Maps for the Evaluation of Membrane Performances in CO₂ Post-Combustion Capture

A. Brunetti, <u>G. Chiappetta</u>, A. Pudia, E. Drioli, G. Barbieri

Institute for Membrane Technology, ITM–CNR 87036 Rende CS, Italy

Department of Chemical Engineering and Materials, The University of Calabria 87036 Rende CS, Italy

Trondheim CCS Conference – CO₂ Capture, Transport and Storage Trondheim, June14 -16, 2011

www.cnr.it

Summary

Introduction

 Elaboration of Global Maps by 1-D theoretical model and comparison with literature data
Conclusions

 CO_2 (concentration of ca. 5–25%) has to be separated, at relatively low temperature and atmospheric pressure, from the flue gas emitted after the combustion of fossil fuels.

This possibility shows the essential advantage of being compatible to a retrofit strategy (i.e. an already existing installation can be, in principle, subject to this type of adaptation).

Favre E., Journal of Membrane Science, 294 (2007) 645 www.cnr.it Consiglio Nazionale delle Ricerche

Traditional operations for CO₂ Separation

Use monoethanolammine (MEA) to dissolve CO_2 . The CO_2 -rich solution (i.e >90%) is pumped to a regeneration column, where the CO_2 is stripped from the solution and the solvent recycled.

High amount of energy is consumed for the regeneration of solvent. Solvent is degraded in oxidising environment of flue gas

After the removal of all of the other gases and particulates a mixture of CO_2 (i.e. at high concentration) and N_2 is fed into a cryogenic chamber where liquid CO_2 can be separated by cooling and condensation whereas N_2 remains as a gas. High amount of energy is consumed in refrigeration process. Pre - treatment stages for the water removal are necessary to avoid blockages in the system

 CO_2 is adsorbed onto the sorbent particles. In PSA, the gas mixture flows through a packed bed until the desired gas concentration approaches equilibrium. A vacuum can then be applied to liberate the CO_2 from the sorbent.

High pressure is required.

Aaron D., Tsouris C., Separation Science & Technology, 40, (2005), 321

Membrane Gas Separation

www.cnr.it

Comparison among the different separation technologies

ABSORPTION		ADSORPTION		CRYOGENIC		MEMBRANE GS	
Advantages	Drawbacks	Advantages	Drawbacks	Advantages	Drawbacks	Advantages	Drawbacks
Recycling of the sorbent	Corrosion of carbon steel facilities due to oxygen	Recycling of the sorbent	Not able to handle large concentrations of CO ₂	No requirement of chemical absorbents	Several costly steps required to remove all water traces	No moving parts and modularity	Current low selectivity of membrane materials
Non- dependence on human operators	Degradation of the solvent due to SO _x and NO _x	High operating flexibility	Adsorption also of gases smaller than CO ₂	Atmospheric pressures	Increasing layer of solid CO ₂ onto heat exchanger surfaces	Istantaneous response to variations	Limitation on the suitable operating temperature for polymeric membranes
Consolidated know how of the technology	Energetic load for solvent recovery		Slow process		Complex control systems	Easy of expansion	

www.cnr.it

A Simple Tool for a preliminary analysis in one-stage membrane system

Feed/Retentate side

$$\frac{d\varphi_{\rm CO_2}^{\rm Retentate}}{d\zeta} = -\Theta_{\rm CO_2} \left(\phi \, x_{\rm CO_2}^{\rm Retentate} - x_{\rm CO_2}^{\rm Permeate} \right)$$

$$\frac{d\varphi_{N_2}^{\text{Retentate}}}{d\zeta} = -\frac{x_{CO_2}^{\text{Feed}}}{x_{N_2}^{\text{Feed}}} \frac{1}{\alpha_{CO_2/N_2}} \Theta_{CO_2} \left(\phi \, x_{N_2}^{\text{Retentate}} - x_{N_2}^{\text{Permeate}} \right)$$

Permeate side

$$\varphi_{\rm CO_2}^{\rm Permeate}(\zeta) = \varphi_{\rm CO_2}^{\rm Feed} - \varphi_{\rm CO_2}^{\rm Retentate}(\zeta)$$

$$\varphi_{\mathrm{N}_{2}}^{\mathrm{Permeate}}(\zeta) = \varphi_{\mathrm{N}_{2}}^{\mathrm{Feed}} - \varphi_{\mathrm{N}_{2}}^{\mathrm{Retentate}}(\zeta)$$

- 1-D model
 - steady-state permeation
 - no sweep mode
 - co-current configuration
 - Flue gas stream containing **13% of CO**2

Parameters used in simulation tests							
1 3% CO₂; 87% N ₂							
1 bar							
30-300							
5-50							
1							

Consiglio Nazionale delle Ricerche

Brunetti A., Scura F., Barbieri G., Drioli E., Journal of Membrane Science, 359 (2010) 115

www.cnr.it

 Θ_i compares two main mass transport mechanisms involved. It affects the performance of a one-stage membrane system as well as ϕ_i . A high Θ_i corresponds to a high residence time for the stream and, then, to a high permeation rate through the membrane with the respect to the convective flux along the module.

www.cnr.it

Global Maps: Modelling Results

At a given permeation number (dashed lines), CO_2 purity increases with the recovery. A high permeation number leads to a higher recovery but lower purity: the main part of the feed flow rate permeates, preferentially in the first part of the module, through the membrane and N₂ dilutes the CO₂ permeated.

www.cnr.it

Use of Global Maps

6_

Use of Global Maps

¹ Brunetti A., Scura F., Barbieri G., Drioli E., Journal of Membrane Science, 359 (2010) 115

² M.Sandru, PhD Thesis, Dep. of Chem. Eng. Faculty of Natural Sci. and Tech., Norwegian University of Science and Technology

For a pressure ratio of 10, the simulation provides a maximum achievable purity of CO_2 in permeate stream of around 76% at low recovery (i.e. close to zero). The purity decreases monotonically down to 39% when recovery is, instead, 76%.

www.cnr.it

Effect of ideal selectivity and pressure ratio on the membrane module performance

www.cnr.it

CONCLUSIONS

Some general guidelines to drive the application of Membrane Gas Separation Technology in an one-stage has been given for CO_2 – Post Combustion Capture.

For currently available membranes ($\alpha_{CO2/N2}$ =50) it is not possible to get, simultaneously, an interesting CO₂ recovery and purity (i.e. 80% CO₂ in permeate stream). Two membrane stages will give the required separation but higher costs will be obtained for compression intermediate stages

Consiglio Nazionale delle Ricerche

When high recoveries have to be approached pressure ratio (Φ) has a role much more determining than selectivity. In fact, for a selectivity of 100, an increase of the pressure ratio from 10 to 50 shifts CO₂ recovery from 22% to 80%.

Thom you for your attention

Institute on Membrane Technology-National Research Council (Headquarter)

0

NAND STRUCTURED

NANDGLOW

c/o University of Calabria, Via Pietro BUCCI, 17/C, I-87030 Rende CS, Italy Tel. +39 0984-492039-492050; Fax. +39 0984-402103 <u>www.itm.cnr.it</u>

Consiglio Nazionale delle Ricerche

www.cnr.it