The State of the Art in GPU Computing

NVIDIA and SINTEF
HPC GPU Computing Mini-Workshop

Jon Mikkelsen Hjelmervik
<jon.m.hjelmervik@sintef.no>

The Heterogeneous Computing Group at SINTEF ICT Applied Mathematics

@ SINTEF 1/34

R R il
Outline

Introduction
GPU Basics
Algorithms
Conclusion

@ SINTEF

2/34

Introduction

@00000

Prelude: What is a GPU?

F Evolution into the GPU:
j e || e | o || m Basic HW accelerating rendering,

m increasingly more powerful,

m and increasingly more flexible,

(From the OpenGL 2.0 specification) m driven by computer games

1996 1997 1998 1999 ... 2009
Application tasks CPU CPU CPU CPU CPU/GPU
Scene level calculations CPU CPU CPU CPU CPU/GPU
Transformations CPU CPU CPU GPU GPU
Lighting calculations CPU CPU CPU GPU GPU
Clipping and triangle setup | CPU &M= - &=ohe GPU GPU
Rasterization g BRI SRS GpY GPU

@ SINTEF 3/34

Introduction

000000

GPUs and CPUs: Head-to-head comparison

CPU GPU (Fermi/G200)
Full cores 4 =
Accelerator cores 0 16/30
Arithmetic units 16 512/240
Intercore communication Cache L2 Cache/None
SIMD width 4 32/32
Float operations per cycle 16 1024/720
Frequency (GHz) 8% ? /1.3
Single precision gigaflops 102 7/936
Double:single performance 1:2 1:2/1:12
Gigaflops / watt 0.8 ?/5
Megaflops / USD 70 ?/550
Accelerator Bandwidth (GB/s) N/A 7/102
Main Memory Bandwidth (GB/s) 25.6 8
Maximum memory size (GiB) 24 6/4

'
Key observations:

m GPUs have considerably more cores than CPUs.
m GPUs run at a lower clock frequency than CPUs.

@ SINTEF 4/34

Introduction
00®000

So what’s the thing with all these cores?

Power density is Watts per area

m Power density indicates the heat produced:

m Power density of CPUs has surpassed that of a cooking plate.
m Cooling is a big problem.

m Why is the power density so high?

m Higher clock frequencies require higher supply voltages.
m High power usage is undesirable:

m battery life, environmental concerns, etc. ..

Power density is proportional to cube of voltage
Reduce freq & voltage by 1% reduces power density by 3%:
m One core at 100% freq & voltage offers 100% performance.

m Two cores at 85% freq & voltage offers 180% performance,
and consume approximately the same amount of power!

@ SINTEF 5/34

Introduction

[e]e]e] le]e]

GPUs and CPUs: Head-to-head comparison

CPU GPU (Fermi/G200)
Full cores 4 =
Accelerator cores 0 16/30
Arithmetic units 16 512/240
Intercore communication Cache L2 Cache/None
SIMD width 4 32/32
Float operations per cycle 16 1024/720
Frequency (GHz) 3.2 ?7/1.3
Single precision gigaflops 102 7/936
Double:single performance 1:2 1:2/1:12
Gigaflops / watt 0.8 ?/5
Megaflops / USD 70 7/550
Accelerator Bandwidth (GB/s) N/A 7/102
Main Memory Bandwidth (GB/s) 25.6 8
Maximum memory size (GiB) 24 6/4
v
m Massive parallelism (requires new methods)
m Development driven by computer games.
m Mass production: R&D cost divided by millions of units sold.
V.

@ SINTEF . . 6/34

Introduction

[e]e]e]e] Jo]

Why Now?

Power wall
m Power density cannot increase further

Instruction Level Parallelism wall
m Introducing further logic to improve ILP does not pay off

Memory wall

m Memory latency is getting too high

@ SINTEF 7/34

Introduction

[e]e]e]ele]]

CPU development

1000

100

/‘)
e
o o 0o

Year

10

Bottom line
m Serial programming belongs to the past

m Most programs need modifications for upcoming processors

@ SINTEF 8/34

GPU Bas

@00000

How are GPUs organized?

