SMARTLOG - workshop June 8, 9, 2005

Optimizing the Supply Chain Session 2

Jeremy F. Shapiro MIT/Slim Technologies

Agenda – Session 2

Three Case Studies of Supply Chain Network Optimization

- Distribution network redesign of a retailing company
- Worldwide sourcing in an industrial chemicals company
- Post-merger consolidation of two pet foods companies

SLIM

Slim Technologies Software Applied in Three Cases www.slimcorp.com

Modeling capabilities

- Optimize single period or multi-period models
- Locate new facilities and close existing facilities
- Model multi-stage processes at manufacturing and distribution facilities
- Model fixed and variable costs, economies of scale, sole sourcing of markets
- Model distribution networks with multiple transport modes
- Maximize profits or minimize costs

Easy-to-use Windows interfaces

Data Integration and Management

- Input/output files in MicroSoft Access
- Extensive management reports
- Data utilities to create input files
- Geographical mapping of inputs and outputs

Building an Optimal Logistics & Distribution Network Strategy

Presented By:

- Jeremy Shapiro, SLIM Technologies
- Dan Sobbott, SLIM Technologies
- Todd Dudas IKEA

This presentation outlines the value of network optimization to achieve highest customer service at lowest total cost. A case study will outline key challenges, benefits and ROI opportunities in conducting a network strategy to manage business growth, maximize asset utilization and minimize capital investment.

IKEA Develops 5-year Distribution Strategy

Overview

- □ IKEA is a home furnishings retailer
- North American sales of \$1.7 billion
- Project sponsored by Distribution Services Group
- □ 5-year strategic distribution plan to support business goals:
 - Triple North American revenues
 - Triple quantity (m3) of goods sold
 - More than double number of retail stores, including entry into new markets
 - Reduce operating costs 1.5% per year
 - No more than 1.5 transit days from DC to retail store
 - Increase inventory turns to at least 5.5 per year

Overview of Distribution Network.

- □ 10,000+ SKUs
- 2500+ suppliers from 45 countries
- Expected shift in supply base to developing countries
- Supplier lead time up to 20 weeks
- □ 3 day lead time (1.5 days transit) from DC to store
- □ For fast-moving items, stores hold no more than 2-3 days of inventory
- □ Annual sales of \$95 million for the average store
- □ Average inventory turns of 4.5 times per year
- □ All North American shipments via full truckload

Project Objectives and Scope.

Network Analysis Questions

- Design the optimal distribution network to support company's 5-year growth and performance goals
- Examine multiple distribution strategies
 - 3 versus 2 service areas
 - segregate fast-moving and slowmoving items
 - tradeoffs: transport costs + facility costs vs. inventory holding costs
- Determine location, sizing and timing of new DCs or DC expansion
- Examine and quantify impact of alternative distribution strategies and network configurations, especially the trade-offs in costs, inventory and service levels to IKEA stores

Business Goals

- Develop a planning process to analyze the distribution network that will be required to meet IKEA's business growth and store expansion plans
- Transfer model data and modeling knowledge to IKEA
- Maximize utilization of current assets and minimize capital investment required to meet expected growth
- Use model results as justification for capital budgeting approval for investment in distribution infrastructure

Project Approach.

Project Organization	 Organize project team Finalize objectives, scope and schedule Discuss key business drivers and requirements 	 Determine how models should be structured Identify data requirements and data sources Assign responsibilities Develop project plan
Data Definition and Collection	 Define product, store and/or supplier aggregations Define costs and cost structures Define key capacities in the supply chain 	 Gather, analyze and process store demand data Gather, analyze and process data describing historical supply chain activity
Data and Model Validation	 Establish historical cost and volume metrics Measure model output against historical cost and volume metrics Identify variances 	 Address variances Rerun model Re-measure model output against historical cost and volume metrics
Scenario Analysis and Interpretation	 Analyze alternative scenarios Measure each scenario against each other Evaluate feasibility and key risks of each scenario 	 Identify areas of greatest strategic opportunity Identify alternative scenarios and strategies based on results Optimize and analyze alternative scenarios
Conclusions and Recommended Actions	 Confirm that recommended solution and strategies met business objectives Prepare final presentations and reports Present findings and recommendations 	 Recommend a solution that includes identification of highest priority opportunities Assist with implementation timelines and implementation process as needed

7

Building the Model: Summary of Inputs.

Building the Model: Candidate Locations.

Building the Model: DC Handling Processes.

