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Application: petroleum production and CO, storage

Simulation support for two main areas:

» Increase recovery of petroleum resources (planning and
management): understand reservoir and fluid behavior, test
hypotheses and scenarios, assimilate data, optimize
production, etc.

» Ensure storage of carbon: how fast can one inject, will the
injected CO5 leak, where will the CO2 move?

— robust, efficient, and accurate simulation methods for partial
differential equations with highly heterogeneous parameters on
complex grids

)
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Porous media flow — a multiscale problem

The scales that impact fluid flow in subsurface rocks range from
» the micrometer scale of pores and pore channels
» via dm-m scale of well bores and laminae sediments

» to sedimentary structures that stretch across entire reservoirs




Porous media flow — a multiscale problem
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Example: injection and migration of CO,

Physical process:

>

supercritical CO2 injected into an aquifer
or abandoned reservoir

forms a liquid phase that is lighter, less
dense, and weakly soluble in water

the CO2-phase will migrate upward in the
formation, limited above by the caprock,
displacing the resident brine

the displacement front is mainly driven by Trapping Dissolusion
gravity (but also processes like

dissolution, vaporization, salt

precipitation, drying, etc) Egjd“a'



Example: injection and migration of CO,

Spatial scales: | -

—> -

» horizontal extent of geological formation:
10-100 km

» height of formation: 10-200 m
» the tip of the COz-plume: 0.1-1 m

Structural &
stratigraphic

trapping

Time scales:
Residual CO,
trapping =/

» pressure buildup: hours
» injection period: 20-50 years
» migration: 100-10000 years

Trapping contribution %

1 10 100 1,000 10,000

See plenary talk by Prof. M. Celia. Time sino nfecton sops years)




Macroscopic models of flow in porous media

» Single-phase, incompressible flow: conservation of mass + Darcy’s law:

T=-p"'KVp, V.i=gq

» Multiphase, compressible flow:

7= —AK(Vp— ijfjﬁ
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Grid — volumetric representation of the res

The structure of the reservoir (geological surfaces, faults, etc)




Grid — volumetric representation of the reservoir

Industry standard: stratigraphic grids (corner-point, 2.5D PEBI, etc)

Geometrical and numerical challenges: high aspect ratios, unstructured
connections, many faces/neighbors, small faces, ...

- \/




Research challenge: consistent discretizations

Poisson type problem:
V-7=g, U:fpflKVp

Design of methods capable of handling anisotropic e
(full-tensor) K on general polyhedral grids with curved faces vy

Basic discretization — relation between flux and pressure on
a single cell £ 3

Mvg =pe —m
1 _
M= 5 OK 1T+ QLESuQLT
General class: TPFA, MPFA, mixed, mimetic, ...

Mixed (hybrid) formulation:




Research challenge: consistent discretizations

TPFA mimetic MPFA
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Homogeneous K = diag([1, 1000]) rotated 30°, pressure drop from left to right



Research challenge: computationally efficient/tractable

Simulators incapable of handling required model
detail. Example:

> geological models: 107-10° cells

> simulators: 10°-10° cells

Demand for complexity is continuously increasing. SR
Upscaling (homogenization): bottleneck

Particular challenge: lack of scale separation in workflow, inefficent and not
sufficiently robust



Research challenge: computationally efficient/tractable

Simulators incapable of handling required model a
detail. Example: ek
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> geological models: 107-10° cells ;‘%"' H
N T
» simulators: 10°-10° cells ﬁ» ' i
Demand for complexity is continuously increasing. i |

Upscaling (homogenization): bottleneck

Particular challenge: lack of scale separation in workflow, inefficent and not
sufficiently robust

Multiscale methods

» Up-/downscaling in one step
P Pressure on coarse grid

. » Fluxes on fine grid

Incorporate impact of subgrid
heterogeneity in approximation spaces

Advantages: utilize more geological data,
more accurate solutions, geometrical
flexibility




Multiscale methods

Coarse partitioning: Flow field with subresolution:
- , T
BFE s
[ 4 ‘ d 0
] i ]

4

Local flow problems:

R -




Multiscale mixed finite elements

Make the following assumption

v=Vou,+v

p=Ip.+p W — matrix with basis functions
T - prolongation from blocks to cells
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Multiscale mixed finite elements

Make the following assumption
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Multiscale mixed finite elements

Make the following assumption

v=Vou,+v

p=Ip.+p W — matrix with basis functions
T - prolongation from blocks to cells

Reduction to coarse-scale system:
' o0][B Cl[®v.+%] [ O
o I'||cT o] |-Zp.-p) |T'q

