqq . (13)

The hydrodynamic dispersion DDD in a two-dimensional case where the transport direction
follows the coordinate axis is given as:

DDDij =
vivj

‖vvv‖ (αl − αt) + δij(αt‖vvv‖+ Dm); , (14)

where Dm is the molecular diffusion, αl and αt are the longitudinal and transversal dispersion
lengths, vx and vy are the components of seepage velocity in the longitudinal and transversal
direction, and the Kronecker delta δij is unity for i = j and zero otherwise.
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4.2.2 Simulation of Fracture-Network System

The two-dimensional simulations are performed on the south-west cross-sections for the
twenty realizations, five from each of the four study cases. These results are compared with
a simulation of the scanned south-west wall from the outcrop (Figure 3d). The domain is
discretized with a triangular mesh, with lower-dimensional fractures. Then a vertex-centered
finite- volume method with upwinding formulation is used to solve Equation 12, see Reichen-
berger et al. [31] and for details. Boundary conditions are described in Figure 19 and model
parameters are shown in Table 2. In this study, a highly advective transport is considered,
therefore very low longitudinal and transversal dispersivity are assumed. This advective-
dominated transport allows the direct comparison with the results of a streamline method in
the accompanying paper ([20]).

matrix fracture
Permeability, K [m2] 1.0 · 10−13 8.33 · 10−10

Eff. porosity, φ [-] 0.13 0.30
Long. dispersivity, αl [m] 1.0 · 10−9 0.0
Trans. dispersivity, αt [m] 1.0 · 10−9 0.0
Diffusion coeff., Dm [m2s−1] 1.0 · 10−9 1.0 · 10−9

Aperture, d [m] - 1.0 · 10−4

Table 2: Flow and transport parameters for all simulations

freeflow (tracer)

Dirichlet (pressure)
= 1.0e4 [Pa]

Dirichlet (tracer)
= 1.0 [kg/m^3]
(pulse injection)

Dirichlet (pressure)

No−flow

No−flow

= 1.2e4 [Pa]

Figure 19: Boundary conditions for flow and transport simulations

The flow and transport behavior of the different case studies are compared with respect to
the total outflow Q and the characteristics of the breakthrough curve (BTC) such as a peak
mass flux ṁp, a peak arrival time tp and a mean arrival time t̄. The peak mass flux and
its arrival time are directly observed from BTCs. The travel time t̄ is evaluated from the
moment µi as:

t̄ =
µ1

µ0
where µi =

∞∫

0

tic(t)dt (15)

Here c(t) is the total mass concentration [kg/s] leaving the domain at time t. The BTCs
obtained from transport simulations are shown in Figure 20 and the total discharge Q and
the BTC characteristics are summarized in Table 3. The deviation of the simulation results
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from the scanned wall is shown in Figure 21, where the standardized value (SV) is defined as

SV =
Pr − Psw

Psw
. (16)

Here, Pr is the average of each investigated parameter over the realizations and Psw is the
parameter from the scanned south-west wall.
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Figure 20: Comparison of breakthrough curves of the south-west walls from different realiza-
tions of the four study cases.

The flow and transport behavior of the field outcrop can be, to some extent, represented by
GFG-A and GFG-B, however, SFG-A and SFG-B show clearly slower processes (see Figure
20 and Table 3). Compared to the simulated field block, Q, t̄ and tp from GFG-A and
GFG-B are closer to the field block than those from SFG-A and SFG-B (see Figure 21). By
considering the spatial structures of the fractured system, the connectivity of fractures can
be represented. Hence the discharge, the peak arrival time and the mean arrival time can
be better approximated. However, connected and preferential flow paths lead to significant
variation of the peak mass flux and of the shape of the BTCs. Therefore, the average
behavior of the fracture-matrix systems requires a simulation performed on large number of
realizations.
The influence of the fracture size observed from the case with and without fracture-trace
fitting remains uncertain. The GFG-B shows closer agreement to the outcrop compared with
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Q ṁp tp t̄
[kg m−3] [kg s−1] [s] [s]

Outcrop 1.72 · 10−5 1.49 · 10−5 5.12 · 104 6.64 · 104

SFG-A 1.03 · 10−5 1.53 · 10−5 1.00 · 105 1.06 · 105

SFG-B 9.36 · 10−6 1.29 · 10−5 1.13 · 105 1.15 · 105

GFG-A 1.73 · 10−5 1.66 · 10−5 5.97 · 104 6.90 · 104

GFG-B 1.56 · 10−5 1.41 · 10−5 6.72 · 104 7.74 · 104

Table 3: Results of flow and transport simulations of the south-west wall obtained form the
field outcrop and average values from four study cases.

a) Total flux Q b) Peak mass flux ṁp
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Figure 21: Average and extreme values (min./max.) of flow and transport simulations of the
south-west wall of the study cases compared with the results obtained from the field outcrop
simulation (dashed line).

the GFG-A for ṁp but not for Q, tp and t̄. Comparing with the results from the outcrop,
the SFG-B seems to be slightly better than the SFG-A for all cases. Investigation on more
realizations could be necessary to draw a conclusion about the effect of the fracture size and
the average behavior of the systems.
In addition, the influence of numerical diffusion can be noticed by comparing the BTCs of
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the scanned south-west wall for different mesh sizes (measured in terms of the average length
of the sides of a grid cell): 0.01, 0.02, 0.05, 0.10 and 0.20 m, corresponding to 93547, 23389,
4277, 1177 and 528 grid vertices, respectively. The numerical diffusion in a FMS leads to
a surprising result of the BTCs. When the grid sizes become smaller, the variances of the
curves become larger and the peak value decreases (see Figure 22). This is due to a physical
diffusion caused by the strong heterogeneity between the fractures and the matrix. As shown
in Figure 23a and 23b for a fine mesh of 0.02 m, when the injected solute reaches the fractures,
it is transported quickly along the fractures and the solute remaining in the matrix requires
longer time to transport out of the FMS. On the contrary, for solute transport on a coarse
mesh of 0.20 m shown in Figure 23c and 23d, the effect of fast-flowing in the fractures and
slow-flowing in the matrix is smeared out over the cross-section perpendicular to the flow
direction due to the numerical diffusion. The FMS tends to behave more homogeneous. To
guarantee the accuracy of the scheme, a small grid size is necessary, hence, the computational
time increases.
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Figure 22: Comparison of breakthrough curves for different mesh sizes: 0.01, 0.02, 0.05, 0.10
and 0.20 m for the south-west exposed wall.

