
Introduction GPU Basics Algorithms Conclusion References

The State of the Art in GPU Computing
NVIDIA and SINTEF

HPC GPU Computing Mini-Workshop

Jon Mikkelsen Hjelmervik
<jon.m.hjelmervik@sintef.no>

The Heterogeneous Computing Group at SINTEF ICT Applied Mathematics

fdg 1/34

Introduction GPU Basics Algorithms Conclusion References

Outline

1 Introduction

2 GPU Basics

3 Algorithms

4 Conclusion

fdg 2/34

Introduction GPU Basics Algorithms Conclusion References

Prelude: What is a GPU?

(From the OpenGL 2.0 specification)

Evolution into the GPU:

Basic HW accelerating rendering,

increasingly more powerful,

and increasingly more flexible,

driven by computer games

1996 1997 1998 1999 · · · 2009
Application tasks CPU CPU CPU CPU CPU/GPU
Scene level calculations CPU CPU CPU CPU CPU/GPU
Transformations CPU CPU CPU GPU GPU
Lighting calculations CPU CPU CPU GPU GPU
Clipping and triangle setup CPU graphics

processor
graphics
processor GPU GPU

Rasterization graphics
processor

graphics
processor

graphics
processor GPU GPU

fdg 3/34

Introduction GPU Basics Algorithms Conclusion References

GPUs and CPUs: Head-to-head comparison

CPU GPU (Fermi/G200)
Full cores 4 —
Accelerator cores 0 16/30
Arithmetic units 16 512/240
Intercore communication Cache L2 Cache/None
SIMD width 4 32/32
Float operations per cycle 16 1024/720
Frequency (GHz) 3.2 ? /1.3
Single precision gigaflops 102 ?/936
Double:single performance 1:2 1:2/1:12
Gigaflops / watt 0.8 ?/5
Megaflops / USD 70 ?/550
Accelerator Bandwidth (GB/s) N/A ?/102
Main Memory Bandwidth (GB/s) 25.6 8
Maximum memory size (GiB) 24 6/4

Key observations:

GPUs have considerably more cores than CPUs.

GPUs run at a lower clock frequency than CPUs.

fdg 4/34

Introduction GPU Basics Algorithms Conclusion References

So what’s the thing with all these cores?

Power density is Watts per area

Power density indicates the heat produced:

Power density of CPUs has surpassed that of a cooking plate.
Cooling is a big problem.

Why is the power density so high?

Higher clock frequencies require higher supply voltages.

High power usage is undesirable:

battery life, environmental concerns, etc. . .

Power density is proportional to cube of voltage

Reduce freq & voltage by 1% reduces power density by 3%:

One core at 100% freq & voltage offers 100% performance.

Two cores at 85% freq & voltage offers 180% performance,
and consume approximately the same amount of power!

fdg 5/34

Introduction GPU Basics Algorithms Conclusion References

GPUs and CPUs: Head-to-head comparison

CPU GPU (Fermi/G200)
Full cores 4 —
Accelerator cores 0 16/30
Arithmetic units 16 512/240
Intercore communication Cache L2 Cache/None
SIMD width 4 32/32
Float operations per cycle 16 1024/720
Frequency (GHz) 3.2 ?/1.3
Single precision gigaflops 102 ?/936
Double:single performance 1:2 1:2/1:12
Gigaflops / watt 0.8 ?/5
Megaflops / USD 70 ?/550
Accelerator Bandwidth (GB/s) N/A ?/102
Main Memory Bandwidth (GB/s) 25.6 8
Maximum memory size (GiB) 24 6/4

Massive parallelism (requires new methods)

Development driven by computer games.

Mass production: R&D cost divided by millions of units sold.

fdg 6/34

Introduction GPU Basics Algorithms Conclusion References

Why Now?

Power wall

Power density cannot increase further

Instruction Level Parallelism wall

Introducing further logic to improve ILP does not pay off

Memory wall

Memory latency is getting too high

fdg 7/34

Introduction GPU Basics Algorithms Conclusion References

CPU development

1980 1990 2000

Year

10

100

1000

M
H

z

0

2

4

6

8

10

12

14

16

18

Core frequency
cores
cores * SSE width

Bottom line

Serial programming belongs to the past

Most programs need modifications for upcoming processors

fdg 8/34

Introduction GPU Basics Algorithms Conclusion References

How are GPUs organized?

