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Abstract. We analyse and further develop a hierarchical multiscale method for the numerical
simulation of two-phase flow in highly heterogeneous porous media. The method is based upon a
mixed finite-element formulation, where fine-scale features are incorporated into a set of coarse-grid
basis functions for the flow velocities. By using the multiscale basis functions, we can retain the
efficiency of an upscaling method by solving the pressure equation on a (moderate-sized) coarse grid,
while at the same time produce a detailed and conservative velocity field on the underlying fine grid.

Earlier work has shown that the multiscale method performs excellently on highly heterogeneous
cases using uniform coarse grids. In this paper, we extend the methodology to nonuniform and
unstructured coarse grids and discuss various formulations for generating the coarse-grid basis func-
tions. Moreover, we focus on the impact of large-scale features such as barriers or high-permeable
channels and discuss potentially problematic flow cases. To improve the accuracy of the multiscale
solution, we introduce adaptive strategies for the coarse grids, based on either local hierarchical
refinement or on adapting the coarse grid more directly to large-scale permeability structures of
arbitrary shape. The resulting method is very flexible with respect to the size and the geometry
of coarse-grid cells, meaning that grid refinement/adaptation can be performed in a straightforward
manner. The suggested strategies are illustrated in several numerical experiments.

Key words. multiscale finite element methods, two-phase flow, porous media, reservoar simu-
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1. Introduction. Flow in porous rock formations occurs on a wide span of
length scales, from the micrometre scale of short and narrow pore channels to, for
instance, the size of huge oil and groundwater reservoirs possibly stretching across
several tens of kilometres. Petroleum reservoirs, for instance, are often created by a
series of geological processes and may contain rock types with very different abilities
to transmit fluid flow. The permeability (conductivity) of the porous rock formations
may therefore span several orders of magnitude, from nearly impermeable barriers
to high-permeable flow channels. In addition, fractures and faults may penetrate
the entire reservoir in the vertical direction, causing sharp transition zones. Finally,
in fluvial reservoirs the predominant flow may follow intertwined flow channels that
form a highly irregular pattern. It is obvious that with this type of complexity, one
cannot hope to model all pertinent scales that impact flow in heterogeneous porous
media. Instead it is customary to create models for studying phenomena occurring
at a specific length scale, or at a limited range of length scales only. This, however,
cannot be done rigorously without also linking the particular model to appropriate
subscale and large-scale flow models, i.e., taking the multiscale nature of the problem
into account.

Multiscale problems pose a continuing challenge to mathematical modelling and
simulation, and many different techniques have been proposed. The use of upscaling,
i.e., the design of ‘coarse’ grid models by using some kind of averaging procedure
to derive suitable parameterisations of the relevant geophysical quantities such as
porosity and permeability, is widespread in both reservoir simulation and groundwater
hydrology, see e.g., [8, 11, 12, 26, 27]. The motivation behind this approach is to get
a quantitative picture of the general flow behaviour at the coarse scale. Available
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information about the fine-scale heterogeneous structures is therefore discarded once
the upscaling has been performed. Thus, in standard flow modelling using upscaling, it
is in general not possible to recover fine-scale flow patterns from the upscaled solution
on a coarse grid in a mathematically rigorous way. In other words, the fine-scale
details are lost and one can at best hope to capture the large-scale features of the flow
pattern.

In recent years, it has been recognised that it is important to incorporate inter-
scale effects for many problems exhibiting a multiscale structure. That is, to correctly
model a phenomenon at a given range of length scales, one often has to take into ac-
count effects from physical phenomena occurring also at length scales outside the
primary range of interest. For instance, to model large-scale flow behaviour in a
porous medium correctly it is necessary to simultaneously model small-scale flow pat-
terns. This realisation has spurred the development of so-called multiscale methods,
see e.g. [18, 19, 7, 4, 25, 15, 16, 10]. In these methods the impact of small-scale
structures are incorporated into a set of coarse-scale equations in a way that is math-
ematically consistent with the local property of the differential operator. Moreover,
many multiscale methods are designed so that it is easy to recover fine-scale details
from the coarse-grid solution.

In this paper we consider a multiscale mixed finite-element method (MsMFEM)
that has been applied successfully to simulate two-phase flows in strongly heteroge-
neous porous media [1, 2]. The method is a variant of the MsMFEM introduced by
Chen and Hou in [10], and also closely related to the subgrid upscaling introduced by
Arbogast [7, 4, 5]. The connection between these two approaches has recently been
addressed in [6]. We also mention here work by Kuznetsov et al. [24, 23], where
the focus is on mixed FEMs for general polygonal/polyhedral grids rather than on
multiscale properties. In fact, the method suggested in [24, 23] is very similar to the
method of Chen and Hou [10] (without oversampling) if the fine subgrid is taken as a
triangular/tetrahedral sub-partitioning.