5 Conclusion and Outlook

A geostatistical fracture generator (GFG) which integrates statistical geometries and spatial
characteristics has been presented in this work. By applying a modified scanline technique,
fracture-trace maps of exposed walls are transformed to indicator fields on which the spatial
characteristics are quantified in terms of the standardized variogram, the neighborhoods and
the fracture-cell density. Simulated annealing is selected as our methodology for integrating
the spatial characteristics in the GFG. We have shown here that fracture networks generated
by the GFG not only can reproduce the chosen spatial characteristics, but also, to some ex-
tent, can represent the cumulative distribution of the fracture distance observed from the field
which is not included in the GFG. The fracture networks created by the statistical fracture

21



a) Mesh size 0.02 m, t 200 s b) Mesh size 0.02 m, t 32000 s

Conc: 5.0E-05 8.9E-05 1.3E-04 1.7E-04 2.1E-04 2.4E-04 2.8E-04 3.2E-04 3.6E-04 4.0E-04 Conc: 1.0E-05 2.0E-05 3.0E-05 4.0E-05 5.0E-05 6.0E-05 7.0E-05 8.0E-05 9.0E-05 1.0E-04

c) Mesh size 0.20 m, t 200 s d) Mesh size 0.20 m, t 32000 s
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Figure 23: Concentration distribution for the south-west wall at time 200 and 32000 s using
mesh sizes 0.02 (fine grid) and 0.20 (coarse grid) m.
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generator (SFG) show good results for the fracture-distance distribution and reasonably good
results for the neighborhoods, however not for the standardized variogram and the fracture-
cell density. Further, strong influence of the spatial characteristics was clearly demonstrated
in flow and transport simulations. The GFG can better capture the system behavior such as
the discharge, the peak arrival time and the mean arrival time than the two study cases from
the SFG. Integrating the spatial characteristics and the statistical geometries in the GFG
have improved the discrete fracture generation and, therefore, the behavior of the fractured
system can be better predicted. Considering only the fracture distance as a spatial struc-
ture and the statistical geometries as in the SFG is not sufficient in this case to generate a
“representative” fracture network. Additional spatial parameters such as the standardized
variogram, the neighborhoods and the fracture-cell density must also be considered.
The flow and transport process in a three-dimensional fracture-matrix system should be
further investigated, since the connectivity of fractures in 3D becomes even more complex
than in 2D. Considering this effect might lead to an effort on extending the geostatistical
fracture generator to take into account additional spatial characteristics.
Due to the strong heterogeneity between fractures and the surrounding matrix and the numer-
ical diffusion, accurate results of flow and transport simulations in a fracture-matrix system
can only be obtained on a fine mesh. This means that an approach that performs fast with
less numerical diffusion is essential. In an accompanying paper ([20]), we present an appli-
cation of streamline tracing on a fracture-matrix system. The advantages of the streamline
method is that it is extremely fast compared with the standard finite volume scheme (which
is used here) and, at the same time, does not suffer from numerical diffusion.
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Abstract
During the last decades, streamline methods have emerged
as highly efficient simulation tools that are well-suited for
e.g., history matching and simulation of large and com-
plex reservoir models. Streamline methods are based on a
sequential solution procedure in which pressure and fluid
velocities are computed by solving a pressure equation on a
grid in physical space and the fluid transport is computed
by solving 1-D transport problems along streamlines. The
sequential Eulerian-Lagrangian procedure is the key to the
high computational efficiency of streamline methods. On
the other hand, it necessitates mapping of saturations (or
fluid compositions) back and forth between the Eulerian
pressure grid and the Lagrangian streamlines. Unfortu-
nately, this introduces mass-balance errors that may ac-
cumulate in time and in turn yield significant errors in
production curves.

Mass-balance errors might be reduced by considering
higher-order mapping algorithms, or by increasing the
number of streamlines. Since the computational speed
scales linearly with the number of streamlines, it is clearly
desirable to use as few streamlines as possible. Here we
propose a modification of the standard mapping algorithm
that: (i) improves the mass-conservation properties of the
method and (ii) provides high-accuracy production curves
using few streamlines.

Mass conservation is improved by changing quantities
in the transport equation locally, and we show that these

modifications do not significantly affect the global satura-
tion errors as long as a sufficient number of streamlines is
used. Moreover, we propose an adaptive strategy for ensur-
ing adequate streamline coverage. The efficiency and ac-
curacy of the modified streamline method is demonstrated
for Model 2 from the Tenth SPE Comparative Solution
Project. Highly accurate production curves (compared to
reference solutions) are obtained in less than ten minutes
using one processor on a standard (Intel Core 2 Duo) desk-
top computer.

Introduction
Streamline simulation has experienced increasing indus-
try interest and rapid technology development in recent
years and is now a very efficient alternative to traditional
flow modelling by numerical methods such as finite differ-
ences or finite volumes. Modern streamline methods can be
used to compute complex flow physics such as compress-
ible three-phase models with full PVT, multicomponent
models or dual-porosity models (Thiele et al., 1997; Crane
et al., 2000; Di Donato and Blunt, 2004). Still, streamline
simulation is most efficient for simplified physical mod-
els and engineering queries based on the 80-20 principle:
80% of the answer in 20% of the time available (Thiele,
2005). In particular, due to its low memory requirements
and high computational efficiency, streamline simulation
today offers the opportunity to solve outstanding engineer-
ing queries that might otherwise be difficult or impossible
to address using other approaches.

Streamline simulators are particularly suitable for solv-
ing large and geologically complex models, where the fluid
flow is dictated primarily by heterogeneities in rock proper-
ties (permeability, porosity and faults/fractures), well po-
sitions, and phase mobilities. The typical application is
for production regimes involving fluid displacement, e.g.,
water flood or gas injection. Other mechanisms, like capil-
lary effects and expansion-driven flows, may be modelled,
but not with the same degree of accuracy and efficiency.
Primary examples of application are flow simulations on
multimillion geocellular models of complex heterogeneity,
and repeated simulations on equiprobable geological re-
alisations to quantify sensitivity of model parameters and
uncertainties in prediction forecasts. Generally, streamline
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simulators are progressively being used more by operating
companies as an alternative to traditional reservoir simu-
lators in several reservoir engineering workflows, including:
screening of enhanced recovery projects, rapid sensitivity
studies, history matching, uncertainty assessment, upscal-
ing, flood optimization, or simulation studies of sector or
full-field models.

The computational setup within a streamline simulator
can be briefly described as follows. First, the pressure
distribution over a conventional 3-D grid is computed in
order to determine the trajectories of 1-D streamlines that
represent flow-paths. Next, the material balance equations
can be transformed in terms of the so-called time-of-flight
along a streamline and split into two parts, namely the
part along the streamline and the part in the direction
of gravity. These 1-D equations are then solved by an
appropriate numerical method and the resulting saturation
or concentration values are mapped back onto the 3-D grid.
In each time-step, the velocity field is recomputed, which
implies that streamline trajectories will change in time for
dynamic flow conditions. For a more in-depth description
of streamline simulation and an overview of the literature
in this field, we refer the reader to the upcoming textbook
by Datta-Gupta and King (to appear) or to the survey
papers by Thiele (2005) and King and Datta-Gupta (1998).