NVIDIA GT200 GPU

Interconnect network

TPC 0

L1 tex cache

Tex units

SM SM SM

TPC 9

L1 tex cache

Tex units

SM SM SM

L2 tex cache

Memory
controller 0

L2 tex cache

Memory
controller 7

SM

Shared
memory

SP
SP
SP
SP

SP
SP
SP
SP

SM

Shared
memory

SP
SP
SP
SP

SP
SP
SP
SP

SM

Shared
memory

SP
SP
SP
SP

SP
SP
SP
SP

Tex unit 0 Tex unit 7

L1 texture cache

AMD RV770 GPU

Crossbar

SIMD
engine 0

L1 tex cache

Tex units

Data share

16× SPU

SIMD
engine 9

L1 tex cache

Tex units

Data share

16× SPU

L2 tex cache

Memory
controller 0

L2 tex cache

Memory
controller 3

Local data share

SPU

SPU

SPU

SPU

SPU

SPU

SPU

SPU

SPU

SPU

SPU

SPU

SPU

SPU

SPU

SPU

Tex unit 0 Tex unit 3

L1 texture cache

fdg 9/34

Introduction GPU Basics Algorithms Conclusion References

Fermi

New features

Floating point compliance (IEEE 754 2008)

More compliant than most CPUs
More compliant than SSE instructions

Drastically increased double precision performance

Support for ECC memory

fdg 10/34

Introduction GPU Basics Algorithms Conclusion References

Performance

Memory transfers

Small cache

Associated threads should access the same memory bank

Compute

High peak floating point performance compared to bandwidth

Divergent code hurts performance

fdg 11/34

Introduction GPU Basics Algorithms Conclusion References

Programming model

Host program

Executed on the CPU

Controls data flow to and from graphics memory

Initiates and controls GPU programs

Kernel

Executed in parallel on the GPU
(typically tens of thousands or more instances)

Performs the computation

Implicitly invoked

fdg 12/34

Introduction GPU Basics Algorithms Conclusion References

Example kernel

global void
addKernel(float* c, float* a, float* b)
{

int x = blockIdx.x*blockDim.x+threadIdx.x;
int y = blockIdx.y*blockDim.y+threadIdx.y;
int w = gridDim.x*blockDim.x;
c[y*w+x] = a[y*w+x] + b[y*w+x];

}

a, b and c are pointers to global graphics memory.

threadIdx contains the index of the current thread

fdg 13/34

Introduction GPU Basics Algorithms Conclusion References

Programming languages

OpenCL CUDA Brook+
Target platform GPU ++ GPU (NV) GPU (AMD)
Abstraction API API, compiler API, compiler
Host language C C, C++ C++
Kernel language C99-based C99-based, some C++ C99-based
Memory model ∼PGAS ∼PGAS Data streams
Task-parallelism Full Streams Streams
Ease of use ?? ?? ??
Maturity ? ? ? ? ??

CUDA: designed to expose the compute capabilities of Nvidia
GPUs. Supports C++ kernels. Currently, most popular choice.

Brook+: designed to expose the compute capabilities of
AMD GPUs. Higher abstraction level.

OpenCL: Upcoming industry standard, SDKs from Nvidia
and AMD released fall 2009.

fdg 14/34

Introduction GPU Basics Algorithms Conclusion References

Dense linear algebra

Application areas

Important building block for a wide range of applications, including
simulations

Characteristics

Highly optimized libraries exist for a wide range of
architectures, including GPUs

Practically branching free

Linear memory access pattern

 a11 a12 a13

a21 a22 a23

a31 a32 a33

  x1

x2

x3

 =

 b1

b2

b3


fdg 15/34

Introduction GPU Basics Algorithms Conclusion References

Dense matrix-vector product

Characteristics

Each matrix element is used only once

GPU results

Parts of the vector can be kept in shared memory

Bandwidth limited, making it unable to take advantage of
wide parallel architectures