NVIDIA GT200 GPU

TPC 9

SM SM SM

Tex units
L1 tex cache

Tex units
L1 tex cache,

Interconnect network

L2 tex cache L2 tex cache

Memory

Memory
controller 0

controller 7

SM SM SM
SP) SP)||SP) SP)|(SP) SP
SP) SP)||SP) SP)||SP) SP
SP) SP)||SP) SP)||SP) SP
SP) SP)||SP) SP)||(SP) P

Shared | Shared | Shared
memory = memory = memory

Tex unit 0 - - Tex unit 7

L1 texture cache

AMD RVT770 GPU

engine 0 engine 9
16x SPU 16x SPU
Data share Data share
Tex units Tex units

L1 tex cache L1 tex cache

Crossbar

L2 tex cache L2 tex cache

Memory

Memory
controller 0

controller 3

Local data share
Tex unit 0 ° * Tex unit 3

L1 texture cache

TESINTER e ——

9/34

GPU Basics

000000

Fermi

New features

m Floating point compliance (IEEE 754 2008)

m More compliant than most CPUs
m More compliant than SSE instructions

m Drastically increased double precision performance
m Support for ECC memory

@ SINTEF

10/34

GPU Basics

[e]e] Jele]e]

Performance

Memory transfers
m Small cache

m Associated threads should access the same memory bank

Compute
m High peak floating point performance compared to bandwidth

m Divergent code hurts performance

@ SINTEF 11/34

GPU Basics

[e]e]e] le]e]

Programming model

Host program
m Executed on the CPU
m Controls data flow to and from graphics memory

m Initiates and controls GPU programs

Kernel

m Executed in parallel on the GPU
(typically tens of thousands or more instances)

m Performs the computation

m Implicitly invoked

@ SINTEF 12/34

GPU Basics

[e]e]e]e] Jo]

Example kernel

—-global__ void
addKernel (float* c, float* a, float* b)

{

int x = blockIdx.x*blockDim.x+threadIdx.x;
int y = blockIdx.y*blockDim.y+threadldx.y;
int w = gridDim.x*blockDim.x;

cly*w+x] = aly*w+x] + bly*w+x];

E a, b and c are pointers to global graphics memory.
m threadIdx contains the index of the current thread J

@ SINTEF 13/34

GPU Basics

[e]e]e]ele]]

Programming languages

OpenCL CUDA Brook+
Target platform GPU ++ GPU (NV) GPU (AMD)
Abstraction API API, compiler API, compiler
Host language C C, C++ C++
Kernel language C99-based C99-based, some C++ C99-based
Memory model ~PGAS ~PGAS Data streams
Task-parallelism Full Streams Streams
Ease of use *k *% *k
Maturity * * K K *k

m CUDA: designed to expose the compute capabilities of Nvidia
GPUs. Supports C++ kernels. Currently, most popular choice.

m Brook+: designed to expose the compute capabilities of
AMD GPUs. Higher abstraction level.

m OpenCL: Upcoming industry standard, SDKs from Nvidia
and AMD released fall 2009.

@ SINTEF i 14/34

Algorithms

9000000000000

Dense linear algebra

Application areas

Important building block for a wide range of applications, including
simulations

v

Characteristics

m Highly optimized libraries exist for a wide range of
architectures, including GPUs

m Practically branching free

m Linear memory access pattern

a1l a2 az X1 by
a1 ax»n ax x | = | b
a3y axp ass X3 bs

@ SINTEF 15/34

Algorithms

0@®00000000000

Dense matrix-vector product

Characteristics
m Each matrix element is used only once

GPU results

m Parts of the vector can be kept in shared memory

m Bandwidth limited, making it unable to take advantage of
wide parallel architectures

m The high bandwidth makes GPUs attractive choice

a;; app a3 X1 b,
a1 ax» az X2 | = b
az] asp ass X3 b3

@ SINTEF 16/34

Algorithms

0000000000000

Dense matrix-matrix product

Characteristics
m No dependant data accesses

m High reuse of data

GPU results
m Blocks of the matrices can be kept in shared memory

m Near peak floating-point performance can be achieved for a
wide range of architectures. (Volkov & Demmel, 2008)

a;; app as bi1 bi2 b3 c11 €12
a1 ax» axs by1 by b3 | = | o1 o
al a3 as3 b31 b3z bs3 1 C32