The underlying mathematical formulation is both the
strength and the weakness of streamline simulation. The
operator splitting and the Lagrangian spatial discretiza-
tion, which are fundamental assumptions of streamline
methods, are the keys to obtaining high efficiency:

• The operator splitting used to decouple the computa-
tion of the velocity field (i.e., pressure) and the fluid
transport has the effect that the size of the pressure
steps is dictated by the flow dynamics, and not by the
spatial (finite-difference) discretization. For e.g., wa-
ter flood problems, this usually means that velocity
fields and streamlines only need to be updated infre-
quently.

• The 1-D transport problems along streamlines and
gravity lines can be solved very efficiently such that
the computational complexity of the transport step
scales linearly with the number of streamlines and the
number of cells traversed by each streamline.

• The number of streamlines typically required to ob-
tain an acceptable accuracy increases linearly with the
number of active cells.

These three points, together with the existence of near-
linear complexity linear solvers for the pressure equation
(Stüben, 2000), imply that streamline simulation scales
(almost) linearly with model size, may be very memory
efficient, and offers a natural potential for parallel imple-
mentation. However, it is also evident that streamline sim-
ulation will loose its high efficiency for flows with a very
strong coupling between the pressure and the mass trans-
port equation.

Similarly, it is clearly desirable to use as few stream-
lines as possible to ensure efficient flow simulation. On the
other hand, the set of streamlines should be representa-
tive and sufficiently dense to ensure accurate prediction of

flow patterns and production responses, and to limit er-
rors in the mass balance. Lack of mass conservation is a
problem of particular concern to reservoir engineers, and
in this paper we will try to analyse the lack of mass con-
servation and suggest methodological improvements that
will strongly improve the mass balance. This will in turn
allow a significant reduction in the number of streamlines
required to ensure highly accurate production curves.

The rest of the paper is organized as follows: In the
next two sections we define our model problem and de-
scribe what we shall refer to as our “standard” or “original”
streamline method. The mass-balance problems are then
illustrated with an example, and we utilize a description
of the streamline spatial discretization given by Jimenez
et al. (2005) to explain the problem. We propose a change
of the original streamline method, and demonstrate that
the modified approach improves the mass balance and gives
accurate production curves using very few streamlines for
a large and complex reservoir model. We then study the
performance for various flow conditions on a very sim-
ple model and propose a strategy for ensuring adequate
streamline coverage, before demonstrating applicability to
a history-matching problem with more than a million grid
blocks and 69 producers. Some final remarks then con-
cludes the paper.

Model Problem
Since our focus in this paper is on the mass-balance prop-
erties of streamline methods, we will consider a simplified
model for water flooding. That is, we assume immiscible,
incompressible two-phase flow and disregard gravity and
capillary forces. Our flow model then consists of an ellip-
tic pressure equation

∇ · u = qt, u = −λt(S)K∇p, (1)

and quasilinear hyperbolic transport equation

φ
∂S

∂t
+∇ · (fw(S)u) = qw. (2)

The primary unknowns in the coupled system (1)–(2) are
the pressure p, the total (Darcy) velocity u, and the water
saturation S. The underlying porous rock formation is
modelled in terms of the absolute permeability K and the
porosity φ, which henceforth are assumed to depend on
the spatial variable only. Finally, λt = λw + λo denotes
the total mobility, where the mobility of each phase, λj is
given as the relative permeability krj of phase j divided by
the phase viscosity μj (j = o, w), and fw = λw/λt is the
fractional flow of water.

The Streamline Method
The streamline method is based on a sequential solution
procedure. First the known initial saturation distribution
is used to compute the mobilities λt(S) in (1), after which
the pressure equation can be solved to give total velocity
u and pressure distribution p. Next, the total velocity u is
kept fixed in (2), while the saturation is advanced a given
time step. The new saturation values are used to update
the mobilities in (1), the pressure equation is solved again,
and so on.
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Instead of discretizing and solving (2) directly on a
grid, a streamline method decouples the three-dimensional
equation into multiple one-dimensional equations along
streamlines by introducing the time-of-flight variable,

τ(s) =
∫ s

0

φ(ζ)
|u(ζ)|dζ, (3)

which is the time it takes a passive particle to travel a
distance s along a streamline. In differential form (3) be-
comes,

∂τ

∂s
=

φ

|u| ⇐⇒ u · ∇τ = φ. (4)

Moreover, we have that ∂/∂τ ≡ u · ∇, which combined
with (4) can be used to rewrite the saturation equation
(2) as a one-dimensional equation to be solved along each
streamline,

∂S

∂t
+
∂fw

∂τ
= 0. (5)

The solution to the full three-dimensional problem (2) is
obtained by tracing numerous streamlines in the domain,
mapping the initial saturation distribution from the 3-D
pressure grid to the one-dimensional streamlines, and then
solving (5) along each streamline. Afterwards, the new
saturation values along streamlines must be mapped (or
averaged) back to the underlying 3-D grid to allow updat-
ing of the mobilities before the pressure equation can be
solved to recompute the velocity field.

A Specific Implementation. An implementation of the
streamline method can be characterized by (i) the pro-
cedure for tracing streamlines, (ii) the choice of one-
dimensional solver, (iii) the strategy for spatial distribu-
tion of streamlines, and (iv) the algorithms for mapping
solution values back and forth between streamlines and
the underlying (pressure) grid. We now describe what we
shall refer to as our “standard” or “original” streamline
method.

In this work we only consider models with Cartesian
geometry, and we therefore use a simple semi-analytical
tracing procedure due to Pollock (1988). Given the entry
point and constant normal velocities on faces of a grid-
block, Pollock’s algorithm computes the exit point and the
incremental time-of-flight associated with transversing the
grid-block by assuming linear velocity variation in each
direction. This way, each streamline can be traced numer-
ically on a block-by-block basis from injector to producer
or vice versa, or alternatively from an arbitrary point in
the reservoir and forward to the producer and backward
to the injector. After the tracing, each streamline is given
as the indices of the blocks the streamline traverses, the
entry and exit points, and the incremental time-of-flights
for each block. These increments form the blocks in the
streamline grid {Δτsl,i} on which (5) will be solved.

