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Improving the Pole Relocating
Properties of Vector Fitting

Bjørn Gustavsen, Senior Member

Abstract—This paper describes a modification of the vector
fitting (VF) procedure for rational function approximation of
frequency-domain responses. The modification greatly improves
the ability of VF to relocate poles to better positions, thereby
improving its convergence performance and reducing the im-
portance of the initial pole set specification. This is achieved by
replacing the high-frequency asymptotic requirement of the VF
scaling function with a more relaxed condition. Calculated results
demonstrate a major improvement of performance when fitting
responses that are contaminated with noise. The procedure is also
shown to be advantageous for wideband modeling of transmission
lines, network equivalents, and transformers.

Index Terms—Macromodel, rational approximation, system
identification, vector fitting (VF).

I. INTRODUCTION

VECTOR FITTING (VF) [1], [2] has become a popular
tool for system identification of linear systems in the fre-

quency domain. The application has typically been the mod-
eling of devices and subsystems for the purpose of transient
analysis in power systems [3]–[5] and signal integrity charac-
terization of microwave systems [6], [7]. VF has also been used
for shielding analysis in electromagnetic-compatibility (EMC)
studies [8], Green’s functions representation [9], and optimal
sample calculations [10]. VF is essentially a robust reformu-
lation of the Sanathanan–Koerner iteration [11] using rational
basis functions (partial fractions) instead of polynomials and
pole relocation instead of weighting [12]. In addition, VF gives
a fitting with guaranteed stable poles, is directly applicable to
multiterminal systems, and a computer code is freely available
[13]. New formulations of VF have been developed that utilize
time-domain responses [14] and frequency derivatives [15].

VF is based on iteratively relocating an initial pole set to
better locations. When fitting the frequency-domain response of
a rational function using the correct order, the poles can often be
relocated to their final locations in a single step with near ma-
chine precision. However, in practical applications, one will fit
the response using a lower order function and it then turns out
that a few iterations are needed. The situation may deteriorate
when the frequency response contains a nonrational element
(for instance, noise), and the convergence of VF can, in some
cases, even stall. In this paper, it is shown that the convergence
properties can be greatly improved by making a small modifi-
cation to VF. The formulation of VF involves a scaling function
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which approaches unity at high frequencies. It is shown
that this high-frequency asymptotic condition can have a very
undesirable effect on the convergence. This problem is over-
come by replacing the asymptotic condition by a more relaxed
condition which only serves to produce a nontrivial solution for
the least-squares (LS) problem. Calculated results demonstrate
that the modification provides major improvements to the con-
vergence properties.

II. VECTOR FITTING

We start by reviewing the original formulation of VF. The ob-
jective is to approximate a frequency response , (generally,
a vector; hence, the designation VF) with a rational function

(1)

where the terms and are optional. As explained in [1], [2],
the VF first identifies the poles of by solving in the least-
squares sense, the linear problem

(2)

where

(3)

(4)

where is a scalar while is generally a vector, and
is a set of initial poles. (All poles and residues in (3) and (4) are
real or come in complex conjugate pairs while and are real).
It can then be shown [1] that the poles of must be equal to
the zeros of which can be calculated as the eigenvalues of
a matrix [16, p. 612]

(5)

In (5), is a diagonal matrix holding the initial poles ,
is a column vector of ones, and is a row vector holding the

residues .
This procedure can be applied in an iterative manner where

(2)–(5) are solved repeatedly with the new poles replacing
the previous poles . This pole relocation procedure usually
converges in 2–3 iterations. After the poles have been identified,
the residues of (1) are finally calculated by solving the corre-
sponding LS problem with known poles.
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Fig. 1. Rational approximation of f(s), No noise.

III. CONVERGENCE PROBLEM

The rationale of the pole identification of VF is that the solu-
tion of (2) will produce the poles of as the zeros of .
As explained in [1], this will indeed be the case when is
rational and the number of initial poles equals the number
of poles of .