St	trategy Co	mparison	S.	SOLUTION	RANKINGS		1:	=best, 5=worst
						Cost	Service	Inventory
				Optimized	Baseline	4	4	5
				Scenario 2	2	3	3	5
				Scenario 3	;	5	5	1
420				Scenario 4	•	2	1	2
130			126.25	<mark>Scenario 5</mark>	5	1	2	3
120 -	120.58	119.08		117 5		- 680		
					116.35			
						- 660		
110 -						000		
						- 640		
100 -								
		93,50		95.70	94.10	620		
	90.70					020		
90 -			87.50					
						- 600	cenario Des	scriptions
						-		
80 +						- 580	ptimized Baseline	
						S	cenario 2: 2 regions	s; full mix DCs
_						S	cenario 3: 1 facility	for slow-moving items
/0 +						- 560 S	cenario 4: 1 East ar	nd 1 West DC for
							slow-mo	ving items
60						540 S	cenario 5: Select pr	oducts at each DC
00 +	Optimized Baseline	Scenario 2	Scenario 3	Scenario 4	Scenario 5	1 340		16
	Cos	t (\$/m3) 🔲 Service	(% DC-Store < 1.5 day	s) 📥 Inventory (\$	million)			

Capital Expenditures.

CAPITAL EXPENDITURES (\$ million)				
	New Facilities	Exp and Facilities	Total	Rank
Optimized Baseline	69.3	21.0	90.3	3
Scenario 2	69.3	21.0	90.3	3
Scenario 3	89.1	7.0	96.1	5
Scenario 4	69.3	14.0	83.3	2
Scenario 5	59.4	22.5	81.9	1

Scenario Descriptions

Optimized Baseline				
Scenario 2:	2 regions; full mix DCs			
Scenario 3:	1 facility for slow-moving items			
Scenario 4:	1 East DC and 1 West DC for			
	slow-moving items			
Scenario 5:	Select products at each DC			

Scenarios 4 and 5 extend useful life of DCs by delaying expansion investments in existing DCs and/or investments in new DCs

Other Considerations.

Product Mix Results (% carried by DC)								
	Current	Baseline	Scenario 2	Scenario 3	Scenario 4	Scer	nario 5	
Anaheim CA	100%	100%	100%	50%	50%		30%	
Lancaster CA	100%	100%	100%	50%	100%		98%	
Vancouver BC	100%	100%	100%	50%	50%		100%	
Belcamp MD	NA	100%	100%	50%	100%		73%	Ľ
Trenton NJ	100%	100%	100%	50%	50%		91%	
Montreal PQ	100%	100%	100%	50%	50%		96%	
Toronto ON	NA	100%	100%	NA	50%	_ \	64%	
Chicago IL	NA	NA	NA	97%	NA		NA	

- Strategy of carrying a select product mix at each DC (Scenario 5) is very difficult to implement, manage and maintain.
- So many combinations of source DC-store-product creates operational complexity.
- Can create transport inefficiencies on inbound.

Additional Advantages of Scenario 4 (1 East DC & 1 West DC for slow-moving items)

- Better Service
 - Reduces lead time to the Stores for priority products
 - Supports a higher Goods Availability
- Accommodates Growth/Expansion More Easily
 - More flexible network for the future to accommodate the retail growth
 - Allows quicker expansion into new markets with a smaller, high volume DC
- Operational Impact on DCs
 - Greater product flow efficiencies in DCs when fast-moving segregated from slow-moving

Conclusions.

- Network should be treated as 2 service regions
- Dedicated DC in East and West to handle slow-moving items is the preferred product mix strategy; i.e. Scenario 4 preferred to Scenario 5
 - Operationally feasible to implement, manage and maintain
 - Better inbound transport efficiencies when supply regions disaggregated
 - Greater flexibility in supporting growth
 - Better service by focusing on priority products
 - Among low-cost solutions

Optimal DC Network to Support Growth

Company Actions.

- Acquired property in Belcamp, MD, including enough land for future expansion
- Belcamp DC has begun operating
- Service areas re-aligned, Canadian and US networks integrated
- □ Re-evaluating plans for Anaheim, CA
- Have implemented distribution strategy for fast-moving and slow-moving items, and have seen 10% reduction in affected buffer stocks as a result
- □ Continuously using software to evaluate expansion of distribution network

- Well-designed pilot project allowed in-house Enterprise Resource Optimization (ERO) Team to absorb supply chain modeling technology in a few weeks
- Strategic supply chain planning can and should be a continuous, ongoing activity
- Scenario results must be closely examined with respect to favorable or unfavorable qualitative factors
- Inventory costs and customer service considerations can be integrated into holistic supply chain optimization

Worldwide Sourcing in BEACON Industrial Chemicals

- Company Background
- Modeling Requirements
- Results

Company Background

- Worldwide Operations: feedstock sourcing, manufacturing, packaging, distribution
- Approximately 20 plant sites in North America, South America, Europe and Asia
- 200 products in about 7 product lines sold to 2000+ customers worldwide

- Major markets are zeolites, plastics, paper, polishing, ceramics, adsorbents and catalysts, refractories, coatings, abrasives, aluminum smelting, and water treatment
- Beacon has an inverted "Y" supply chain with few feedstocks and an explosion of products occurring within the manufacturing operations
- Annual sales over \$500 Million

Beacon Supply Chain

Total Supply Chain Costs:

Feedstock Costs	~ 25%
Logistics Costs	~ 20%
Manufacturing Costs	~ 55%

Opportunities exits to reduce manufacturing and logistics costs via supply chain optimization and management

Packaging and SQRs create further differentiation

35 Continuous & Batch Products out

Supply Chain Planning Initiatives

The Division conducted a strategic analysis of the business in the 1990's. Analysis highlighted impact of on cost of goods sold and need to better manage manufacturing assets, growth and profitability.