To solve the one-dimensional problems we employ front-
tracking (see, e.g., Holden and Risebro, 2002), which is also
applied in a commercial streamline simulator (Bratvedt
et al., 1993; Bradtvedt et al., 1994). The front-tracking
method is unconditionally stable and can directly utilize
the time-of-flight grid resulting from the streamline trace,

which makes the method very efficient and devoid of nu-
merical diffusion. In contrast, solvers based on a finite-
volume formulation typically need to map the initial data
to a more regular grid (Batycky, 1997; Thiele, 2005).

The initial values for the one-dimensional problems are
obtained by picking up the piecewise constant values from
the underlying (pressure) grid, i.e., the grid-to-streamline
mapping is the simplest possible,

Ssl,i = Si. (6)

To map values from the streamlines back to the grid, we use
volumetric averaging. Volumes are associated with stream-
lines by considering each streamline as the centreline, or
more precisely, as a representation of the cross-section, of
a streamtube with an associated constant volumetric flux
qsl = u(ζ)A(ζ). This gives the volume of the streamline
as,

Vsl ≡ Vst =
∫ s

0

φ(ζ)A(ζ)dζ

=
∫ s

0

qsl
φ(ζ)
u(ζ)

dζ = qslτsl.

(7)

The volume of a streamline in grid-block i is then Vsl,i =
qslΔτsl,i, and the precise definition of the streamline-to-
grid volumetric averaging is,

Si =
∑

sl Ssl,iVsl,i∑
sl Vsl,i

. (8)

We note that considering streamlines as fluid carriers also
makes it natural to define production characteristics sim-
ply by summing the contributions from all streamlines con-
nected to each well. For long time-steps, the fractional flow
of water at a producer may vary significantly; hence we
measure the accumulated production along each streamline
and define the total water production during a time-step
of size Δt by,

PRDΔt =
∑

sl

qsl

∫

Δt

fw,sl(t) dt. (9)

The values of (8) and (9), and the accuracy with which
these values approximate the true saturation values and
production increments, depend on how fluxes are assigned
to the streamlines/streamtubes, and this may again be re-
lated to the procedure for distributing streamlines in the
reservoir. Here we generate equally spaced starting points
on the faces of grid-blocks containing injection wells. The
number of starting points on each face is proportional to
the volumetric flux across the face, which enables us to
consider the streamlines as carrying approximately equal
amounts of fluids, i.e., qsl ≈ C for some constant C. An
advantage of this approach is that the sums in (8) and (9)
can be computed incrementally as streamlines are traced
(Batycky, 1997) without knowing the associated volumet-
ric flux, thus allowing completely independent processing
of streamlines.

For the volumetric mapping (8) to make sense, each
grid-block should in principle be traversed by at least one
streamline. In general, there will be a number of grid-
blocks that are not traversed by any of the streamlines
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Fig. 1— Water-cuts for Producer 1 computed by a commercial
streamline simulator on the original SPE10 model, along with
our finite-volume and streamline solutions for the simplified
problem (no compressibility and gravity).

traced from the faces of injector-blocks. To make the
streamlines cover all grid blocks, one can perform an addi-
tional tracing process where one picks a point inside one of
the untraced blocks and traces a streamline from this point
forward to a producer and backward to an injector, or one
can follow Batycky (1997) and only trace streamlines back
to a block which is already traversed by streamlines. The
process is continued until there are no untraced blocks.
Alternatively, one may simply ignore the untraced blocks,
as these often are in regions that have a very small con-
tribution to the production characteristics. To keep the
amount of streamline tracing at a minimum we here em-
ploy the latter approach.

Mass-Balance Problems

For the particular streamline implementation described
above, the overall accuracy will primarily depend on the
number of streamlines used in the simulation. To illus-
trate the typical behaviour as the number of streamlines is
reduced, we consider Model 2 from the 10th SPE Compar-
ative Solution Project (Christie and Blunt, 2001), which
is a large 3-D reservoir model consisting of 60 × 220× 85
grid-blocks, each of size 20ft × 10ft × 2ft. The model is a
geostatistical realisation of a Brent sequence. The top 35
layers represent the Tarbert formation, which is a prograd-
ing near-shore environment. The lower 50 layers represent
the Upper Ness formation, which is fluvial.

The model is produced using a five-spot pattern of ver-
tical wells, where the central injector has an injection
rate of 5 000 bbl/day (reservoir conditions), and the pro-
ducers in each of the four corners of the model produce
at 4 000 psi bottom hole pressure. As in the original
model, we use quadratic relative permeability curves with
Swc = Sor = 0.2. The initial saturation is S0 ≡ Swc, and
oil and water viscosities are μo = 3.0 cP and μw = 0.3
cP, respectively. For simplicity, we have neglected gravity
and compressibility, since these have smaller impact on the
production curves than the numerical diffusion inherent in
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Fig. 2— Water-cuts for Producer 1 for various number of
streamlines. (In the legend, 1K = 1 000.)

any numerical scheme. This can be seen in Fig. 1, which
compares a fine-grid reference solution from the SPE10
website (http://www.spe.org/csp/) with two fine-grid
solutions for the simplified physical model; one computed
by a first-order upstream finite-volume method, and the
other computed by the “standard” streamline method in-
troduced above with 600 000 streamlines. The simplified
streamline solution will therefore be used as a reference
solution in the rest of the paper. We note that we use
the same time-steps as the reference solver: 25 steps with
smaller step-sizes in the beginning of the simulation.

Figure 2 displays the water-cut in Producer 1 for sim-
ulations with various number of streamlines. The figure
shows that the water production is underestimated when
the number of streamlines is too small. Since the cor-
rect total amount of injected water is distributed among
streamlines at the injecting end of each streamline, there
must effectively be a loss of mass in the method. We can
quantify this loss by, e.g., computing the relative mass-
balance error for water in each time-step,

εΔt =
INJΔt − PRDΔt + FIPt − FIPt+Δt

INJΔt
, (10)

which is equivalent to the volume-balance error, since we
have assumed incompressibility. Figure 3 shows that the
errors increase rapidly in the beginning of the simulation
and decay slowly as the corresponding water-cut curves
increase.

Spatial Errors in Streamline Discretizations. To ex-
plain the origin of the observed mass-balance errors we
follow Jimenez et al. (2005): Using the bi-streamfunctions
(Bear, 1972) for which,

u = ∇ψ ×∇χ, (11)

we can define an alternative curvlinear coordinate system
(τ, φ, χ) for three-dimensional space where the velocity
u, and hence the τ coordinate curves, i.e., the streamlines,
will be orthogonal to the ψ and χ coordinate curves. It
is this orthogonality relation (11) that is responsible for
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Fig. 3— Relative mass-balance errors in the streamline method
for various number of streamlines.

the particularly simple form of the saturation equation (5)
along streamlines. The discretization along streamlines is
defined by the streamline grids obtained from the trac-
ing algorithm, while the transversal discretization is deter-
mined by the partition of the volume into streamtubes, or
in our case, the distribution of streamlines and the associ-
ation of fluxes to streamlines.

