

### HyWind – A success story – A catalyst with Access as an example Trondheim 21.01.2011

### Statoil`s threefold strategy



Harsh environment Deep water Heavy oil Gas value chain



### **Building our Competence**





#### Hywind – slender cylinder concept

- Decision to invest was taken in May 08
- Experience and knowledge from the petroleum sector have been essential to enhance concept

#### **Partners/Contractors**

- Siemens
- Technip
- Nexans
- Haugaland Kraft
- Enova





#### Onshore on quay Stavanger

Preassembly of tower, nacelle and rotor

• Turbine, tower and blades assembled



Classification: Internal 2011-01-2

### Lift of upper tower and nacelle on 13 May 2009





Classification: Internal 2011-01-21

# Hywind – Status after one year of operation



### Hywind – opens new markets A game changing technology, qualified?





### One year of operation – The Hywind concept is qualified

- Production is as good as or better than other 2.3 MW Siemens wind power turbines
  - -Loads factors above 40 %
- Wind turbine has preformed well. No drawbacks from being installed on a floater
  - -Less alarms than anticipated
- Access and maintenance equal to other offshore wind installations
- All technical systems are working well





### System integrity is verified

All sub system inspected

- Mechanical systems
- Electrical systems
- Alarms
- Temperatures
- Oil samples



• The Hywind movements has proven not to be an issue for the system integrity



### Verification of our structural load model

- The models simulate the motions and the structural loads which we control with different regulators
- We have tested two regulators working differently towards the structural loads and which have been used as important components in the cost and design optimization





### Bringing Wind Power into a new era (floating) is about working along 3 axis





### Focus areas bringing cost down

- Turbine Close cooperation with suppliers to reduce unit costs, bring weight down and increase reliability.
  - Create believe in future markets
- Marine operations Utilize established routines and experience from our offshore activity, working together with new and established suppliers
  - Active and demanding customer
- Sub-structure Optimizing within Hywind patents and design
  - -Our main task



## Hywind II will have a shorter design and larger turbine

- $\boldsymbol{\cdot}$  Conservative design for Hywind pilot
- WTG weight sensitive
- Large scale park cost comparable with bottom fixed
- Focus on commercialization of Hywind technology









### Fob Trim





### Access challenging





### Buddy









- 1. Improve access and utilization: Operate in SWATH MODE (Small Waterplane Area Twin Hull) in up to 3 m. significant wave heights and in high sea swells;
- 2. Reduce fuel consumption, 10 liters per nautical mile at 25 knots;
- 3. 30 knots as top speed and 25 knots as service speed;
- 4. Improve passenger comfort for 36 passengers;
- 5. Improve flexibilities: Shallow water, DP, Crane, Additional boat, etc.
- 6. Improve safeties;



### FOB Swath seatrials





### Gangway by Undertun Industri









Classification: Internal 2011-01-2

### SeaBridge gangway concept by Brothers AS



The SeaBridge concept consists of three main units:

•Gangway

Docking station

•Universal joint/towing point





### SES Concept by Umoe Mandal

Air supplied to cushion by centrifugal lift fans

- Increasing the air cushion pressure relative outside atmospheric pressure
- Typically 80% of lift force from air cushion (20% from hull)









### Access systems









Classification: Internal 2011-01-2

### Markets

- Initial markets
  - Scotland
  - -US
    - · East coast -Maine, Great lakes
  - Norway
- Next phase
  - Asia -Japan
  - Spain/Portugal Mediterranean
  - Greece, Egypt, Malta, France, Korea, Turkey, Brazil, Italy
- Third phase
  - South America, New Zealand, South Africa





### Scotland/Norway – A Marine Renewable Axis

Sustain Statoil's leading position in offshore technology development

Develop an attractive arena for Marine Renewable business

**Projects near home with potential for integration with core activity** 







### From Idea to Commercial Concept









Classification: Internal 2011-01-21