These are driven by:

- integrating and leveraging worldwide information, commercial and sourcing positions
- pursuing strategic alliances
- aggressively introducing new products, applications and services
- developing and transferring technology

Supply Chain Modeling Requirements

- Capture multiple stages of manufacturing for individual product lines
- Allow fixed costs and economies of scale for manufacturing facilities and processes within facilities (these costs had to be standardized across plants)

- Allow intermediate products to be shipped among plants
- Allow 2000+ customer ship-to locations
- Allow flexible accounting of multiple currencies
- Optimize on total cost or total margin

Example of Cost vs Operating Volume Curve

Operating Volume, MTons

Model Requirements for Supply Chain Applications

Manufacturing Operations with Process Steps

capacities and costs for each process step: fixed costs variable costs

Warehouses

Customer Ship-to Locations volumes & revenues by product mix

Analysis Using an Optimization Model

Scenario 1 - Basecase: Constrained to current supply chain flow Scenario 2 - No constraints for supply Scenario 3 - Projected market growth analysis

	Scenario 1	Scenario 2	Scenario 3
Total Margin:	\$20,774,419	\$29,947,381	\$51,312,905
Total Revenue:	\$133,573,669	\$133,573,669	\$175,467,305
Total Costs:	\$112,799,250	\$103,626,288	\$124,154,400
Feedstock			
Costs	\$34,428,988	\$33,358,175	\$43,639,425
Inbound Trans			
Costs	\$7,551,950	\$7,134,050	\$9,409,050
Interfacility Tra	ns		
Costs	\$657,470	\$3,952,475	\$5,760,330
Mfg. Costs	\$61,375,848	\$49,022,938	\$51,566,913
Outbound Tran	S		
Costs	\$8,784,995	\$10,158,649	\$13,778,688
Volume, MTons	s 159,420	159,420	209,420

Results

- Applied to a range of strategic planning problems
 - annual production planning
 - investment planning for capacity expansion, acquisitions, joint ventures, expansion of logistics network
 - evaluation of new products and new processes
- Significant cost savings and increases in margins identified for these problems

Lessons Learned

- Well-designed pilot project allowed in-house Enterprise Resource Optimization (ERO) Team to absorb supply chain modeling technology in a few weeks
- Strategic supply chain planning can and should be a continuous, on-going activity
- Extending supply chain cost minimization to net revenue maximization is technically possible in a commodities company, but organizationally difficult
- Company politics can create barriers to improving supply chain performance through holistic planning

Post merger consolidation of two pet food companies

Focused sites economically servicing national accounts

Rapid make-to-order service at low cost

Strategic Differences

Acme Pet Care	Tasty Pet Chow
Strong central control	Productivity targets based on metrics
Facilities run 6 days/week	Facilities run 5 days/week
Designed for long runs	Designed for short runs
2 – 4 Extruders per plant	Single extruder plants

Network-wide Cost/Capacity Differences

= Primary network (82% of capacity)

Capacity (Tons/HR)

Formula Complexity Significant Driver of Cost Differences

Number of Formulas

Consolidation Study Questions

- What constraints and incompatibilities (for the near – and long-term) exist? For example, which formulas may be run at each plant and which sizes may be packaged there?
- What cost reduction and capacity enhancement opportunities result from leveraging network consolidation?
- What is an optimal utilization of the collective capacities and capabilities of the combined network?
- What capacity does the consolidated network have to meet increases in product demand?

Data and Model Generation

Manufacturing Network

Consolidation Study Results

- Number of plants reduced from 31 to 24; some equipment relocated
- 4% of annual production moved to more efficient facilities
- 9% reduction in total supply chain costs
- Extension to tactical planning
 - System used on a quarterly basis to allocate projected demand to plants based on relative plant efficiencies, commodity inventories, and other factors
 - System used to analyze initiatives for accepting and satisfying customer order; yearly contribution to net revenue in the millions of dollars

Lessons Learned

- Supply chain consolidation is necessary and desirable following mergers or acquisitions
- Data-driven models must be used to help senior management unravel the complex interactions and ripple effects that make consolidation difficult and important – payback often in the tens of millions of dollars
- New business processes should be put in place after consolidation to apply data-driven supply chain management to tactical planning