The pore volume of this discretization will generally not
match the pore volume of the original grid, which will lead
to mass-balance errors when mapping saturation between
the streamlines and the pressure grid. From (7) we have
that the streamline pore volume is given by,

Vsl =
∑

sl

qslτsl, (12)

but both qsl and τsl are subject to approximation errors.
As noted by Matringe and Gerritsen (2004), the simple
semi-analytical streamline tracing approach gives errors,
even if given analytical fluxes on the grid-block faces of
Cartesian grids, since the velocity field is approximated
by a piecewise bilinear function. Assigning equal fluxes to
all streamlines is also slightly inaccurate since the fluxes
actually represent the velocity integral across the cross-
section of the associated streamtube. Even if the velocity
is considered to be constant on injector-block faces, errors
are introduced because the initial cross-section areas of the
streamtubes will not be equal unless the number of start-
ing points on each face is a perfect square. However, as
the number of streamlines is reduced, the primary source
of errors may be the assumption that the time-of-flight
along a streamline is a good approximation to the average
time-of-flight over cross-sections of the associated stream-
tube. To illustrate, Fig. 4 shows the time-of-flight values
for numerous points on the cross-section of two grid-blocks
from the fluvial formation of the SPE10 model discussed
above. Here, the variation in τ is actually of the same mag-
nitude as the values themselves, hence the aforementioned
assumption may yield very inaccurate streamline volumes.

Fig. 4— Time-of-flight in two different grid blocks of Layer 76
in the SPE10 model sampled in 200 × 200 evenly distributed
points inside each block.

Improving the Mass Balance

The presence of mass-balance errors in the streamline solu-
tions is a well-known problem, and improving the accuracy
and mass-balance properties of streamline methods is an
active area of research. However, much of this research
seems to be geared toward problems with complicated ge-
ometry and/or complicated physics. For instance, stream-
line tracing on corner-point geometry has been investigated
by Jimenez et al. (2005) and Hægland et al. (2006), while
Gerritsen et al. (2005; and related works) studied issues
such as streamline distribution and more accurate mapping
algorithms in the context of gas injection simulations. The
latter works represent a fundamental change of the stan-
dard streamline approach, where streamlines are no longer
viewed as fluid carriers, and saturations are mapped to
the underlying grid using a statistical regression technique
(kriging). This gives a large degree of freedom in distribut-
ing streamlines in the reservoir, but involves the solution of
linear systems for the kriging weights, which may dominate
the computation time for problems such as water-flooding,
where the computation of the one-dimensional solutions is
extremely efficient. Also, the natural way of estimating
well production (9) is no longer applicable unless a volu-
metric flux is associated with each streamline.

Within the framework of regarding streamlines as fluid
carriers, (12) shows that there are really only two parame-
ters we can play with to improve the mass-balance proper-
ties of streamline methods, namely the streamline fluxes,
qsl, and the streamline time-of-flights, τsl. The exact prop-
erties of these are functions of the particular choices made
in the streamline method implementation, and as noted in
the previous section, both parameters may contain large
errors for the specific implementation considered here. The
close match between the reference streamline simulation
and the finite-volume solver (Fig. 1) implies that the
streamline tracing is sufficiently accurate for this problem,
although we note that more accurate tracing on Cartesian
grids is possible, for instance by utilizing velocity fields
computed with higher-order mixed finite-element methods
(Matringe et al., 2006).

The association of fluxes with streamlines is within the
present framework related to the distribution of stream-
lines, since we assume equal flux for all streamlines. To
bring the streamline fluxes closer to the actual velocity in-
tegral over the streamtube cross-section, we may consider
scaling qsl according to the interpolated velocity at the
starting point and the cross-section area of the associated
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Fig. 5— Producer 1 water-cut for various number of stream-
lines when starting streamlines from both injectors and pro-
ducers, and scaling the streamline fluxes according to the per-
pendicular bisection areas.

streamtube (Ponting, 1998; Pallister and Ponting, 2000).
Lifting the restriction of equal streamline fluxes also makes
it possible to apply other streamline distribution schemes.
For instance, in situations where there is a large variation
in total fluid rates between different producers, it may be
beneficial to start streamlines also on the faces of well-
blocks containing producers to ensure that sufficient accu-
racy is achieved even for wells with small rates.

To study the influence of these factors, we perform sim-
ulations where the starting points of streamlines are gen-
erated on the block-faces of both injectors and producers.
For each face of grid-blocks containing an injector, the total
volumetric flux is divided among the streamlines penetrat-
ing the face, with weights given by the areas of a perpendic-
ular bisection of the block face. We have chosen to ignore
the velocity variation over the faces since Ponting (1998)
found that this only had a minor effect. Figure 5 shows
that this alternative approach to streamline distribution
and flux computation is not significantly better than the
original approach for the SPE10 case, although a slight
improvement is detectable.

The results above indicate that the primary source of er-
ror, as the number of streamlines is reduced, is indeed that
the time-of-flight along streamlines is not an accurate rep-
resentation of the average time-of-flight over cross-sections
of the associated streamtubes. Increasing the number of
streamlines decreases the streamtube cross-sections and
hence reduces these errors. However, considering the very
large time-of-flight variation shown in Fig. 4, it appears
that a large number of streamlines is necessary to obtain
accurate streamline volumes and thereby low mass-balance
errors. On the other hand, if we insist on keeping the
number of streamlines low, we can use the fact that mass
should be conserved, and correct the computed time-of-
flight values to enforce the mass-balance constraint. We
will have exact conservation of mass if the streamline vol-
ume matches the true pore volume, i.e.,

∑
sl Vsl,i = Vi, in

every grid-block touched by streamlines. In this case the
mappings between streamlines and the pressure grid pre-

serve mass. Indeed, for the grid-to-streamline mapping (6)
we have,

Vw,grid =
∑

i

ViSi =
∑

i

(∑

sl

Vsl,i

)
Si

=
∑

sl

∑

i

Vsl,iSsl,i = Vw,sl,
(13)

and similarly for the streamline-to-grid mapping (8),

Vw,sl =
∑

sl

∑

i

Vsl,iSsl,i =
∑

i

∑

sl

Vi∑
sl Vsl,i

Vsl,iSsl,i

=
∑

i

ViSi = Vw,grid,
(14)

where Vw,grid and Vw,sl are the total volumes of water on
the the pressure and streamline grids, respectively. Since
the streamline flux is constant along the streamline path,
our only option for ensuring

∑
sl Vsl,i = Vi is to modify

the local time-of-flight values, Δτsl,i. Specifically, prior to
solving the one-dimensional saturation equation (5) along
streamlines, we propose to scale the time-of-flight values
in block i by a factor αi = Vi/

∑
sl Vsl,i. This means that

streamlines can no longer be processed independently of
each other, and we need to store streamlines in memory,
or alternatively perform the complete tracing procedure
twice; once to compute the values of αi, and then a sec-
ond time for the solution of the one-dimensional problems.
The memory requirement for storing streamlines is usually
lower than what is necessary for the solution of the pres-
sure equation (1), hence the former approach is preferable
since tracing is an expensive process.