[\IITB\I' \IITCI} { 'vc} —¥¢'By + ¥'Cp
T ~T
I'c'w 0 —p, .- T7CTo

10/22



Multiscale mixed finite elements

Make the following assumption Multiscale basis function:

0= vt o o) 3] =[]

p=Ip.+p

Set of equations located to coarse
blocks. Flow driven by weight w

Reduction to coarse-scale system:
v' o][B C|[Wv.+3] [0
o I'[[C" o] |-Ip.-p| |TI'q

[\IITB\II \I:TCI} [ vc} —~U'Bp + ¥'Cp
T ~T
Icvy 0 —Pc q, — ITCT’I)
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Multiscale mixed finite elements

Make the following assumption Multiscale basis function:

0= vt o o) 3] =[]

p=Ip.+p

Set of equations located to coarse
blocks. Flow driven by weight w

Reduction to coarse-scale system:
v' o][B C|[Wv.+3] [0
o I'[[C" o] |-Ip.-p| |TI'q

[\IITB\II \I:TCI} [ vc} 9B + ¥'Cp
T ~T =
I C \Il 0 _pc o ITCT’Z)

Additional assumptions:

© Since p is immaterial, assume w'p = 0./ Hence, p} = finp dx
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Multiscale mixed finite elements

Make the following assumption Multiscale basis function:

0= vt o o) 3] =[]

p=Ip.+p

Set of equations located to coarse
blocks. Flow driven by weight w

Reduction to coarse-scale system:
v' o][B C|[Wv.+3] [0
o I'[[C" o] |-Ip.-p| |TI'q

—¥'By + ¢'Cp

v'BY 9'CT|[ v.]
I'c'e 0 -p.]

Additional assumptions:
@ Since p is immaterial, assume wa) = 0. Hence,

@ Assume that W spans velocity space, i.e., v = 0.
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Constructing multiscale basis functions

Example: Velocity basis function t);; solves a
local system of equations in €2;;:

bij = —p 'KV

wi(i:'), if € Q,,
Vi ={ —w;(F), ifTFeQ,
0, otherwise.

with no-flow conditions on 9%2;;

Source term: w;  trace (K;) drives a unit flow
through T';;.

If there is a sink/source in Tj, then w; x g;.

Alternative: use good approximation to set 'global’ boundary conditions for
each block
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Residual correction

To get a convergent method, we need to also account for variations that
are not captured by the basis functions! — solve a residual equation

B C Yo, + v |0
C' 0||-Ip.—D,®v.—p| |q

1 L .
The term C D , v corresponds to subscale pressure variations modelled by the numerically computed
basis functions for pressure, which should scale similar to ¥ since B¥ — C® = 0.
12 /22



Residual correction

To get a convergent method, we need to also account for variations that
are not captured by the basis functions! — solve a residual equation

B C Yo, + v |0
C' 0||-Ip.—D,®v.—p| |q

FaE

To solve this equation, we will typically use a (non)overlapping

(CD\® — BY)v.+ CZTIp,
qg—C o,

domain-decomposition method.

1 L .
The term C D , v corresponds to subscale pressure variations modelled by the numerically computed
basis functions for pressure, which should scale similar to ¥ since B¥ — C® = 0.
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. flexible generation of coarse grids

(Unique) grid flexibility:
Given a method that can solve local flow problems on the subgrid, the

MsMFE method can be formulated on any coarse grid in which the
coarse blocks consist of a connected collection of fine-grid cells




Advantage: flexible generation of coarse grids
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Advantage: computational efficiency

Multigrid will often be more efficient when computing pressure once.

Why bother with multiscale pressure solvers?

» Full multiphase simulation:

O(10%) time steps. ‘ ‘
» Basis functions need not be 1 |
recomputed or be updated il Fine scale solution (AMG) O(nt-2)
infrequently st
Also: F

> Lower memory requirements —
possible to solve very large
problems i

» Easy parallelization — 8x8x8 16x16x16 32x32x32 6AXBAXBA
3 . . Coarse grid, derived from fine-scale 1283 grid
computation of basis functions



Where can multiscale methods be used?

Typical applications
» 'Interactive’ screening of flow patterns during geological modelling
» Simulation of multiple realizations to quantify uncertainty
» Production optimization: well rates, well placement, ...

