Low-temperature CO₂ removal from natural gas

2nd Trondheim Gas Technology Conference November 3rd 2011 <u>David Berstad</u>, Simon Roussanaly, Petter Nekså, Rahul Anantharaman SINTEF Energy Research

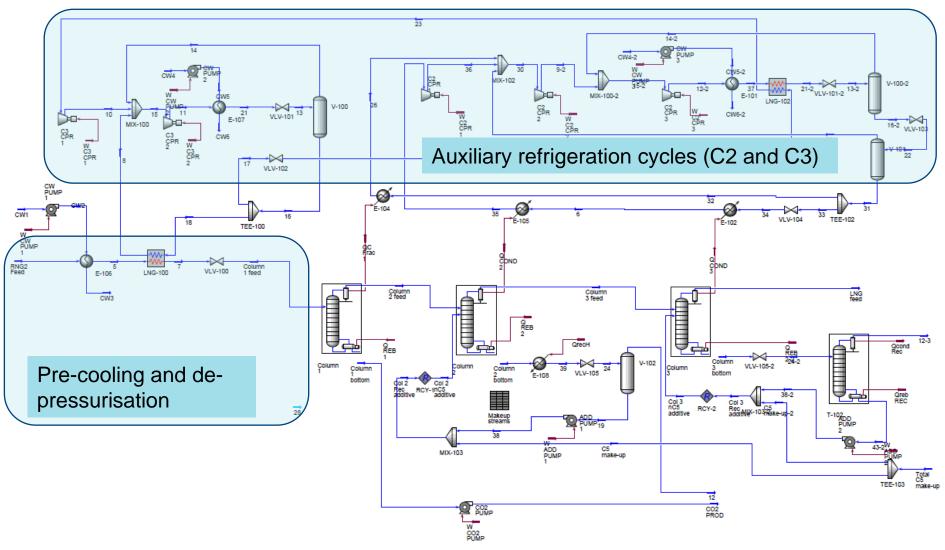
Presentation outline

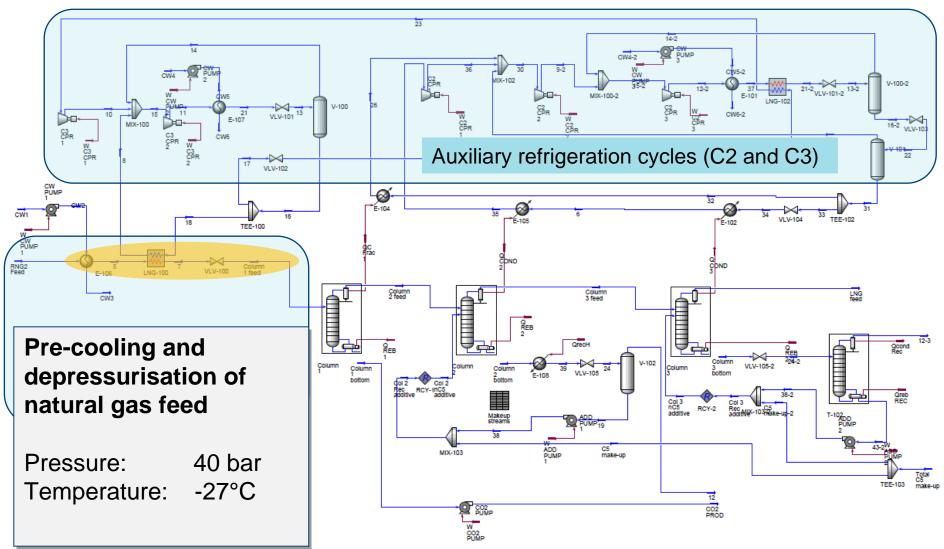
- Part 1: Walkthrough of low-temperature CO₂ removal process from natural gas with high CO₂ content (D. Berstad)
 - Introduction
 - Process flow diagram
 - Boundary conditions
- Part 2: Key performance parameters (S. Roussanaly)
 - Energy Key Performance Indices (KPI)
 - Preliminary volume and weight estimates

