Til hovedinnhold

Klart for skarpsynte roboter

Klart for skarpsynte roboter

Publisert 5. november 2014
Framtidas roboter skal kunne tilpasse seg vekslende omgivelser. Noen av dem skal også omgås mennesker. Da må de i det minste kunne se skikkelig. Tredimensjonalt, slik som oss.
Main intro image
Denne roboten kan se i tre dimensjoner, blant annet ved hjelp av spillteknologi, forklarer forsker Øystein Skotheim (bildet) i SINTEF. Foto: Thor Nielsen.

Skal vi gripe tak i noe, må vi vite hva vi skal gripe etter. Og vi må vite hvor langt unna det er. Da holder det ikke å se verden som et flatt bilde, heller ikke for roboter. De må se sine omgivelser som de er, i tre dimensjoner. SINTEF-forskere har utviklet et nytt 3D-kamera som gjør roboter i stand til å gjøre nettopp det, til å skjelne både avstand, form og farge.

– Gårsdagens roboter kunne stort sett brukes til enkle, gjentatte bevegelser etter et fast programmert mønster. Vi ønsker å bidra til utviklingen av litt mer intelligente roboter, som har større evne til å tilpasse seg omgivelsene, sier Øystein Skotheim, seniorforsker ved SINTEF IKT. Han har i mange år arbeidet med utvikling av maskinsyn, og jobbet med alt fra digital dokumentasjon av helleristninger til kvalitetskontroll av bildeler.

Det nye 3D-kameraet er utviklet som ledd i et stort strategisk internprosjekt i SINTEF.

Tilpasningsdyktige

Med bedre syn kan roboter lettere lære å tilpasse seg endringer. Det er nødvendig for å kunne kombinere skreddersøm med masseproduksjon og dermed gjøre norsk vareproduksjon mer konkurransedyktig.

–  Robotene skal kunne kjenne igjen et objekt, selv blant deler som ligger hulter til bulter, kunne plukke det opp og sette det sammen med andre. Eller de skal være i stand til å kvalitetskontrollere produkter som passerer på ei produksjonslinje. Bedre maskinsyn kan også åpne for roboter som kan samarbeide tett med mennesker, sier Skotheim.

Robotene er ei opplagt målgruppe for 3D-kameraet. Men Skotheim ser også for seg en rekke andre bruksområder.

–  Dette er snakk om generisk teknologi som har svært mange bruksområder. Produksjon av spesialtilpassede proteser, for eksempel. Eller av produktdesignere som vil lage 3D-modeller. Eller vi kan kombinere den med en 3D-printer. Da får vi en 3D kopimaskin.

Spillteknologi

3D-sensorer for industriell bruk har eksistert ei tid. Men det meste av teknologien er svært kostbar, og har langsomme sensorer. Den egner seg derfor dårlig for integrasjon på en bevegelig robot eller i ei produksjonslinje.

For tre-fire år siden utviklet Microsoft 3D-kameraet Kinect, beregnet på spillmarkedet. Det var naturlig nok i en helt annen prisklasse enn de industrielle løsningene.

–  Men produktet var selvsagt ikke tilpasset et industrielt miljø. Og viktigere: Det var på langt nær nøyaktig nok, med en feilmargin på flere millimeter. Det er altfor dårlig dersom roboten for eksempel skal brukes til kvalitetskontroll eller skal gripe noe, sier Skotheim.

Men han vedgår at spillkameraet har vært en kilde til inspirasjon.

Han henter den første prototypen av 3D-kameraet de har utviklet, skrudd sammen på SINTEFs eget verksted. Det er døpt SINTEF ShapeCrafter 3D, men ser ikke spesielt imponerende eller futuristisk ut. En blikkboks med to hull, som minner litt om rottefellene du finner i gamle bakgårder i Trondheim.

Nå er prototyp nummer to klar. Den er slank og svartlakkert.

Strukturert lys

Inni den nye boksen er det også lite som minner om en rottefelle. Bak de to hullene er det henholdsvis en prosjektør og et superraskt kamera som tar 150 bilder i sekundet, med en oppløsning på to megapiksler. Prosjektøren skyter

ut såkalt strukturert lys, eller mønstre av lysstriper. For å øke nøyaktigheten, sender den ut en sekvens av tolv ulike mønstre per sekund. Det gir tolv 3D-bilder i sekundet, med en dybdenøyaktighet på 0,1 millimeter.

Kinect-kameraet har til sammenligning ett fast mønster med infrarødt lys, og en dybdenøyaktighet på ca. 5-10 millimeter.

Men forskerne har mer å takke den pengesterke dataspillbransjen for. Moderne grafikkort er utviklet for å kunne tilby stadig mer avanserte dataspill. Skotheim og hans kolleger benytter seg av den enorme regnekapasiteten som

er tilgjengelige på slike grafikkort for å framstille 3D-bildene i sann tid.

Vises fram for verden

Skotheim er naturlig nok stolt over sin egen baby.

– Vi har laget et 3D-kamera som er raskt, nøyaktig og har lav kost. Jeg har ikke finregnet på prisen, men konkurrerende teknologi er vel fem til ti ganger så dyr, vurdert ut fra komponentene, sier han.

Nå skal SINTEF-kameraet presenteres for verden, på messa VISION 2014. Det er ei internasjonal messe for maskinsyn-teknologi i Stuttgart i Tyskland.

–  Vi håper selvsagt på stor interesse. Vi vurderer å kommersialisere kameraet i et spinoff-selskap fra SINTEF, litt avhengig av responsen vi får i Stuttgart, sier Skotheim.