The main idea behind the MsMFEM is to model fine-scale patterns in the velocity
field by computing special finite-element base functions that reflect the impact of the
fine-scale heterogeneous structures. In this two-grid approach, the pressure equation
is solved on a coarse grid using locally defined basis functions that are computed
numerically by solving flow problems on an underlying fine grid. In other words, large
scale effects are accounted for by the degrees of freedom on a coarse grid, and fine-scale
effects are accounted for by subresolution in the basis functions. Using results from
homogenisation theory (see e.g., [9, 17, 22]), Chen and Hou [10] were able to derive
convergence estimates for problems with two-scale periodic coefficients. However,
because this method is mass conservative on the fine scale only up to the treatment
of wells, the fine-scale velocity field recovered from the coarse-scale solution cannot
model fine-scale flow correctly. Aarnes [1] therefore proposed a modification of the
method, where special care was taken to ensure a fine-scale conservative velocity field
also in the coarse bocks containing wells. Hence, using this method for the elliptic
pressure equation makes it possible to simulate fluid transport without employing
time-consuming and potentially unreliable upscaling procedures for the fluid transport
equations. We note that the subgrid upscaling approach [7, 4, 5] also produces a fully
conservative fine-scale velocity field, and thus seems to be the first appearing related
method fulfilling this property.

Durlofsky et al. [13] proposed an alternative approach to avoid upscaling the
transport equation. Their idea was to employ nonuniformly coarsened grids with low
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resolution in low-flow regions and high resolution in high-flow regions. Thus, instead
of modelling subgrid effects explicitly, the authors proposed to minimise errors caused
by disregarding subgrid effects by introducing higher grid resolution in regions where
subgrid terms otherwise would be important. Here we borrow ideas from the nonuni-
form coarsening approach to improve the accuracy and robustness of the MsMFEM.
Experience has shown that we may loose accuracy when large scale features pene-
trate a coarse grid block. However, this loss of accuracy does not necessarily occur in
high-flow regions, but rather in regions of rapid change of flow due to, for instance,
a barrier of very low permeability that transverses a coarse grid block. Hence, for
the current purpose it is clear that we need to select different grid refinement criteria
than the ones employed in [13].

The main objectives in this paper are: (i) extend the hierarchical multiscale
method (MsMFEM) to nonuniform and unstructured coarse grids; (ii) identify in
which situations the method suffers from loss of accuracy; (iii) select criteria that de-
tect the problems; and (iv) propose efficient remedies based on nonuniform coarsening.
We shall see that the MsMFEM is very flexible with respect to grid-block geometries
and that this facilitates very general grid-refinement procedures, since we have few
restrictions on the shape of the resulting grid blocks. However, one should keep in
mind that the MsMFEM operates on two grids, and that refining the coarse grid need
not necessarily improve the accuracy. The reason for this is that heterogeneities in the
coefficients are accounted for in two different ways in the MsMFEM: fine-scale hetero-
geneities are incorporated in basis functions giving subgrid resolution, while large-scale
flow-patterns are taken into account when solving the coarse-grid problems. Thus, in
the decision of a suitable coarse grid, the scales may pull us in opposite directions;
fine-scale features with short correlation length are best resolved in large coarse-grid
blocks, while structures with long correlation lengths are often too large to be resolved
in the basis functions and may be better resolved using small coarse-grid blocks. This
illustrates that grid-refinement strategies for the multiscale method may be very dif-
ferent from strategies used for conventional (single-scale) method and that finding an
optimal coarse grid may be nontrivial. On the other hand, the multiscale method is
seldom very sensitive in practise to the choice of a coarse grid. Therefore, the combi-
nation of subscale resolution and flexibility and robustness with respect to the choice
of a coarse grid makes the MsMFEM a highly versatile tool for flow simulations in
strongly heterogeneous porous media.

The paper is organised as follows. In Section 2 we introduce the mathematical
model for two phase incompressible flow. In Sections 3 and 4 we describe the multiscale
mixed FEM and discuss relevant choices of approximation spaces. Griding strategies
are presented in Section 5 and several numerical examples in Section 6.

2. A Two-Phase Model for Incompressible Flow. We consider a model for
incompressible two-phase flow with no gravity or capillary pressure. The equations
are derived from conservation of mass for each phase j:

φ
∂Sj

∂t
+∇ · vj = qj , (2.1)

where the phase velocities vj are given by Darcy’s law:

vj = −λj(Sj)K∇pj . (2.2)

Here φ is the porosity, Sj is the saturation of phase j (fraction of the void occupied
by phase j), and qj is a source (or sink) term. In the Darcy equations, K is the
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permeability tensor, pj is the phase pressure, and λj is the phase mobility given by
λj(Sj) = krj(Sj)/µj , where krj and µj are the relative permeability and viscosity of
phase j, respectively. The relative permeability models the reduced conductivity of
a phase due to the presence of other phases, and is, according to common practise,
assumed to be a function of the saturations only.

