Some (important) problems in Quantum Chemistry

Ulf Ekström Theoretical Chemistry Vrije Universiteit Amsterdam Wenner–Gren postdoc

January 26, 2010

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

What is Quantum Chemistry?

Apply quantum theory to problems in chemistry (Schrödinger, Slater, Löwdin ...)

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ = シのの⊙

- Optical properties of molecules (spectroscopy)
- What is a chemical bond?
- Determine molecular structure (optimization)
- Chemical reaction mechanisms and rates
- Dynamical properties of electrons and atoms

Structure determination

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Electron dynamics and Photochemistry

Photosystem II:

How can photosynthesis be so efficient? Quantum energy transport. 10^5 atoms..

What do we know?

 We know the relevant laws of physics, very very well (too well). Schrödinger equation with Hamiltonian

$$H = \sum_{k} -\frac{\nabla^2}{2m_k} + \sum_{i \neq k} \frac{q_i q_k}{r_{ik}}$$

• We can easily solve the problem for *one* particle:

$$H\Psi = \left[-\frac{\nabla^2}{2m} + V(r)\right]\Psi = E\Psi$$

Problem One

Space and Time

 $10^{1}-10^{5}$ particles Times $10^{-15}-10^{-12}$ s 10^{23} particles Times $10^{-3} - 10^{6}$ s

Brute force is impossible. We need clever connections between micro and macro.

Problem Two

Electron Correlation

- Quantum N-body problem
- Quantum calms down chaos, but
- Wave function complexity N^N

$$\Psi = \Psi(r_1, r_2, \dots r_N)$$

- Nevertheless, chemistry is full of concepts: Atoms, bonds, functional groups
- Suggests approximate theories!
- (Counter-example: Spin glasses)

Density Functional Theory (DFT)

- ► Kohn and {Hohenberg,Sham}: " $\Psi(r_1, r_2, ...)$ is too much"
- Observable properties come from the electron density $\rho(r)$!
- Proof that $E = E[\rho]$, but no closed form.

	WFT	DFT
Variable	$\Psi(r_1, r_2, \dots r_N)$	$\rho(r)$
Energy	Trivial	Complicated Unknown
		(kernel trick?)
Formal Scaling	N^N	Ν
Practical Scaling	$N^{6}-N^{8}$	$N^2 - N^3$
Nr atoms	1 - 20	100 - 1000

Approximate DFT consumes a majority of Swedish supercomputer time!

Density Functional Theory in practice

DFT Energy:

$$E_{\text{DFT}} = E_{\text{Kinetic}} + E_{\text{Electrostatic}} + \int_{\mathbb{R}^3} \epsilon_{XC}(\rho(r)) dV$$

Only approximate $\epsilon_{XC}(\rho)$ are known.

Leads to a one particle eigenvalue problem

$$H_{KS}\psi_i = \left[-\frac{\nabla^2}{2m} + V(r)\right]\psi_i = E_i\psi_i$$

Reduction from $\mathcal{O}(N^N)$ to $\mathcal{O}(N)$! But ϵ_{XC} is very difficult to work with.

・ロト・日本・モート モー うへの

Introducing a Basis

To solve

$$H_{KS}\psi_i = \left[-\frac{\nabla^2}{2m} + V(r)\right]\psi_i = E_i\psi_i$$

don't discretize in real space! Use a problem specific basis!

イロト イポト イヨト イヨト

Atom centered Gaussian Type Orbitals.

Generating functions

We can generate a basis

with derivatives!

$$\varphi_n(r) = \frac{\partial^n}{\partial R^n} e^{-\alpha(r-R)^2}$$

Perfect for AD! Here $e^{-\alpha(r-R)^2}$ is the *Generating Function*.

Generating functions are very powerful for combinatorics (look it up)