However, when contains a nonrational contribution
(e.g., noise), or the number of initial poles is lower than the
order of , it will not be possible to satisfy (2) exactly. In
that situation, the solution of (2) will simply be the one that has
the smallest LS error. Since is multiplied with and the
right side of (2) is an unknown (rational) function, there is an
incentive to produce a which is small in magnitude since
this allows to reduce the magnitude of both the left and right
side of (2). At the same time, relocating poles a long distance
may require a with a large variation in magnitude. Since

is enforced to approach unity at high frequencies by (3),
a large dynamic variation in will generally lead to a large
magnitude of in some frequency interval(s) and, thus, an
increase of the LS error.

We will demonstrate this problem for a simple example. Con-
sider the fitting of the first-order rational function

(6)

with using an initial pole at 10 Hz: .
Fig. 1 shows and obtained by solving (2). As ex-

pected, gets a zero at 100 kHz (which is taken as the pole
of ). The fitting error of (2) is close to machine precision
( ). It is noted that has a very large dynamic
variation, approaching 10000 at low frequencies.

Fig. 2 shows the same result after adding 1% random noise
to . The new pole now appears at 109.6 Hz instead of at
100 kHz, and the dynamic variation in is very much re-
duced. In this case, it is not possible to obtain zero fitting error
of (2) due to the noise. If the pole had been relocated to the cor-
rect position (100 kHz) as in Fig. 1, the magnitude of would
have approached 10 000 at low frequencies which would have
resulted in a magnification of the deviation of (2) as compared

Fig. 2. Rational approximation of f(s). 1% noise. Original VF.

to the smaller in Fig. 2. Increasing the noise level further
reduces the dynamic variation in and, thus, the ability of
relocating the pole.

On the other hand, if we look at the example where has
a pole at 10 Hz and we use an initial pole at 100 kHz, then
becomes in the noiseless case very small at low frequencies (and
approaches unity at high frequencies). In the noisy case, the pole
becomes relocated to nearly its correct value in a single iteration
since the dynamic variation of now leads to a reduction of
the fitting error of (2). It can thus be concluded that the asymp-
totic requirement that approaches unity at high frequencies
represents an asymmetry of the LS problem (2) which can sig-
nificantly impair the pole relocation process.

IV. MODIFIED VF

A modification of the VF formulation (MVF) is shown in the
following which gives improved convergence by the removal
of the asymptotic requirement of the LS problem (2). This is
achieved by replacing (3) with

(7)

where is real.
In order to avoid the trivial (null) solution, we add one equa-

tion to the resulting LS problem

(8)

Equation (8) enforces that the sum of the real part of
over the given frequency samples equals some nonzero value,
without fixing any of the free variables. As MVF converges,

will approach unity at all frequencies ( , )
similarly as in the original VF formulation. Note that the proce-
dure will also work when using a different right side in (8) since
the resulting scaling of will cause an identical scaling of

in (2). From this, it follows that the criterion (8) does not
impose any constraint on the LS problem (2) other than pre-
venting from becoming zero.
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Fig. 3. Rational approximation of f(s). 1% noise. Modified VF.

Equation (8) should be weighted in relation to the size of
in the LS problem, for example

weight (9)

where is the specified weight for the fitting of .
Since during iterations does not approach unity at high

frequencies, (5) must be replaced with [16, p. 612]

(10)

The zeros calculation by (10) is only applicable with a non-
zero . If the absolute value of is found to be smaller than

, the solution is discarded and the LS problem is
solved again with a fixed value for in (7): .

We now demonstrate the new formulation for the same
problem as in Fig. 2 (Fig. 3). It is seen that the dynamic vari-
ation in is now much bigger and that approaches
a value that is much smaller than unity at high frequencies

. The pole was in a single step relocated from 10 Hz
to 70.9 kHz (target: 100 kHz), compared to only 109.6 Hz with
the original VF formulation (Fig. 2).

V. EXAMPLE: FREQUENCY-DEPENDENT NETWORK

EQUIVALENT (FDNE)

A. Case

The advantages of the MVF formulation will be demonstrated
by an example from FDNE identification (Fig. 4).