Let the two phases be oil and water (j = o, w). Since we neglect effects from
capillary pressure so that ∇po = ∇pw, we might as well assume po = pw = p. Then
the Darcy equations combined with conservation of mass yield the pressure equation:

v = −(λw + λo)K∇p, ∇ · v = q, (2.3)

where v = vw + vo and q = qw + qo. We assume that the two phases occupy the
void space completely and introduce the water fractional flow fw = λw/λ, where
λ(Sw) = λw(Sw)+λo(1−Sw) is the total mobility. We may then write the conservation
equation for water, henceforth called the saturation equation, as follows:

φ
∂Sw

∂t
+∇ · (fwv) = qw. (2.4)

In the following we will, for ease of notation, drop the subscripts of Sw and fw. As
in [1], the system of equations (2.3)–(2.4) will be solved using a sequential splitting,
where the pressure equation at each time step is solved with the MsMFEM using coef-
ficients depending on saturation values from the previous time step, and the saturation
equation is solved with an upstream-weighted finite-volume method (see Section 6).

3. A Multiscale Method for the Pressure Equation. The concept of a
multiscale mixed finite-element method for solving second-order elliptic problems with
coefficients spanning multiple scales was first introduced by Arbogast et al. [7], and
in the formulation we use in this paper by Chen and Hou [10]. In the following
(sub)sections we will review the MsMFEM of [1, 2, 3] and show how the method can
be extended to nonuniform and unstructured coarse grids.

3.1. Mixed Finite Elements. Let Ω be a domain in Rd, and denote by ν the
outward-pointing unit normal on ∂Ω. Consider now the pressure equation (2.3) in Ω
with no-flow boundary conditions, i.e., v · ν = 0 on ∂Ω. Note that in this case p is
defined only up to a multiplicative constant, so one needs an additional constraint
such as

∫
Ω
p dx = 0 to close the system. We introduce next the function space

Hdiv
0 (Ω) =

{
v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω) and v · ν = 0 on ∂Ω

}
.

The current mixed FEM discretisation of the pressure equation seeks a pair (v, p) ∈
U × V , where U and V are finite-dimensional subspaces of Hdiv

0 (Ω) and L2(Ω), re-
spectively, such that∫

Ω

v · (λK)−1u dx−
∫

Ω

p∇ · u dx = 0, for all u ∈ U, (3.1)∫
Ω

l∇ · v dx =
∫
ql dx, for all l ∈ V. (3.2)

Thus, letting {ψi} and {φk} be bases for U ⊂ Hdiv
0 (Ω) and V ⊂ L2(Ω), we obtain

approximations v =
∑
viψi and p =

∑
pkφk, where the coefficients v = {vi} and

p = {pk} solve the linear system[
B C
CT O

] [
v

−p

]
=

[
0
q

]
. (3.3)
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Ti

Tj

Fig. 3.1. A general coarse grid overlying a uniform fine grid. The shaded region shows the
support domain of basis function ψij .

Here B = {bij}, C = {cik}, and q = {qk} are defined by

bij =
∫

Ω

ψi · (λK)−1ψj dx, cik =
∫

Ω

φk∇ · ψi dx, and qk =
∫

Ω

φkq dx.

In standard discretisation methods the spaces U and V typically consist of low-order
piecewise polynomials. In multiscale methods, however, one requires that the basis
functions should be adaptive to the local property of the differential operator. We will
denote the approximation spaces for our MsMFEM by Ums and V . For incompressible
flows the actual pressure solution is immaterial for the flow simulation, only the
velocity field is needed. We will therefore construct a multiscale approximation space
Ums for velocity only and use a standard approximation space V for pressure as
described in the next subsection. We return to a more thorough discussion of the
approximation space Ums for velocity in Section 4.

3.2. The MsMFEM Approximation Spaces. The main focus of this paper
is a completely local version of the MsMFEM (see [3]); that is, a multiscale method
for which no a priori knowledge of the global flow pattern is assumed. This version
is described next. In Section 3.2.2, we also describe the global approach from [1],
where information from a global velocity field computed directly on the fine grid is
incorporated into the basis functions.

