

Hydromechanical Behaviour of the Aquifer and Caprock under High Pressure Injection

Victor Vilarrasa^{1,2}, Sebastia Olivella², Jesus Carrera^{1,3} (victor.vilarrasa@upc.edu)

 ¹ Hydrogeology Group (GHS), Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
 ² Hydrogeology Group (GHS), Dept Geotechnical Engineering and Geosciences, Technical University of Catalonia (UPC-BarcelonaTech), Barcelona, Spain
 ³ Energy City Foundation (CIUDEN), Spanish Government CO₂ Geological Storage Programme, Ponferrada, Spain

15th June 2011, 6th Trondheim CCS Conference

HYDROMECHANICAL EFFECTS

Uplift of 5 mm/yr in In Salah (Rutqvist *et al.,* 2010, IJGGC)

Microseismicity due to CO₂ leakage around wells at Otsego County, Michigan Basin, USA (Bohnhoff *et al.*, 2010, IJGGC)

HYDROMECHANICAL EFFECTS

Plastic strain in the caprock as a result of CO₂ injection (Vilarrasa *et al.*, 2011, Energy Procedia)

Trees killed by CO₂ leakage from a natural source in Mammoth Mountains, USA (Farrar *et al.*, 1995, Nature)

Fluid pressure builds up during injection

OBJECTIVE

Hydromechanical (HM) coupled effects need a better understanding. The development of a HM characterization technique is required to ensure a safe CO_2 injection at industrial scale

A HM test will be performed in the Hontomin pilot test site (Spain)

de

GOVERNING EQUATIONS Mass conservation equation $\phi \beta \frac{\partial p_f}{\partial t} + \frac{d}{dt} (\nabla \cdot \mathbf{u}) + \nabla \cdot \mathbf{q} = 0$ Momentum balance $\nabla \cdot \mathbf{\sigma} + \mathbf{b} = \mathbf{0}$

Hooke's law (linear elasticity)

$$\boldsymbol{\sigma}' = K \varepsilon_{\nu} \mathbf{I} + 2G \left(\boldsymbol{\varepsilon} - \frac{\varepsilon_{\nu}}{3} \mathbf{I} \right)$$

Hydromechanical equation

Darcy's law

$$\mathbf{q} = -\frac{k}{\mu} (\nabla p_f + \rho g \nabla z)$$

Effective stress

Effective stress

$$\mathbf{\sigma}' = \mathbf{\sigma} + p_f \mathbf{I}$$

Compatibility

$$\boldsymbol{\varepsilon} = \frac{1}{2} \Big(\nabla \mathbf{u} + \big(\nabla \mathbf{u} \big)^T \Big)$$

DIMENSIONAL ANALYSIS Dimensionaless variables

$$t_{D} = \frac{t}{t_{c}}, h_{D} = \frac{h}{h_{c}}, \mathbf{u}_{D} = \frac{\mathbf{u}}{u_{c}}, r_{D} = \frac{r}{L}, \kappa_{D} = \frac{\kappa}{\kappa_{c}}, \phi_{D} = \frac{\phi}{\phi_{c}}, \kappa_{D} = \frac{K(1 + \nu_{c})}{K_{c}(1 + \nu)}, G_{D} = \frac{G}{G_{c}}$$

Characteristic variables

$$t_{c} = \frac{L^{2}S_{s}}{\kappa_{c}}, h_{c} = \frac{Q}{2\pi b_{aq}\kappa_{c}}, u_{c} = h_{c}S_{s}b_{aq}, \kappa_{c} = \kappa_{aq}, \phi_{c} = \phi_{aq}, K_{c} = K_{aq}, G_{c} = G_{aq}$$

Dimensionless hydromechanical equation

$$N_m N_g G_D \frac{\partial}{\partial t_D} \nabla_D^2 \mathbf{u}_D + \left(N_M N_m N_g K_D + \frac{N_g}{\phi_D} \right) \frac{\partial}{\partial t_D} \nabla_D (\nabla_D \cdot \mathbf{u}_D) - \frac{1}{\phi_D} \nabla_D (\nabla_D \cdot (\kappa_D \nabla_D h_D)) = \mathbf{0}$$

Dimensionless numbers

$$N_m = G_c \phi_c \beta,$$
 $N_M = \frac{3K_c}{2G_c(1+v_c)} = \frac{1}{1-2v_c},$ $N_g = \frac{b_{aq}}{L} = 1$

HYDROMECHANICAL BEHAVIOUR

HM response of the caprock

idea HYDROMECHANICAL BEHAVIOUR

13 $t_D=1$ $z_{D} = 13$ 13.5 Caprock $z_0 = 15$ Aquifer 14 $z_{D} = 16$ 0 N r_D=1 $r_D = 5$ 14,5 $r_{D} = 0.5$ _D=0 15 r_D=0.25 r_D=2.5 15,5 16 -0,00002 0 0,00002 0,00006 0,00008 0,0001 0,00004 Horizontal Strain

STRAINS

The injected water expands the pore volume, lifting the aquifer. The caprock, which is pushed upwards, mitigates the uplift. Relative displacements on the aquifer-caprock contact may occur in the presence of a rich-clay layer with low friction angle.

SENSITIVITY ANALYSIS

AQUIFER PROPERTIES The greater the aquifer rigidity, the lower the overpressure in the aquifer.

Overpressure and vertical displacement are a function of the volumetric term (vertical displacement at the top of the caprock also depends on Poisson ratio).

SENSITIVITY ANALYSIS

PRESSURE EVOLUTION

SENSITIVITY ANALYSIS

CAPROCK PROPERTIES

Changes in the caprock properties and thickness have little effect on overpressure.

The effect on vertical displacement is greater.

Soft thick caprocks can yield subsidence

INDUCED MICROSEISMICITY

MOBILIZED FRICTION ANGLE IN THE AQUIFER

 $\alpha = \pi/4 - \phi'_{mob}/2$

The most unfavorable fractures are those with an angle of 30°

INDUCED Grup d'Hidrologia Subterrània MICROSEISMICITY UNIVERSITAT POLITÈCNICA DE CATALUNYA

MOBILIZED FRICTION ANGLE IN THE CAPROCK

those with an angle of 35°

- We have developed **dimensionless curves for charactering rock properties**, which can be used for long term CO₂ storage simulations.
- Measuring **pressure changes in the caprock** gives valuable information on HM processes.
- **Mechanical properties** of aquifer have more effect on **overpressure and displacements** than those of the caprock.
- Thick soft caprocks can yield **subsidence**.

- The **onset of microseismicity** in the caprock limits the maximum sustainable injection pressure.

FPU Program

Fundación Ciudad de la Energía