The 3 3 admittance matrix was calculated with respect
to the feeding bus between 50 Hz and 1 MHz and we will be
fitting one of the diagonal elements. Normally, the initial poles
for VF would be selected as complex conjugate pairs that are
linearly distributed over the full frequency range (i.e., between
50 Hz and 1 MHz). To better test the pole relocating properties,
we will instead distribute the initial poles (complex pairs) in the
lower range only, between 50 Hz and 500 kHz. This requires VF
to relocate many poles over long distances.

B. Fitting the Response

Fig. 5 shows the resulting fitting by the original VF when
using 50 poles and 15 iterations. It is seen that the two
resonance peaks around 950 kHz have not been captured. Fig. 6

Fig. 4. Three-phase distribution system. All lengths are in kilometers.

Fig. 5. Rational approximation. N = 50. Original VF (15 iterations).

Fig. 6. Rational approximation. N = 50. Modified VF (15 iterations).

shows that by using the modified VF, all dominant resonance
peaks are fitted.

Fig. 7 shows the root-mean-square (rms) error as a function
of the iteration number, when using VF and MVF. It is seen that
with 50 poles, MVF gives a much faster convergence and
higher accuracy for the end result. With 100, the improve-
ment is small. In the latter case, the fitting error is small with
both approaches and so the poles can in each iteration be relo-
cated in longer steps.

C. Effect of Noise

We now repeat the fitting after adding real-valued random
noise between 0.10 to the response. Fig. 8 shows the rms error
as a function of the iteration number, similarly as in Fig. 7. It is
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Fig. 7. RMS error as a function of iteration number.

Fig. 8. RMS error as a function of iteration number.

Fig. 9. Rational approximation by MVF (N = 50, 30 iterations).

seen that with the original VF formulation, the iterations hardly
reduce the fitting error at all, even with an order as high as 100.
With MVF, the rms error decreases with an iteration to a level
which is close to the rms value of the noise itself (0.0058). The
resulting approximation by MVF is compared to the original
response in Fig. 9 50).

A comparison was also made when the initial poles were
placed at high frequencies: complex conjugate pairs linearly
distributed between 500 kHz and 1 MHz. Again, VF stalled
whereas MVF gave a convergence even faster than in Fig. 8.

Fig. 10. Overhead line.

Fig. 11. Rational approximation of h(s): Deviation by VF and MVF (five
iterations N = 7).

VI. EXAMPLE: TRANSMISSION-LINE MODELING

In this example, we consider the fitting of the propagation
function of a 25-km single conductor overhead line over lossy
ground (Fig. 10).

For the configuration in Fig. 10, the series impedance was
calculated, taking into account the skin effect in the conductor
and ground, and the shunt admittance . The propagation
function was obtained as

(11)

Finally, the lossless time delay was removed from by mul-
tiplying (11) with the factor

(12)

where is the line length and is the speed of light.
A rational approximation was calculated by fitting in the

frequency range 1 Hz–1 MHz using a seventh-order approx-
imation. The initial poles were taken as real and logarithmi-
cally spaced over the fitting range, which is the “recommended”
choice for transmission-line modeling. Parameters and in (1)
were specified to be zero. Fig. 11 shows the magnitude function
of and the magnitude of the complex deviation from the
rational approximation, after five iterations with VF and MVF,
respectively. It is seen that MVF gives a significantly smaller
deviation (note the logarithmic ordinate axis).

Fig. 12 shows the rms error as a function of the iteration
number. It can be seen that MVF gives a much faster conver-
gence, although the final result (ten iterations) is, in this case,
quite similar. A small increase of the fitting error is observed
with MVF after iteration 4.
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Fig. 12. RMS error as a function of iteration number.

Fig. 13. Fitting by VF (N = 40, 15 iterations).

VII. EXAMPLE: TRANSFORMER MODELING

In this example, we consider the modeling of a two-winding
power transformer from measured terminal responses. The
6 6 admittance matrix was measured from 50 Hz to
1 MHz [4]. A state-space model is to be established by fitting

by its columns [16].
When including low frequencies in the measurements, it be-

comes difficult to specify the initial poles to be used by VF. The
smooth behavior at low frequencies suggests to use logarithmi-
cally spaced poles while the resonant behavior at high frequen-
cies suggests to use linearly spaced poles. In practice, one can
get away from this difficulty by using a combination of logarith-
mically and linearly spaced poles, but this is a complication.