Scaling the time-of-flight values amounts to locally
stretching or shrinking the grid on which the one-
dimensional saturation equation (5) is solved. Unless the
errors in the streamline tracing are large, the grid obtained
by the tracing is the correct one, and the modifications will
result in less accurate one-dimensional solutions. In other
words, by choosing to enforce mass conservation, we locally
introduce errors, but as we demonstrate below, the global
properties of the resulting solutions are better. However,
we must take special care not to ruin important character-
istics of the correct one-dimensional solutions. A quantity
of particular interest is the breakthrough-time for produc-
ers, and to make sure this is estimated correctly, we only
apply the time-of-flight scaling along streamlines where
breakthrough has occurred.

Figures 6 and 7 show water-cuts for Producer 1 and
and relative mass-balance errors for various number of
streamlines when using the modified streamline approach.
Mass-balance errors are still large initially since the time-
of-flight scaling is only applied after breakthrough, but the
errors decrease rapidly. The improvement on the water-cut
curves is significant, to say the least, with as few as 5 000
streamlines giving acceptable results. We can quantify the
error in a water-cut curve w(t) by,

δ(w) = ‖w − wref‖2/‖wref‖2, (15)

and Table 1 shows that the results are similar also for
the other three producers. For completeness, Table 1 also
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Fig. 6— Water-cuts for Producer 1 for various number of
streamlines when using the modified streamline method.
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Fig. 7— Relative mass-balance errors in the streamline method
for various number of streamlines when using the modified
streamline method.

shows the corresponding results for the standard stream-
line approach, where we have started streamlines in both
injectors and producers and used the perpendicular bisec-
tion approach above to assign fluxes to streamlines, as we
previously showed that this gives slightly better results.

Since the time-of-flight scaling introduces local errors in
the one-dimensional saturation solutions, we may ask if the
global saturation solutions now are less accurate than for
the original approach. We therefore compute saturation
errors in the porosity-weighted L1-norm,

δ(S) = ‖φ(S − Sref)‖1/‖φSref‖1, (16)

for each time-step, and the average through the simula-
tion is displayed in Table 1. The results show that the
modified streamline method gives slightly more accurate
saturation fields than the original method for the same
number of streamlines, but generally does not allow a sig-
nificant reduction in the number of streamlines if one is to
retain a certain accuracy.

If one, on the other hand, is mainly interested in accu-
rate production curves, Table 1 shows that the number
of streamlines can be significantly reduced. For instance,
if we allow a 5% water-cut error as measured by (15), we
see that we may need 50 000 streamlines in the original ap-
proach, whereas 5 000 streamlines is sufficient when using
the modified method. This yields a significant speedup for
the transport part of the simulation, since the computa-
tion time associated with transport in theory scales linearly
with the number of streamlines. The timing results in Ta-
ble 1 show that the actual scaling is not truly linear as
the number of streamlines becomes very small. However,
this is to be expected since our simulator is optimized for
relatively large numbers of streamlines and otherwise negli-
gible overhead associated with streamline distribution, flux
computations, and saturation mappings may become sig-
nificant when using a small number of streamlines. Still,
we see that going from 5 000 to 50 000 streamlines gives
at least five times speedup for the transport step. Fi-
nally, we note that as the number of streamlines is reduced,
the total simulation time is dominated by the solution of
the pressure equation (1). To obtain a more substantial
speedup for the overall simulation, the modified streamline
method should be considered in combination with approx-
imate pressure solution techniques, e.g., with a multiscale
method as discussed by Aarnes et al. (2005).

A Simpler Example

Since our proposed modification to the streamline method
introduces local errors along streamlines, we might sus-
pect that the approach only represents an improvement
for difficult models where the original streamline method
gives very large errors, and that it might yield significantly
less accurate results for simpler models. In this section we
therefore apply the modified and original streamline meth-
ods to a small model with homogeneous permeability and
porosity data. In particular, we use a 32 × 32 × 8 model
with grid-block aspect ratio 1 : 1 : 0.1, with wells placed
in a five-spot pattern and the four producers producing at
equal bottom-hole pressures. We assume quadratic relative
permeability curves with zero residual oil and water satu-
rations, and perform simulations for three different values
of the end-point mobility ratioMend = μo/μw, correspond-
ing to unit mobility ratio (Mend = 1), favourable displace-
ment (Mend = 0.1) and high-mobility ratio displacement
(Mend = 10), respectively. The dimensionless simulation
time was 2.0 PVI, and for all three scenarios we verified
that the chosen number of time-steps was sufficient for sta-
bility of the sequential time-stepping scheme.

Tables 2 – 4 show the water-cut errors for both stream-
line approaches with various number of streamlines in each
of the three scenarios. The results are indecisive and we
cannot conclude that the modified streamline method sig-
nificantly improves the accuracy of the production curves
for this homogeneous model. On the other hand, the time-
of-flight scaling does generally not cause the new approach
to perform worse than the original method, either. This
implies that the modified streamline approach can be safely
applied also for simple datasets.
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Adaptive Streamline Coverage The results in Ta-
bles 2 – 4 also show that there is a large accuracy dif-
ference, for both methods, between the three displacement
scenarios. In particular, Table 3 shows that a larger num-
ber of streamlines is required to obtain accurate results for
favourable displacement conditions. The large errors ob-
served when using few streamlines for this piston-like dis-
placement are caused by insufficient streamline coverage,
since we do not ensure that all grid-blocks are traversed
by streamlines. This leads to errors in the computed pres-
sure and velocity fields, thus shifting the predicted time
of breakthrough. For scenarios with high mobility-ratios,
the pressure/velocity solutions are less sensitive to errors
in the underlying saturation field, because the saturation
variation is generally much smoother.

To alleviate the accuracy problems for favourable dis-
placement conditions, we could trace streamlines through
every grid-block, using, e.g., the approach of Batycky
(1997). However, many grid-blocks will typically be lo-
cated in low-flow regions that do not significantly affect
the solution. We therefore propose an adaptive approach
to streamline coverage, where we only demand that a
given fraction β of the pore volume should be traversed
by streamlines. Before the tracing starts, grid-blocks are
sorted in descending order by absolute velocity |u|, and we
trace back from untouched blocks in sorted order until the
given pore-volume target has been met. We also ensure
that each well is properly covered by starting a specified
number of streamlines from each well, with the distribu-
tion of streamlines on well-block faces given according to
the fluxes, as before.

