

Optimization-based decision support within healthcare and transportation

eVITA Scientific Meeting Geilo, Norway January 28, 2010 Geir Hasle, SINTEF ICT

Acknowledgment

- Henrik Andersson, NTNU
- Marielle Christiansen, NTNU
- Arild Hoff, Høgskolen i Molde
- Arne Løkketangen, Høgskolen i Molde
- Tomas Nordlander, SINTEF
- Atle Riise, SINTEF
- Martin Stølevik, SINTEF

Outline

- Motivation relevance to practice and eVita
- Discrete optimization
- Challenges
- Summary and conclusion

Messages

- Discrete optimization problems
 - central to better performance
 - hard
- Strong need for more powerful methods
- Several challenges and promising research avenues
- Short road from theoretical to practical improvements
- Important part of eScience

Healthcare

- Need for better coordination
 - Increasing demands
 - Patient focus: high quality treatment
 - Resource focus: Need to curb cost increase
- Design, planning
 - Crucial to performance
 - Too complex for manual decision-making
 - Time consuming and repetitive
- Need for decision support systems
 - Automated planning
 - Objectives and constraints
 - Computationally complex Discrete Optimization Problems
- Need for models and effective solution algorithms

Coordination challenges in healthcare

Vision: An optimized healthcare system

Two cases in point

- Nurse rostering
 - Solved manually by experienced nurses
 - Timetabling problem
 - Computationally hard discrete optimization problem
- Surgery scheduling
 - Solved manually by experienced nurses
 - Long-term, mid-term, short term
 - Critical resources: operation theaters, surgeons
 - Variants of the Job-Shop Scheduling Problem
 - Computationally hard discrete optimization problem

Discrete optimization (1)

- Central to real-life problems across many application areas
 - routing
 - scheduling
 - planning
 - design
 - resources, time, activities
 - economy, environmental effects
- Healthcare, transportation, manufacturing, oil & gas, finance, sports
- Computationally hard
- Physics, chemistry, biology, electronics, statistics, geometry, ...

Discrete optimization (2)

- Two basic types of method
- Exact, mathematical programming
 - guarantees to find the optimal solution
 - response time problematic
 - may be interrupted for feasible solution
 - low quality, but upper bound on error
- Approximative (typically heuristics)
 - greedy
 - local search
 - metaheuristics
 - good solutions in limited time
 - no useful error bound

"The world record" for G-n262-k25: 5685 vs. 6119 (SINTEF 2003)

Discrete optimization – main challenges

- More powerful methods exact and approximative
 - better solutions in shorter time
 - new applications
- Combining the strengths of exact methods and heuristics
- Decomposition and aggregation
- Multi-level solvers, different levels of abstraction
- Stochastic models
- Parallelization
 - fine grained, e.g. to exploit the architecture of modern commodity computers
 - multi-core and heterogeneous computing
 - coarse grained, e.g. cooperative hybrid solvers, multi-level solvers
- Self-adaptive methods
- Better benchmarks

DOMinant

Discrete Optimization Methods
In Maritime and Road-based Transportation

Norwegian University of Science and Technology (NTNU),
Molde University College (HiM)
and SINTEF ICT

Main objective

- More efficient methods for rich, industrial variants of computationally hard discrete optimization problems in maritime and road-based transportation
- Two types of problems
 - Inventory routing
 - Fleet composition

Classical VRP(TW)

- Deliveries from a single depot
- Given customer demand
- Homogeneous fleet
- Sizes/capacities
- Minimize total transportation cost
- (Single time windows)

More than 1000 references

VRP with Capacity Constraints (CVRP)

- Graph G=(N,A)
 - *N*={0,...,n+1} *Nodes*
 - 0 Depot, i≠0 Customers
 - $A=\{(i,j): i,j\in N\}$ Arcs
 - $c_{ii} > 0$ Transportation Costs
- Demand d, for each Customer i
- V set of identical Vehicles each with Capacity q
- Goal
 - Design a set of Routes that start and finish at the Depot with minimal Cost.
 - Each *Customer* to be visited only once (no order splitting)
 - Total *Demand* for all *Customers* not to exceed *Capacity*
 - Cost: weighted sum of Driving Cost and # Routes
- DVRP distance/time constraint on each route
- VRPTW VRP with time windows
- Pickup and Delivery
 - Backhaul VRPB(TW)
 - Pickup and delivery VRPPD(TW)
 - PDP

