

Novel PM generators for large wind turbines

by Alexey Matveev

Wind Power R&D seminar - Deep sea offshore wind power, 20-21 January 2011, Trondheim, Norway

- Drive train configurations
- State-of-the-art PMG-based solutions
- Integration: the path to win for direct drive
- SmartMotor in wind

The general drive train scheme

- GB gearbox
- B brake
- G generator
- C converter
- T transformer
- P protection

Basic drive train solutions

<u>Configuration 1</u>: gear + double-fed IG

Configuration 3: direct SG with wound rotor

M ENERCON

Configuration 4: gear + PMSG

Configuration 5: DD PMSG

Configuration 2: gear + IG

SIEMENS

Efficiency of different drive trains

- Components included: gearbox, generator, converter, transformer
 - Direct driven PM generator solution gives the best efficiency at speeds below rated

Direct drive vs geared solution

- Direct drive is larger and heavier, but
- it doesn't suffer gearbox-related problems

High-torque generator for direct drive

• High-torque generator for direct drive is large. This is basically the only drawback of direct drive solution

PM generator from Siemens. 3 MW, 17 rpm

Some conclusions

- Drive trains with PM generators have the best efficiency
 - Especially without gear (direct drive) and 1-stage gear
- <u>However</u>, there are other characteristics to take into account:
 - Weight
 - Cost
 - Power factor
 - Lifetime
 - Reliability
 - Manufacturability

• Design means finding a trade-off between various criteria

- Drive train configurations
- State-of-the-art PMG-based solutions
- Integration: the path to win for direct drive
- SmartMotor in wind

Available solutions with PMG

Products of ABB and TheSwitch

• Low-speed, medium-speed and high-speed generators

Commercial power electronics

Examples of medium-voltage (ABB) and low-voltage (TheSwitch) converters

TheSwitch

Is it end of the story?

• Big companies have products and even complete packages up to approximately 5-7 MW. Is it end of the development?

NO!!!

- New concepts under investigation, for example:
 - Magnetic gears and Pseudo-direct drive
 - Superconducting machines
- There are problems when going to powers higher then 5-7 MW. These are to be solved!

Examples of new concepts

- Magnetic gears, pseudo-direct drive (PDD), superconducting machines
- The concepts have not been proven yet for high-power WEC

Magnomatics

Direct drive using HTS superconductors

Converteam/Zenergy

Technology frontier for PM generators

 State-of-the-art in generator weight (expressed via power and torque densities, each point corresponds to one generator design)

Analysis performed in cooperation with Zhaoqiang Zhang, NTNU (supervisor Prof. Robert Nilssen)

Active parts, cooling and carrying structure

- Active parts make 30-40% of total weight
- Cooling system defines size of active parts, it may take considerable space
- Carrying structure is usually massive

TheSwitch

Rated power	3800 kW
Rated speed	17.5 rpm
Voltage	690 V
Weight	81000 kg
Cooling system	Air-to-air heat exchanger

When going for higher powers...

• Weight of carrying structure grows disproportionally!

Enercon

- Drive train configurations
- State of the art PMG-based solutions
- Integration: the path to win for direct drive
- SmartMotor in wind

Integration strategies

- For drive trains with gearboxes: integrate generator with gearbox (see examples below)
- For direct drive: integrate generator with the turbine! (examples will follow)

Direct-driven generator in the nacelle

• Just a few of numerous patented designs

11

Direct-driven generator in the nacelle

• Popular concept: generator between blades and tower

Direct-driven generator in the nacelle

• Integration variants

Source: NREL

Direct-driven generator outside the nacelle

- No shaft
- Single bearing common for generator and blades

Direct-driven generator outside the nacelle

• Different approaches to weight reduction

Concept: light carrying structure of the generator

Concept: integration of generator with blades

Key to success for generator supplier

- Work in close contact with the turbine designers
- Provide best active parts
 - Lightest
 - Most compact
 - Giving high efficient energy conversion
 - Segmented
 - Easy to integrate
 - Cheap in production
 - With low cogging
 - Medium- and low-voltage

- Drive train configurations
- State of the art PMG-based solutions
- Integration: the path to win for direct drive
- SmartMotor in wind

What is SmartMotor

- Established in 1996 in Trondheim, Norway
- One of the largest R&D groups in the world with focus on PM technology

Reference projects offshore

• Low-voltage and medium-voltage machines of MW-class

1.1 MW tidal turbine of Atlantis Resource Corporation (delivered)

0.8 MW propulsion system for Rolls-Royce Marine (in operation)

10 MW offshore wind turbine of SWAY (under construction)

The technologies we believe in

- PM machines with concentrated winding and ironless machines
- Ideal for high-torque applications like wind turbines with direct drive

Our technologies

- Concentrated winding technology is advantageous compared to distributed winding in high-torque applications due to
 - higher slot fill factor and consequently better cooling of the copper
 - Pre-shaping of the coil
 - No insulation is needed between different phases
 - segmentation with distributed winding leads to half-empty slots (10% loss in total slot filling), while with concentrated winding all slots are filled
 - low cogging
 - Competitors achieve this by shaping magnets
 - SmartMotor apply patented slot/pole combinations
- Ironless technology is advantageous for machines with large diameter
 - There is no attracting force between rotors and stator
 - The structure is not sensitive to relative displacement of rotors and stator

Our R&D directions

- Shift PMG technology frontier by introducing new concepts
- Find new integration solutions together with wind turbine manufacturers

Our R&D directions

- Novel transformer-less concepts
- ABB have developed concepts with direct high-voltage DC outputs based on use of machines with high-voltage insulation
- SmartMotor have developed similar concept where machine with lowvoltage insulation can be used (which means considerably more compact and cheap machine)

ABB concepts

Thank you!

Contact information: alexey@smartmotor.no, www.smartmotor.no