In Tables 5 – 7 we have displayed the average number of
streamlines and water-cut errors when applying this adap-
tive approach in combination with the modified stream-
line method for the three different displacement scenarios.
Initially we trace 100 streamlines from each well, which is
why the minimum number of streamlines is 500. Compared
with Tables 2 – 4 we see that tracing streamlines adap-
tively based on flow velocity gives more accurate results
using fewer streamlines. As expected, the optimal value
of β depends on the displacement conditions, with piston-
like displacement requiring a larger fraction of the pore
volume to be covered. On the other hand, the adaptivity
has barely a significant effect for the scenario with high-
mobility ratio, where we actually could have used even
fewer streamlines. This helps explain why we obtained
accurate results using extremely few streamlines for the
SPE10 model above.

Application Example: History Matching
The results and discussion above clearly indicate that the
modified streamline method is most suitable for applica-
tions where one is primarily interested in accurate produc-
tion responses rather than accurate predictions of the dy-
namic distribution of fluids. Examples of such applications
are history matching and ranking of multiple equiprobable
geostatistical models.

In the following we consider history-matching of a high-
resolution geomodel using a generalized travel-time inver-
sion method (Vasco et al., 1999; He et al., 2002). The
inversion method consists of four major steps that are re-

peated until a satisfactory match in production data is
obtained: (i) Multiscale-streamline simulation to compute
production responses at the wells. (ii) Quantification of
the mismatch between observed and computed production
responses via a generalized travel time, and computation
of an optimal time shift that systematically shifts the com-
puted production responses towards the observed data.
(iii) Computation of streamline-based analytic sensitivi-
ties of water-cut data with respect to permeability. (iv)
Updating of grid-block permeability values to match the
production history via inverse modelling (minimization of
a misfit functional). More details of the inversion proce-
dure are given in (Stenerud et al., 2007).

We consider a synthetic geomodel given by a uniform
Cartesian grid with 256 × 128 × 32 cells, where each cell
has dimensions 10m×10m×2m. A total number of 32 ver-
tical injectors and 69 vertical producers are included in the
simulation model. The injectors inject water at a constant
total volumetric reservoir rate of 1609 bbl/day, and each
producer produces fluids at a constant reservoir volume
rate fulfilling the total voidage rate. The flow model as-
sumes quadratic relative permeability curves with an end-
point mobility ratio of Mend = 5.

The production history to be matched consists of 2475
days of water-cut data from the 69 producers, obtained by
simulation on a reference geomodel having log-normally
distributed permeability with mean 2.2 mD and values in
the interval [0.017,79.5] mD; see Fig. 8. An initial perme-
ability model was generated by assuming the permeability
to be known in each well block and using sequential Gaus-
sian simulation to generate multiple realizations.

The inversion algorithm converged in six iterations, after
which the misfit in time-shift and amplitude (see Stenerud
et al., 2007) were reduced to 7.8% and 53.6% of their initial
values, respectively. In the inversion, we use the original
streamline method with 500 000 streamlines and 15 uni-
form pressure steps of 165 days for each forward simula-
tion. To solve the pressure equation we use an approxi-
mate, but highly efficient multiscale method (Aarnes and
Lie, 2004). The total time for the whole inversion was 1
hour and 27 minutes on a Linux workstation with a 2.4
GHz Intel Core 2 Duo processor with 4Mb cache and 3 Gb
memory. Using the modified streamline method we were
able to reduce the number of streamlines to 50 000, and
thereby reduce the total time for inversion to 39 minutes
without reducing significantly the quality of the obtained
history match. In fact, the time-shift and amplitude resid-
uals were reduced to 7.6% and 48.7% of their original val-
ues, respectively.

Concluding Remarks
In this paper we have introduced a modified streamline
method which greatly reduces the mass-balance errors
when simulating large and complex reservoir models using
few streamlines. Improved mass-conservation properties
are achieved by locally scaling the time-of-flight grids, on
which the one-dimensional transport equations are solved,
to enforce mass conservation in the mappings between the
Eulerian pressure grid and the Lagrangian streamlines. As
a consequence, we are able to obtain accurate production
curves on a million grid-block reservoir model with five
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Fig. 8— Geomodels for the 3D history-matching case: ref-
erence model (top) initial model (middle), and final match
(bottom).

wells using only 5 000 streamlines, and the total simula-
tion time is less than ten minutes using a standard desktop
computer.

We verified that the modified approach is applicable also
to simple models by showing that its performance was
similar to that of the original method on a homogeneous
dataset. We also demonstrated that favourable, piston-
like displacement might be challenging to simulate using
few streamlines, and proposed an adaptive approach to
streamline coverage based on tracing streamlines from un-
touched cells in high-flow regions until a given fraction of
the pore volume has been traversed.

We have not considered improvements in the algorithms
for mapping saturations between streamlines and the pres-
sure grid, and the modified approach does therefore not
give significantly better saturation solutions than the orig-
inal method. This implies that the modified streamline
method is best suited for applications that depend heavily
on rapid estimation of production responses. As an ex-
ample we demonstrated significant speed-up for a history-
match of a million grid-block model with 32 injectors and
69 producers.

Finally, we remark that our modified method probably
has an even larger potential for non-Cartesian grids, where
Pollock’s method for analytical tracing of streamlines in-

troduces large errors, both in the time-of-flights and in
the actual streamline paths; see Hægland et al. (2006) for
further details.

Nomenclature

Roman letters
A Area
C Constant
f Fractional flow
FIP Volume of fluid (water) in place
K Permeability tensor
INJ Injected volume (water)
kr Relative permeability
Mend End-point mobility ratio
p Pressure
PRD Produced volume (water)
s Distance along streamline
S Saturation
Swc Connate water saturation
Sor Residual oil saturation
t Time
u Total Darcy velocity
V Volume
w Water-cut curve
q Volumetric rate

Greek letters
δ(·) Relative error
ε Relative mass balance error
λ Mobility
μ Viscosity
φ Porosity
ψ,χ Bi-streamfunctions
τ Time-of-flight
ζ Space coordinate along streamline

Subscripts
i Block number
j Phase number
sl Streamline number
st Streamtube number
o, w Oil and water phases
t, tot Total
Δt Time-step
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M 4.73e-02 3.76e-02 5.00e-02 4.09e-02