The high bandwidth makes GPUs attractive choice

 a11 a12 a13

a21 a22 a23

a31 a32 a33

  x1

x2

x3

 =

 b1

b2

b3



fdg 16/34

Introduction GPU Basics Algorithms Conclusion References

Dense matrix-matrix product

Characteristics

No dependant data accesses

High reuse of data

GPU results

Blocks of the matrices can be kept in shared memory

Near peak floating-point performance can be achieved for a
wide range of architectures. (Volkov & Demmel, 2008)

 a11 a12 a13

a21 a22 a23

a31 a32 a33

  b11 b12 b13

b21 b22 b23

b31 b32 b33

 =

 c11 c12 c13

c21 c22 c23

c31 c32 c33


fdg 17/34

Introduction GPU Basics Algorithms Conclusion References

Sparse matrix-vector multiplication

Application areas

Commonly used as part of linear solver, i.e. conjugate gradient
methods

Characteristics

Only nonzero matrix elements are stored

Unstructured memory accesses

Divergent control flow

Difficult to get high performance (also for CPU
implementations)

CPU implementations typically achieve 10% bandwidth
utilization and less than 1% compute utilization
(Göddeke et al., 2007)

Performance is problem dependent

fdg 18/34

Introduction GPU Basics Algorithms Conclusion References

Sparse matrix-vector multiplication (cont)

GPU results

One of the first problems studied for GPGPU
(Krüger & Westermann, 2003)

Hybrid data format for GPU implementation

To overcome unbalanced workloads and non-coalesced memory
reads, one may use hybrid data formats

Store structured parts of the matrix in a dense format.

Remaining elements are stored in sparse format

Performance is related to the efficiency off the dense matrices

Many matrices can be reorganized to improve efficiency

10× faster than CPU implementations (Bell & Garland, 2008)

fdg 19/34

Introduction GPU Basics Algorithms Conclusion References

N-body

Application areas

Particle simulation, SPH, the Millennium Run etc.

(Source: wikipedia.org) (Source: SINTEF)

fdg 20/34

Introduction GPU Basics Algorithms Conclusion References

N-body (cont)

Characteristics

All particles affect each other

Can be simplified by treating groups far away as a single
contribution

Each particle can be computed independently

GPU challenges

Unstructured memory access

Finding nearest neighbors

fdg 21/34

Introduction GPU Basics Algorithms Conclusion References

Stencil computations

Application areas

PDE solvers and image processing

Characteristics

Weighted average of a neighborhood is computed for each cell in
the grid.

Typically bandwidth limited

1-4rr r

r

r

fdg 22/34

Introduction GPU Basics Algorithms Conclusion References

Stencil computations (cont)

GPU results

Performance improvement by domain decomposition

Nonlinear schemes can yield up to 30× speedup
(Hagen et al., 2005)

fdg 23/34

Introduction GPU Basics Algorithms Conclusion References

Stream compaction and expansion

Stream compaction

Make compact stream of arbitrarily input stream elements

Input stream

Output stream

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 4 6 8 9 10 15

Stream compaction and expansion

Allow input stream elements repeat in output stream

Input stream

Output stream

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 4 4 6 8 8 9 9 10 15

fdg 24/34

Introduction GPU Basics Algorithms Conclusion References

Stream compaction and expansion (cont)

Application areas

Search or reorganization of data

Characteristics

Trivial if programmed serially

Tricky to do efficiently in parallel

GPU results

CUDPP library (Harris et al., n.d.)

Implements scan (Hillis & Steele Jr, 1986), (Blelloch, 1990)
Work-horse for a variety of algorithms
Requires scatter write

Histogram Pyramids (Ziegler et al., 2006; Dyken et al., 2008)

Good for sparse extraction
No scatter, can be implemented in plain OpenGL.

fdg 25/34

Introduction GPU Basics Algorithms Conclusion References

Sorting

Application areas

Sorting is useful in a wide range of applications, including
computer graphics and databases

Characteristics

Traditional approaches (quicksort) do not map to modern
processors

Hard to parallelize (load balancing)
Hard to vectorize

fdg 26/34

Introduction GPU Basics Algorithms Conclusion References

Sorting (cont)