Fortunately, with MVF, the significance of the selected initial
poles is greatly reduced. Fig. 13 shows the fitting of the first
column of obtained by VF after 15 iterations when using as
initial poles 20 complex pairs that are logarithmically spaced
between 50 Hz and 1 MHz. (Inverse LS weighting by [4, eq.
(18)] was used in order to improve the accuracy where elements
are small). However, a closer look at Fig. 13 reveals that the
quality of the fitting is significantly poorer at high frequencies
( 100 kHz) than at low frequencies, which is a consequence of
the high concentration of initial poles at low frequencies.

The calculations were repeated when using MVF. The ex-
panded view in Fig. 14 makes a direct comparison between the

Fig. 14. Expanded view: VF and MVF at high frequencies.

result by the two approaches at high frequencies. It is clearly
seen that MVF gives a more accurate result than VF, which is
a direct result of the better pole relocating properties of MVF.
The accuracy at lower frequencies appeared similar for the two
approaches.

VIII. DISCUSSION

The original formulation of VF involves a scaling function
which is enforced to approach unity at infinite frequency.

It was shown in Section III that this asymptotic requirement re-
duces the ability to relocate initial poles to better positions be-
cause the asymptotic requirement combined with the required
large dynamic variation of can result in an increase of the
LS fitting error of (2). This situation was greatly improved when
replacing the asymptotic requirement by a more relaxed crite-
rion (Section IV) which requires the sum of the real part of
over the frequency samples to be nonzero. This new criterion
allows to freely vary while avoiding the trivial (null) solu-
tion. A further discussion on the convergence properties of VF
versus MVF can be found in [17]. It is shown that VF is biased
to relocating the poles towards low frequencies due to a down-
scaling phenomenon, in particular when fitting noisy responses
and when using too low orders. As a result, VF will, in general,
produce a less accurate end result than MVF.

The MVF formulation gives one additional row and one ad-
ditional column in the LS equation for the solution of (2) but the
additional computation time is negligible.

The modified VF (MVF) was in Section V applied to an ex-
ample with the initial poles placed in the lower frequency band
and with added noise. In this case, the convergence of VF was
very poor while the performance of MVF remained acceptable.
One could argue that this is a contrived example but it serves
well in demonstrating the convergence problems with VF and
to show the improvement achieved by MVF.

In Section VI, the MVF was applied to transmission-line
modeling by the method of characteristics where one of the
tasks is to model the propagation function. Here, MVF was
shown to converge much faster than VF when using a “recom-
mended” choice of initial poles. One might think that this result
is insignificant because low-order fitting of scalar functions is
in any case very fast. However, some transmission-line models
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rely on optimizing the time delay used for compensation
of (11). This is the case for the phase-domain transmission
line/cable models available in EMTDC and EMTP-RV, see also
[18]. Such procedures result in a large number of calls to the
fitting procedure, thus making the faster convergence of MVF
advantageous.

In Section VII, VF was applied to columnwise fitting of mea-
sured transformer responses ( -parameters). In this case, it was
difficult to specify a good set of initial poles and the slow con-
vergence of VF gave a somewhat inaccurate result at high fre-
quencies, even after 15 iterations. A significantly better result
was achieved by MVF. It is remarked that the behavior of trans-
former models can be highly sensitive to small perturbations
of the model parameters [4], thus making accurate fitting very
important.

Finally, it is remarked that an alternative approach for im-
proving the VF convergence was recently introduced in [19] by
a "hard relocating" procedure

IX. CONCLUSION

This paper has presented a modification of VF by replacing
the high-frequency asymptotic constraint of the scaling func-
tion with a milder summation requirement. This replace-
ment greatly improves the ability of VF to relocate poles to
better positions, thus reducing the significance of the choice of
initial poles. The improvement is particularly significant when
highly accurate approximations are impossible; for instance,
when fitting responses that are contaminated with noise. Calcu-
lated results have also demonstrated significant advantages of
the modified VF when applied to transmission-line modeling
and wideband transformer modeling. The modification to the
VF algorithm is straightforward and does not increase the com-
putational cost. A Matlab implementation is available in [13].
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