750 O 9.25e-02 8.73e-02 9.09e-02 9.17e-02
M 7.37e-02 7.03e-02 5.47e-02 7.30e-02

500 O 1.44e-01 1.12e-01 1.06e-01 1.15e-01
M 1.19e-01 9.82e-02 9.64e-02 1.10e-01

250 O 1.68e-01 2.15e-01 2.43e-01 2.19e-01
M 1.49e-01 1.61e-01 1.77e-01 1.59e-01

Table 2— Water-cut errors, δ(w), on the homogeneous model
for the original (O) and modified (M) versions of the stream-
line method, when the end-point mobility ratio Mend = 1.
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NSL Method P1 P2 P3 P4 δ(S) Tsl (s) Ttot (s)

100 000 Original 8.91e-03 6.24e-03 2.44e-03 2.99e-03 2.75e-02 508.92 974.94
Modified 9.86e-03 4.61e-03 1.97e-03 3.67e-03 2.83e-02 508.20 979.03

50 000 Original 2.53e-02 1.72e-02 6.42e-03 9.38e-03 4.00e-02 266.48 728.42
Modified 1.66e-02 7.88e-03 3.72e-03 7.03e-03 3.81e-02 265.87 727.79

25 000 Original 6.49e-02 4.85e-02 1.74e-02 2.28e-02 5.89e-02 147.36 608.46
Modified 1.43e-02 1.47e-02 8.12e-03 7.12e-03 5.27e-02 146.23 613.00

10 000 Original 1.78e-01 1.29e-01 5.53e-02 7.30e-02 9.54e-02 75.65 541.17
Modified 3.26e-02 1.94e-02 1.56e-02 1.38e-02 8.06e-02 75.33 545.09

5 000 Original 3.20e-01 2.30e-01 1.02e-01 1.30e-01 1.29e-01 50.91 512.75
Modified 4.25e-02 2.19e-02 1.86e-02 2.37e-02 1.12e-01 51.74 516.63

Table 1— Errors in water-cuts δ(w) for producers P1 to P4, saturation error δ(S), computational time for the streamline part of the
simulation Tsl, and total computation time Ttot for the original and modified streamline methods on the SPE10 model for various
number of streamlines (NSL).

NSL O/M P1 P2 P3 P4

2000 O 4.56e-02 9.18e-02 8.97e-02 9.46e-02
M 4.43e-02 9.30e-02 8.97e-02 9.47e-02

1750 O 3.29e-02 6.53e-02 6.78e-02 5.17e-02
M 3.07e-02 6.44e-02 7.09e-02 5.08e-02

1500 O 7.01e-02 1.20e-01 8.98e-02 1.05e-01
M 5.27e-02 1.13e-01 8.96e-02 1.04e-01

1250 O 6.76e-02 1.13e-01 1.42e-01 8.19e-02
M 4.60e-02 1.09e-01 1.42e-01 6.32e-02

1000 O 1.40e-01 1.62e-01 1.76e-01 1.67e-01
M 1.39e-01 1.62e-01 1.76e-01 1.67e-01

750 O 3.40e-01 3.14e-01 3.39e-01 3.57e-01
M 3.39e-01 3.15e-01 3.40e-01 3.57e-01

500 O 4.26e-01 4.50e-01 4.65e-01 4.69e-01
M 4.25e-01 4.34e-01 4.64e-01 4.61e-01

250 O 7.79e-01 8.20e-01 8.44e-01 7.99e-01
M 7.86e-01 8.17e-01 8.42e-01 8.00e-01

Table 3— Water-cut errors, δ(w), on the homogeneous model
for the original (O) and modified (M) versions of the stream-
line method, when the end-point mobility ratio Mend = 0.1.

NSL O/M P1 P2 P3 P4

2000 O 2.55e-02 1.33e-02 5.36e-02 1.35e-02
M 2.58e-02 2.45e-02 2.33e-02 8.44e-03

1750 O 2.89e-02 1.36e-02 6.15e-02 1.04e-02
M 2.78e-02 1.94e-02 2.63e-02 8.13e-03

1500 O 3.37e-02 1.79e-02 4.43e-02 1.92e-02
M 3.14e-02 1.00e-02 3.88e-02 9.23e-03

1250 O 3.93e-02 2.42e-02 4.93e-02 2.60e-02
M 2.63e-02 2.61e-02 5.36e-02 2.72e-02

1000 O 5.33e-02 6.55e-02 3.33e-02 3.19e-02
M 6.68e-02 2.29e-02 5.79e-02 4.14e-02

750 O 5.05e-02 3.52e-02 4.68e-02 4.27e-02
M 5.84e-02 2.73e-02 5.09e-02 4.79e-02

500 O 6.97e-02 3.53e-02 5.19e-02 4.42e-02
M 3.49e-02 4.35e-02 5.22e-02 3.14e-02

250 O 7.07e-02 9.37e-02 1.04e-01 1.01e-01
M 7.42e-02 9.58e-02 1.20e-01 8.96e-02

Table 4— Water-cut errors, δ(w), on the homogeneous model
for the original (O) and modified (M) versions of the stream-
line method, when the end-point mobility ratio Mend = 10.

β NSL P1 P2 P3 P4
1.0 875 3.54e-02 3.08e-02 2.50e-02 3.92e-02
0.9 714 3.86e-02 3.35e-02 3.14e-02 3.89e-02
0.8 576 4.74e-02 3.11e-02 2.28e-02 3.07e-02
0.7 500 6.88e-02 5.88e-02 7.22e-02 4.83e-02
0.6 500 6.83e-02 6.37e-02 7.03e-02 5.09e-02

Table 5— Average number of streamlines and water-cut er-
rors, δ(w), on the homogeneous model for various values of β,
when the end-point mobility ratio Mend = 1.
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β NSL P1 P2 P3 P4
1.0 873 1.17e-02 7.52e-03 2.44e-02 1.37e-02
0.9 701 3.28e-02 2.95e-02 4.82e-02 2.17e-02
0.8 560 2.40e-01 2.31e-01 2.72e-01 2.43e-01
0.7 500 3.34e-01 3.85e-01 3.99e-01 3.90e-01
0.6 500 3.60e-01 3.78e-01 3.98e-01 3.86e-01

Table 6— Average number of streamlines and water-cut er-
rors, δ(w), on the homogeneous model for various values of β,
when the end-point mobility ratio Mend = 0.1.

β NSL P1 P2 P3 P4
1.0 873 3.45e-02 2.21e-02 2.26e-02 2.04e-02
0.9 722 3.42e-02 2.39e-02 2.41e-02 2.79e-02
0.8 616 2.69e-02 2.44e-02 3.35e-02 2.77e-02
0.7 519 2.19e-02 2.50e-02 5.94e-02 2.43e-02
0.6 500 2.39e-02 3.60e-02 6.80e-02 3.49e-02

Table 7— Average number of streamlines and water-cut er-
rors, δ(w), on the homogeneous model for various values of β,
when the end-point mobility ratio Mend = 10.