GPU results

Early GPU algorithms are based on Batcher’s sorting network
(Purcell et al., 2003)

Current GPU algorithms is based on two-step algorithm

Sort a sub-vector fitting in shared memory
Merge the sub-vectors

This strategy is also well suited for multi-core CPUs
(Satish et al., 2008)

fdg 27/34

Introduction GPU Basics Algorithms Conclusion References

Concluding remarks

Wide area of applications can benefit from GPU computing

Concepts from GPU computing is useful for multicore CPUs

Algorithms must become data parallel

Serial code utilize 6% of CPU potential (4-core SSE)
Existing code must be redesigned and rewritten
(not just a new compile target. . .)
Redesigned code tend to execute 10× faster on the GPU

Industry adoption is considerate and growing

fdg 28/34

Introduction GPU Basics Algorithms Conclusion References

Thank you for your attention!

fdg 29/34

Introduction GPU Basics Algorithms Conclusion References

Bibliography I

Bell, N., & Garland, M. 2008 (Dec.).
Efficient sparse matrix-vector multiplication on CUDA.
NVIDIA Technical Report NVR-2008-004. NVIDIA
Corporation.

Blelloch, G. 1990 (Nov.).
Prefix sums and their applications.
Tech. rept. CMU-CS-90-190. School of Computer Science,
Carnegie Mellon University.

Dyken, C., Ziegler, G., Theobalt, C., & Seidel, H.-P.
2008.
High-speed marching cubes using histogram pyramids.
Computer graphics forum, 27(8), 2028–2039.

fdg 30/34

Introduction GPU Basics Algorithms Conclusion References

Bibliography II

Göddeke, D., Strzodka, R., Mohd-Yusof, J.,
McCormick, P., Buijssen, S., Grajewski, M., &
Turek, S. 2007.
Exploring weak scalability for FEM calculations on a
GPU-enhanced cluster.
Parallel comput., 33(10–11), 685–699.

Hagen, T., Hjelmervik, J., Lie, K.-A., Natvig, J., &
Henriksen, M. 2005.
Visual simulation of shallow-water waves.
Simulation modelling practice and theory, 13(8), 716–726.

fdg 31/34

Introduction GPU Basics Algorithms Conclusion References

Bibliography III

Harris, M., Owens, J., Sengupta, S., Zhang, Y., &
Davidson, A.
CUDPP: CUDA data parallel primitives library.
http://www.gpgpu.org/developer/cudpp/.
[visited 2009-03-20].

Hillis, W., & Steele Jr, G. 1986.
Data parallel algorithms.
Commun. acm, 29(12), 1170–1183.

Krüger, Jens, & Westermann, Rüdiger. 2003.
Linear algebra operators for gpu implementation of numerical
algorithms.
Pages 908–916 of: Siggraph ’03: Acm siggraph 2003 papers.
New York, NY, USA: ACM.

fdg 32/34

http://www.gpgpu.org/developer/cudpp/

Introduction GPU Basics Algorithms Conclusion References

Bibliography IV

Purcell, T., Donner, C., Cammarano, M., Jensen, H.,
& Hanrahan, P. 2003.
Photon mapping on programmable graphics hardware.
Pages 41–50 of: Eurographics.
Eurographics Association.

Satish, N., Harris, M., & Garland, M. 2008 (Sept.).
Designing efficient sorting algorithms for manycore GPUs.
NVIDIA Technical Report NVR-2008-001. NVIDIA.

Volkov, V., & Demmel, J. 2008.
Benchmarking GPUs to tune dense linear algebra.
Pages 1–11 of: Supercomputing.
Piscataway, NJ, USA: IEEE Press.

fdg 33/34

Introduction GPU Basics Algorithms Conclusion References

Bibliography V

Ziegler, G., Tevs, A., Theobalt, C., & Seidel, H.-P.
2006.
GPU point list generation through histogram pyramids.
Tech. rept. MPI-I-2006-4-002. Max-Planck-Institut für
Informatik.

fdg 34/34

	Introduction
	

	GPU Basics
	

	Algorithms
	

	Conclusion
	References