Background

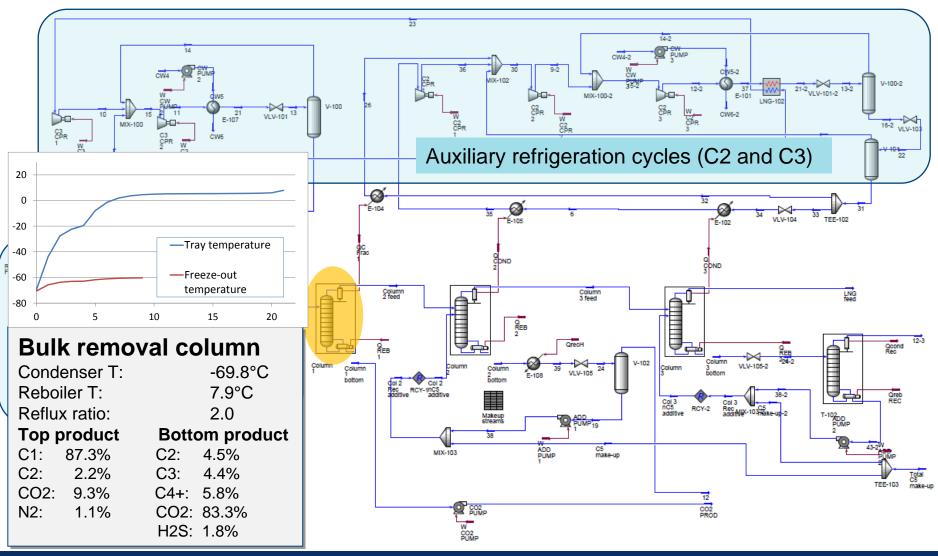
- Low-temperature CO₂ removal from hydrocarbons is not a new technology
- The Ryan/Holmes process was patented in the early 1980s
- In use for EOR on sites in the United States. Examples:
 - Dry Trail Gas Plant, Oklahoma (1996)
 - Chevron Buckeye CO₂ plant, New Mexico (1998)
- Extractive distillation of hydrocarbons and CO₂. Number of columns and sequence depending on product specifications
 - CO₂
 - Natural gas
 - NGL
 - etc.