C13
3
C33

@ SINTEF

17/34

Algorithms

000®000000000

Sparse matrix-vector multiplication

Application areas

Commonly used as part of linear solver, i.e. conjugate gradient
methods

Characteristics
m Only nonzero matrix elements are stored
m Unstructured memory accesses
m Divergent control flow

m Difficult to get high performance (also for CPU
implementations)

m CPU implementations typically achieve 10% bandwidth
utilization and less than 1% compute utilization
(Goddeke et al., 2007)

m Performance is problem dependent

@ SINTEF 18/34

Algorithms

[e]e]e]e] Jele]elele]e]o]e]

Sparse matrix-vector multiplication (cont)

GPU results

One of the first problems studied for GRGPU
(Kriiger & Westermann, 2003)

Hybrid data format for GPU implementation

To overcome unbalanced workloads and non-coalesced memory
reads, one may use hybrid data formats

Store structured parts of the matrix in a dense format.

Remaining elements are stored in sparse format

Many matrices can be reorganized to improve efficiency

[
m Performance is related to the efficiency off the dense matrices
[

m 10x faster than CPU implementations (Bell & Garland, 2008)

v

@ SINTEF 19/34

Algorithms

N-body
Application areas
Particle simulation, SPH, the Millennium Run etc. J

(Source: wikipedia.org) (Source: SINTEF)

@ SINTEF 20/34

Algorithms

0000008000000

N-body (cont)

Characteristics
m All particles affect each other

m Can be simplified by treating groups far away as a single
contribution

m Each particle can be computed independently

GPU challenges
m Unstructured memory access

m Finding nearest neighbors

@ SINTEF

21/34

Algorithms

0000000e00000

Stencil computations

Application areas

PDE solvers and image processing

Characteristics
Weighted average of a neighborhood is computed for each cell in
the grid.

m Typically bandwidth limited

@ SINTEF 22734

Algorithms

0000000080000

Stencil computations (cont)

GPU results
m Performance improvement by domain decomposition

m Nonlinear schemes can yield up to 30x speedup
(Hagen et al., 2005)

@ SINTEF 23/34

Algorithms

0000000008000

Stream compaction and expansion

Stream compaction

m Make compact stream of arbitrarily input stream elements

Input stream [0]1]2]3]4|5[6]7]8]9]10[11]12[13[14]15|

Output stream |[1[3[4]6]8[9]10/15]

Stream compaction and expansion

m Allow input stream elements repeat in output stream

Input stream [0]1]2]3][4[5]6][7]8]9]10[11]12][13[14]15|

K

Output stream [1]3]4[4]6]8[8]9]9]10[15]

A
§

@ SINTEF

24/34

Stream compaction and expansion (cont)

Application areas

Search or reorganization of data

Characteristics
m Trivial if programmed serially

m Tricky to do efficiently in parallel

GPU results

m CUDPP library (Harris et al., n.d.)
m Implements scan (Hillis & Steele Jr, 1986), (Blelloch, 1990)
m Work-horse for a variety of algorithms
m Requires scatter write

m Histogram Pyramids (Ziegler et al., 2006; Dyken et al., 2008)

m Good for sparse extraction
m No scatter, can be implemented in plain OpenGL.