» History matching

Key ideas:

» Having 80-90% of the answer in 5-10% of the time enables
geologists and engineers to explore more modelling choices

» 'Full physics’ is seldom needed early in the modelling workflow,
focus on the important effects

15 /22



Example: highly efficient streamline simulation

SPE 10, Model 2:

Fine grid: 60 x 220 x 85
2000 days production
25 time steps

Inhouse code from 2005:
multiscale: 2 min and 20 sec
multigrid: 8 min and 36 sec

Fully unstructured Matlab/C
code from 2010:

mimetic : 5-6 min

Watercut

Water-cut curves at the four producers

Producer A Producer B
1 1
08 08
06 506
15
g
04 S04
02 02
lested Gridding lested Gridding
(] 500 1000 1500 2000 (] 500 1000 1500 2000
Time (days) Time (days)
Producer C Producer D
1 1
08 08
06 506
15
g
04 S04
02 eference 02
1SMFEM ISMFEM
lested Gridding lested Gridding
500 1000 1500 2000 0 500 1000 1500 2000
Time (days) Time (days)

= upscaling/downscaling, ==

multiscale, == fine grid
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Example: highly efficient streamline simulation

Computational efficiency of a prototype code fine-scale mimetic versus a
multiscale mimetic solver in a commercial solver. Neither prototypes have been
optimized

Three versions of the SPE10 model (upscaled, original, 3 x 3 repeat)

Model Solver Grid Steps Init Basis Assembly Pressure Transp Total
56 k AMG 30x110x17 13 3 — 26 96 2 129
50 8 — 89 261 14 373

M-S 6x 22x17 13 3 13 2 2 5 27

50 F 11 2 4 18 44

1.1 M AMG 60 %220 x 85 13 46 — 525 1,787 38 2,424
M-S 12x 44x17 13 46 350 27 14 45 514

10M AMG 180 660 x 85 13 470 — 4,803 25,538 398 31,401
M-S 36x132x17 13 470 2,597 193 169 305 3,925
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Example: history-matching a million-cell model

Assimilation of production data to calibrate model
» 1 million cells, 32 injectors, and 69 producers
» 2475 days = 7 years of water-cut data

Generalized travel-time inversion (quasi-linearization of misfit functional) with
analytical sensitivities along streamlines, Datta—Gupta et al.

CPU-time (wall clock)
Solver Total Pres. | Transp.
Multigrid 39 min | 30 min 5 min
Multiscale 17 min 7 min 6 min

Computer: 2.4 GHz Core 2 Duo, with 2 GB RAM
History match: 7 forward simulations, 6 inversions

No parallelization of basis functions, streamline tracing, and 1D transport solves

17 /22



Example: rate optimization

Adjoint-based multiscale method:

Grid model: from offshore Norway

x10°
== =Oil initial
= QOil optimized L=
== =Waterinial = _~T.--"" .
—— Water optimized

Cum.Prod. [m]
R
« B K&

o N » o

o

2 4 6
Time [years]

Forward simulations:
44 927 cells, 20 time steps,

< 5 sec in Matlab, ~ 100x speedup

of water-flood

Specialized simulator with different
grid for pressure and transport solvers

Pressure grid:

In addition: efficient communication
between the two coarse grids
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Current research: MsMFE for compressible flow

Simplest approach — four key components:

@ Elliptic basis functions, constructed with w(z) x ¢(x)

AL A P
LPZ“] | T'g,

@ Coarse-scale system

v'BY v'CcT
I"(c'v-P,D\® I'P,T

© Residual equation

¢t Pl|-p"" " g ~TT(CT¥ - P,D\®)v. + TP, Ip,

[B C] [ @”H] B [ f.— ¥ BWv, + ¥ CIp,
b

@ lterations over multiscale and residual equations
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Example: primary production

v

Shallow-marine reservoir (realization
from SAIGUP)

Model size: 40 x 120 x 20
Initially filled with gas, 200 bar
Single producer, bhp=150 bar

Rate in well perforation (m?3/day)

vVvyyvyy

Multiscale solution for different
tolerences compared with fine-scale
reference solution.

01 10 100 100.0 1000.0
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Presented a multiscale framework that can be used to reduce
computational complexity by

» resolving effects on different scales
» utilizing sparsity
> (systematically) reusing computations

Well tested for two-phase, incompressible flow. Research needed for more
complex flow physics:

» basis function dictionary by bootstrapping
» model reduction

» better error control

21/22



Matlab Reservoir Simulation Toolbox (MRST)

MRST core

P routines for creating and manipulating grids and physical
properties

» basic incompressible flow and transport solvers

Modules

Add-on software that extends, complements, and overrides existing MRST features.

Presently implements more advanced solvers and tools:
» adjoint methods, experimental multiscale, fractures, MPFA, upscaling
» black-oil models, three-phase flow, vertically integrated models, ...
P streamlines, (flow-based) coarsening, ...

» Octave support, C-acceleration, ...

Download

http://www.sintef .no/MRST/

Version 2011a was released on the 22nd of February, 2011, and can be downloaded
under the terms of the GNU General Public License (GPL)
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