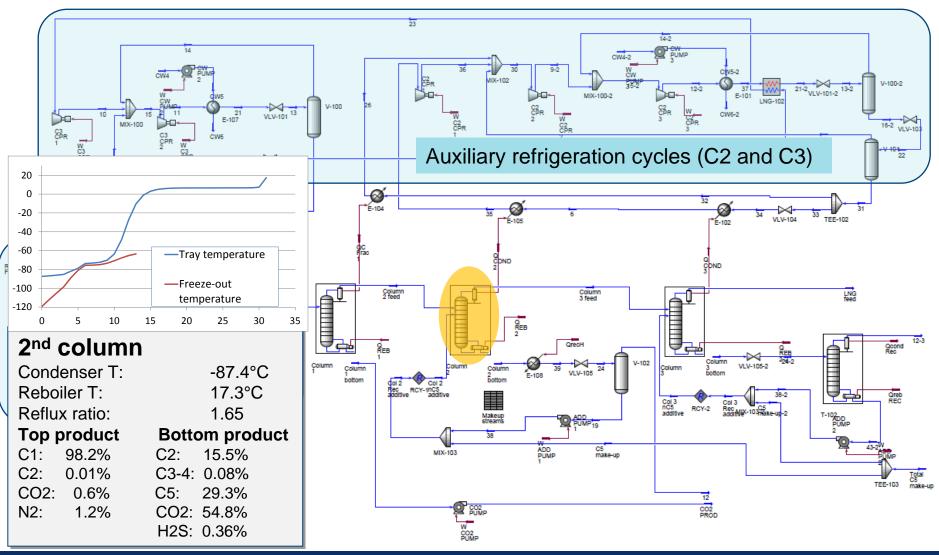
Background

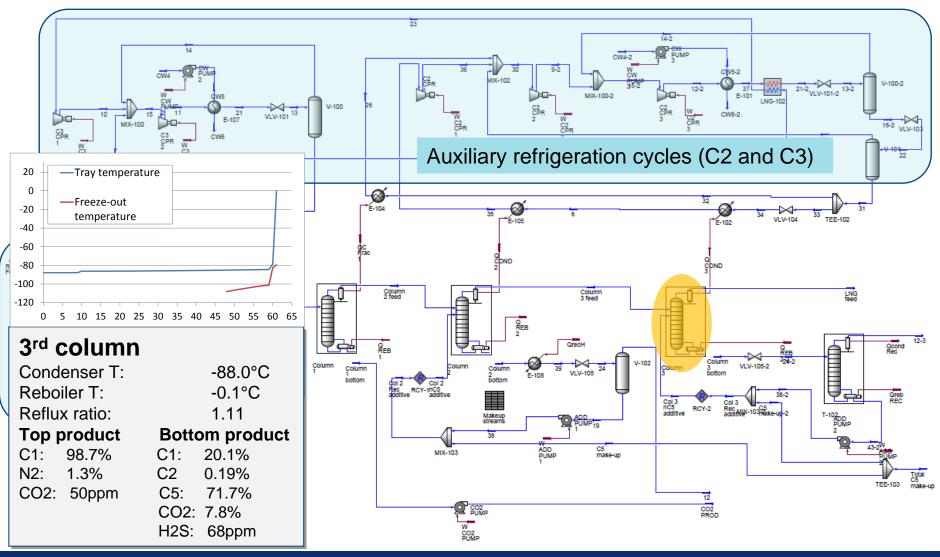

- Low-temperature CO₂ removal from natural gas usually requires regenerative circulation of heavier hydrocarbons in distillation columns
 - CO₂ freezing point depression allowing low-temperature operation (< -80°C)
 - Breaking azeotropes to get higher product purity (for instance for ethane/CO₂ fractionation)
- From CCS experience, low-temperature CO₂ separation/capture processes benefit from high initial CO₂ concentration
- Research need: estimate energy consumption, size and weight for Ryan/Holmes-type of CO₂ removal process for natural gas and benchmarking with baseline technologies

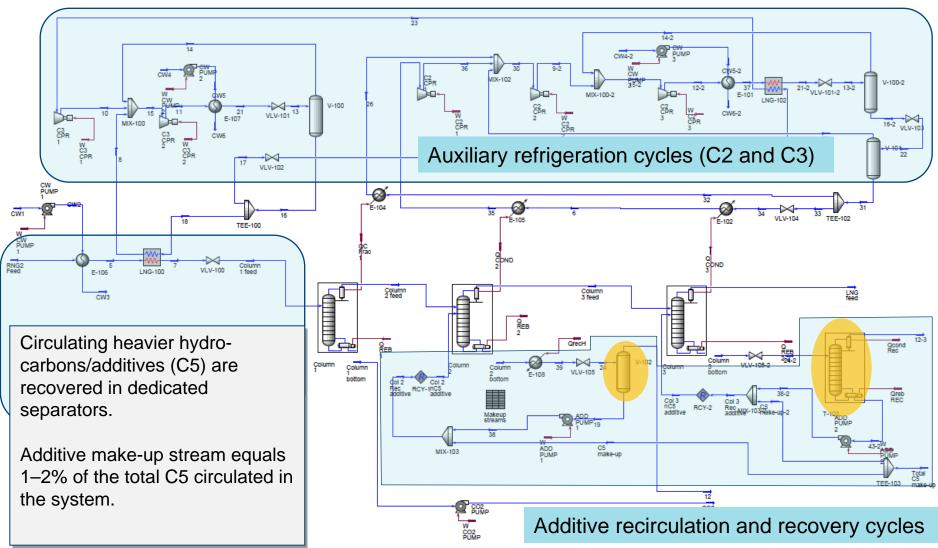

Boundary conditions

		Natural gas feed	CO ₂ product	LNG feed	Pipeline gas
Temperature	°C	40			
Pressure	bar	70	110		
Flowrate	Nm³/hr	590			
	MSm ³ /day	15			
Composition					
C1	vol%	39.3			
C2	vol%	3.5			
C3	vol%	2.4			
C4	vol%	1.8			
C5	vol%	1.2			
C6+	vol%	0.2			
	vol%	50	70–95	50 ppm	2.5
Sulphur	vol%	1			
Organic					
suplhides	vol%	0.02			
Nitrogen	vol%	0.5		< 1	
BTEX	vol%	0.1			