@ SINTEF 25734

Algorithms

0000000000080

Sorting

Application areas

Sorting is useful in a wide range of applications, including
computer graphics and databases

Characteristics
m Traditional approaches (quicksort) do not map to modern
processors

m Hard to parallelize (load balancing)
m Hard to vectorize

@ SINTEF 26/34

Algorithms

000000000000 e

Sorting (cont)

GPU results

m Early GPU algorithms are based on Batcher's sorting network
(Purcell et al., 2003)

m Current GPU algorithms is based on two-step algorithm
m Sort a sub-vector fitting in shared memory
m Merge the sub-vectors

m This strategy is also well suited for multi-core CPUs
(Satish et al., 2008)

@ SINTEF 27/34

Conclusion

Concluding remarks

m Wide area of applications can benefit from GPU computing

m Concepts from GPU computing is useful for multicore CPUs
m Algorithms must become data parallel

m Serial code utilize 6% of CPU potential (4-core SSE)
m Existing code must be redesigned and rewritten
(not just a new compile target. . .)
m Redesigned code tend to execute 10x faster on the GPU

m Industry adoption is considerate and growing

@ SINTEF 28/34

Thank you for your attention!

@ SINTEF 29/34

References

Bibliography I

BELL, N., & GARLAND, M. 2008 (Dec.).
Efficient sparse matrix-vector multiplication on CUDA.
NVIDIA Technical Report NVR-2008-004. NVIDIA
Corporation.

BLELLOCH, G. 1990 (Nov.).
Prefix sums and their applications.
Tech. rept. CMU-CS-90-190. School of Computer Science,
Carnegie Mellon University.

DYKEN, C., ZIEGLER, G., THEOBALT, C., & SEIDEL, H.-P.
2008.
High-speed marching cubes using histogram pyramids.
Computer graphics forum, 27(8), 2028-2039.

@ SINTEF 30/34

References

Bibliography II

GODDEKE, D., STRZODKA, R., MOHD-YUSOF, J.,
McCoORMICK, P., BUIJSSEN, S., GRAJEWSKI, M., &
TUREK, S. 2007.

Exploring weak scalability for FEM calculations on a
GPU-enhanced cluster.
Parallel comput., 33(10-11), 685-699.

HaGen, T., HIJELMERVIK, J., LiE, K.-A., NaATvIG, J., &
HENRIKSEN, M. 2005.
Visual simulation of shallow-water waves.
Simulation modelling practice and theory, 13(8), 716-726.

@ SINTEF 31/34

References

Bibliography IIT

HARRIS, M., OWENS, J., SENGUPTA, S., ZHANG, Y., &
DAVIDSON, A.
CUDPP: CUDA data parallel primitives library.
http://www.gpgpu.org/developer/cudpp/.
[visited 2009-03-20].

Hicvus, W., & STEELE JR, G. 1986.
Data parallel algorithms.
Commun. acm, 29(12), 1170-1183.

KRUGER, JENS, & WESTERMANN, RUDIGER. 2003.
Linear algebra operators for gpu implementation of numerical
algorithms.
Pages 908916 of: Siggraph '03: Acm siggraph 2003 papers.
New York, NY, USA: ACM.

@ SINTEF 32/34

http://www.gpgpu.org/developer/cudpp/

References

Bibliography IV

PuUrcCELL, T., DONNER, C., CAMMARANO, M., JENSEN, H.,
& HANRAHAN, P. 2003.
Photon mapping on programmable graphics hardware.
Pages 41-50 of: Eurographics.
Eurographics Association.

SATISH, N., HARRIS, M., & GARLAND, M. 2008 (Sept.).
Designing efficient sorting algorithms for manycore GPUs.
NVIDIA Technical Report NVR-2008-001. NVIDIA.

Vorkov, V., & DEMMEL, J. 2008.
Benchmarking GPUs to tune dense linear algebra.
Pages 1-11 of: Supercomputing.
Piscataway, NJ, USA: IEEE Press.

@ SINTEF 33/34

Bibliography V

ZIEGLER, G., TEvVS, A., THEOBALT, C., & SEIDEL, H.-P.
2006.
GPU point list generation through histogram pyramids.
Tech. rept. MPI-1-2006-4-002. Max-Planck-Institut fiir
Informatik.

@ SINTEF 34/34

	Introduction
	

	GPU Basics
	

	Algorithms
	

	Conclusion
	References