A mathematical model for VRPTW

(Network Flow Formulation)

minimize
$$\sum_{k \in V} \sum_{(i,j) \in A} c_{ij} x_{ij}^k$$

(1) minimize cost

subject to:

$$\sum_{k \in V} \sum_{j \in N} x_{ij}^k = 1, \qquad \forall i \in C$$

$$\forall i \in C$$

$$\sum_{i \in C} d_i \sum_{j \in N} x_{ij}^k \le q, \qquad \forall k \in V$$

$$\forall k \in V$$

$$\sum_{j\in N} x_{0j}^k = 1,$$

$$\forall k \in V$$

$$\sum_{i \in N} x_{ih}^k - \sum_{j \in N} x_{hj}^k = 0, \quad \forall h \in C, \quad \forall k \in V$$

$$\forall h \in C, \ \forall k \in V$$

Variables

$$\sum_{i\in N} x_{i,n+1}^k = 1,$$

$$\forall k \in V$$

(7)

-arrival time

$$x_{ij}^{k}(s_{i}^{k}+t_{ij}-s_{j}^{k})\leq 0,$$

$$x_{ij}^k(s_i^k + t_{ij} - s_j^k) \le 0, \quad \forall (i, j) \in A, \ \forall k \in V$$

Arc Decision variables

$$a_i \leq s_i^k \leq b_i$$

$$x_{ii}^k \in \{0,1\},$$

$$\forall i \in N, \ \forall k \in V$$

$$\forall (i,j) \in A, \ \forall k \in V$$

VRP Research in general

- Since 1959
- Much harder than the TSP
- Thousands of papers
- More popular than ever
- Important vehicle for development of generic methods
- One of the great successes of Operations Research
- Industry of tools for transportation optimization
- Quick dissemination and exploitation of scientific advances
- The road is short from scientific to practical improvements

Inventory routing problem (IRP)

- Inventories with capacities
- Production/consumption rate
- Heterogeneous fleet
- Design routes that minimize the transportation cost without interrupting production and consumption of the products
- No pickup and delivery pairs
- Quantity loaded unknown
- Number of visits unknown

Inventory level, production

- Production port
- Consumption port
- Product 1
- Product 2

Practical applications - IRP

- Both road-based and maritime transportation
 - One/multiple products
 - VRP and PDP structure (with and without depot)
 - Variable production/consumption rate
 - Stochastic demand/production
 - Combining inventory routing with other planning aspects (production, allocation,..)
- Industry cases
 - Ammonia Yara
 - LNG Suez Energy International, StatoilHydro, RasGas, QuatarGas
 - Cement Norcem
 - Fuel oil Hydro Texaco
 - Animal fodder Landbruksdistribusjon, Felleskjøpet

- Daily charter rate
- Shipload of LNG worth
- Purchase price LNG tanker USD 150,000,000

USD 60,000

USD 10,000,000

Fleet composition

- VRP, PDP (or IRP) structure
- Variable heterogeneous vehicle fleet
 - capacities
 - acquisition costs....
- Objective: find a fleet composition and a corresponding routing plan that minimizes the sum of routing and vehicle acquisition/depreciation/ rental costs

Practical applications – Fleet composition

- Both road-based and maritime transportation
 - Strategic and tactical fleet dimensioning
 - One/multiple products
 - VRP and PDP structure (with and without depot)
 - Stochastic demand and price/cost structure
- Industry cases
 - Cars Høegh Autoliners
 - LNG Statoil
 - Dairy products Tine Midt-Norge
 - Newspapers Aftenposten, Dagbladet
 - Ice cream Henning Olsen, Diplom is
 - local distribution Linjegods
 - Chemicals Broström Tankes (now Maersk)
 - Cement Norcem
 - Animals Norsk Kjøtt, Gilde

Research approach

- Mathematical formulations for industrially relevant variants of inventory routing and fleet composition problems
- Analysis
- Solution methods
 - Exact methods (Column generation and Lagrangian relaxation)
 - Bounds, relaxations and reductions
 - Approximative methods (heuristic column generation, metaheuristics)
 - Hybrid methods (combining exact methods and metaheuristics)
- Prototype solvers
- Computational experiments on instances from literature and industry

Relevance to eScience

- Mathematics
 - mathematical modelling
 - polyhedral theory
 - mathematical programming methods
- Computing science, informatics
 - conceptual modelling
 - search methods
 - decision support systems
- Applications
- Numerics
- High-performance computing
 - computational experiments
 - automated code generation for metaheuristics

Summary

- Challenges in industry and the public sector
 - coordination
 - activities, time, resources
 - planning, design
- Computationally hard DOPs often at the core
- There is a strong need for more powerful methods
- Many challenges, promising research avenues
- Application oriented and scientifically challenging
- eScience
- Norway has a strong position
 - good scientists
 - good access to application cases
 - good infrastructure
 - good funding opportunities
- The road is short from scientific to practical improvements

Conclusion

Applied research in discrete optimization deserves further funding in eVITA

Optimization-based decision support within healthcare and transportation

eVITA Scientific Meeting Geilo, Norway January 28, 2010 Geir Hasle, SINTEF ICT