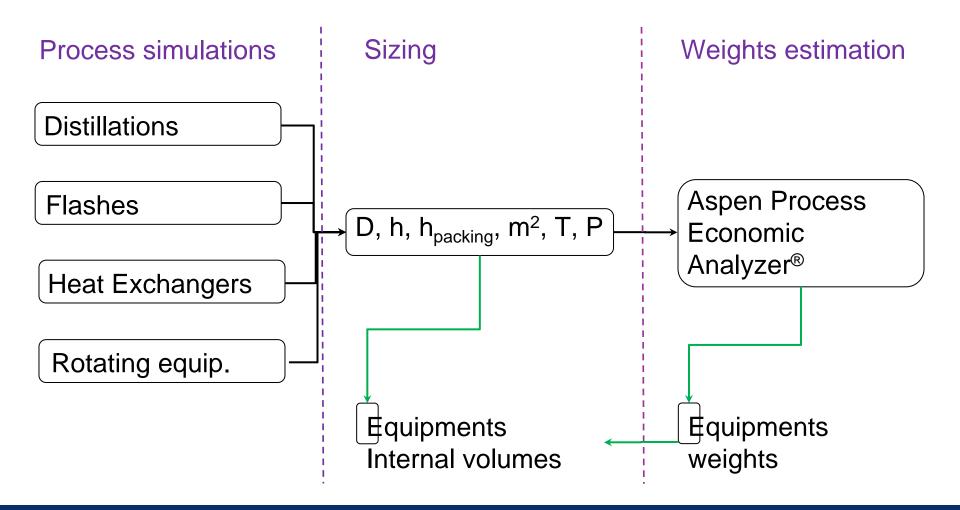






Attainment of product specifications for LNGquality NG (most challenging specifications)

		Unit	Spec.	Current results	Comment
product LNG feed	Inert concentration	mol-%	< 1	1.27	All nitrogen in raw natural gas stream inevitably follows methane due to lower boiling point. May be flashed off in the LNG train.
	CO ₂ concentration	ppmv	50	50	Obtained in simulation model with 60 theoretical stages in 3 rd distillation column.
	Sulphur concentration	mg/Nm ³	≤5	0	
	CO ₂ concentration	mol-%	70–95	83.3	Higher concentration will be obtained if CO ₂ and heavier hydrocarbons are further separated.
CO ₂	CO ₂ pressure	bar	110	110	Liquid pumping from 40 to 110 bar.



Energetic KPIs

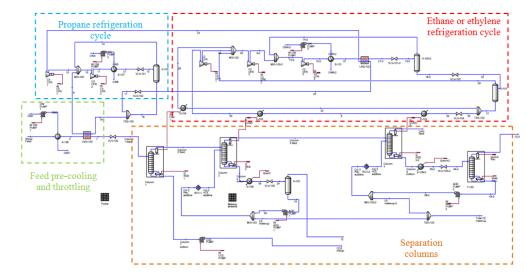
	CO ₂ Recovery %	Methane Slip %	Thermal efficiency %	System efficiency %
Pipe Spec	88	0.1	99	97
LNG Spec	92	5.9	95	93

KPIs: Volume and weight

KPIs: Volume and weight

LNG Spec (50 ppm CO₂)

Volume


- Primarily due to flashes
- Secondarily due to condensers/reboilers

•Heat exchangers area

- Mainly due to distillation
- Mainly located in separation

•Weight

- Primarily due to condensers/reboilers
- Secondarily due to compressors
- Equal proportions between separation and refrigeration subsystems

Area	Feed	Sep	C3R	C4R	Global
Internals volume (m ³)	8	326	459	285	1,079
Distillation columns		28%			9%
Condensers/Reboilers		65%			20%
Flashes		6%	82%	72%	56%
Heat exchangers	100%		5%	17%	8%
Rotating equipment		1%	12%	11%	8%
Heat exchangers area (m ²)	789	15,919	2,464	4,826	23,998
Reboilers		48%			32%
Condensers		51%			34%
Heat exchangers	100%	1%	100%	100%	34%
Equipment weights (t)	25	622	326	266	1,238
Distillation columns		25%			12%
Condensers/Reboilers		73%			37%
Flashes			12%	14%	6%
Heat exchangers	95%	1%	19%	38%	15%
Compressors	5%	1%	69%	47%	29%

Concluding remarks

- CO₂ removal to a concentration of 50 ppm for LNG feed seems obtainable, as is 2.5% for pipeline specification
- Three distillation columns have been assumed for LNG case, two columns sufficient for pipeline specification
- Circulation of heavier hydrocarbons/inhibitors is required for freezing point depression. Further verification of freezeout temperature is needed
- Specific power consumption estimated to about 0.5 MJ/kg CO₂ (LNG spec.)
- Further separation of CO₂/HHC will have benefits:
 - Increased CO₂ concentration
 - Recovery of valuable sales products
 - Eliminate need for inhibitor make-up

Concluding remarks

- Direct comparison with solvent-based technologies is not a straightforward task
 - Low-temperature CO₂ removal is an integral part of an LNG train
 - Methane leaves process at -88°C
 - Dehydration carried out upstream of the CO₂ removal process
- Preliminary sizing and weighting results indicate
 - Competitive weight and size as well as energy requirement

Acknowledgements

This publication is based on the results from the research project "A Green Sea", performed under the Petromaks program. The authors acknowledge the partners: Statoil, Total, Gassco, Petrobras and the Research Council of Norway (200455/S60) for their support.