Let K = {Km} be a partitioning of Ω into mutually disjoint grid cells. Fur-
thermore, let T = {Ti} be a coarser partitioning of Ω, in such a way that whenever
Km∩Ti 6= 0 then Km ⊂ Ti. As an example, consider Figure 3.1. Here the fine grid K
is uniform, while the coarse grid T has cells of more arbitrary shapes. Let Γij denote
the non-degenerate interfaces Γij = ∂Ti∩∂Tj . For each Γij we assign a basis function
ψij ∈ Ums, and for each Ti we assign a basis function φi ∈ V .

3.2.1. Local Basis Functions for Velocity. In the local approach, a basis
function ψij corresponding to an interface Γij is obtained by forcing a unit displace-
ment from cell Ti to Tj . That is, in the subdomain Ωij = Ti ∪ Γij ∪ Tj we solve
(approximately) a local flow problem of the form

ψij = −λK∇φij , ∇ · ψij =

{
wi(x), for x ∈ Ti,

−wj(x), for x ∈ Tj ,
(3.4)

with ψ · ν = 0 on ∂Ωij , where ν is the outward-pointing unit normal to ∂Ωij pointing
from Ti to Tj . Here wi(x) is a source distribution function assigned to Ti. The source
function is normalised such that

∫
Ti
wi = 1. For cells containing a well, i.e., for all Ti
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Heterogeneous coefficientsHomogeneous coefficients

Fig. 3.2. Velocity basis function associated with an edge between two cells of different size in
2D. The plots show the x-component in the case with homogeneous and heterogeneous coefficients,
respectively.

such that
∫

Ti
q 6= 0, we make a special choice of the weight function,

wi(x) =
q(x)∫

Ti
q(ξ) dξ

, (3.5)

to ensure a conservative approximation on the fine grid (see Section 3.2.3). For cells
with no source, the weight function wi(x) can, at least in principle, be chosen almost
arbitrarily. A simple approach is to use a uniform source, i.e., choose wi(x) = 1/|Ti|,
which we will assume henceforth. In Section 4.1 we give a more thorough discussion
of what are the appropriate choices for wi(x).

3.2.2. Global Basis Functions for Velocity. Assume now that a global fine-
grid velocity field v has been computed in advance, e.g., based on the initial saturation
distribution. It might then be a good idea to exploit information from this solution
in the construction of the velocity basis functions. Indeed, for basis functions with
support domain Ωij as defined above, we know that vms is determined solely by the
behaviour of the base functions at the coarse-grid interfaces. In particular, if νij is
the unit normal to Γij pointing from Ti to Tj and

ψij · νij |Γij
=

(v · νij)|Γij∫
Γij

(v · νij) ds
,

then vms = v (see Section 3.2.3). Thus, we are able to replicate v by imposing this
type of boundary conditions at the coarse-grid interfaces. This means that, instead
of solving only one local pressure equation in Ωij for each base function ψij , we must
solve one pressure equation in Ti and one pressure equation in Tj to compute the base
function ψij associated with Γij .

This approach is clearly not very useful if the pressure equation needs to be solved
only once, but for multiphase flow simulations, where the pressure equation is solved
repeatedly throughout the simulation, solving for (p, v) once on a fine grid can be
justified. To illustrate, let v denote an initial fine-grid velocity field. To define a
multiscale basis function ψij associated with Γij at time tn, we may therefore use
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(3.4) subject to the following boundary conditions

ψij · νij = 0 on ∂Ωij

ψij · νij =
µij(x, tn)∫

Γij
µij(s, tn)ds

, µij(x, t) =
λ(x, t)
λ(x, t0)

(v(x) · νij) on Γij .

In the global approach, the choice of source distribution wi(x) in cells without sources
has no effect on vms, so we use simply wi = 1/|Ti|. This option was considered in
[1, 2].

3.2.3. Basis Functions for Pressure. To approximate the pressure we will
use functions that are constant on each coarse grid block. Thus V = span ({φi}),
where

φi(x) =

{
1 if x ∈ Ti,

0 otherwise.
(3.6)

This type of approximation space for pressure is also used in the lowest-order Raviart–
Thomas method, and in the MsMFEM proposed by Chen and Hou [10], and also in
the subgrid upscaling approach by Arbogast [7, 4].

3.3. Properties of the MsMFEM approximation. We now proceed to ver-
ify that the MsMFEM approximation vms obtained from the local approach in Sec-
tion 3.2.1 and from the basis functions for pressure given in (3.6), is conservative on
the fine grid K. By this, we mean that for any Km ∈ K, the total out-flux over the
faces of Km should equal the source in Km, or equivalently by the divergence theorem∫

∂Km

vms · ν ds =
∫

Km

∇ · vms(x) dx =
∫

Km

q(x) dx. (3.7)

Let now {ψij} denote approximations to the basis functions (3.4) obtained from a
conservative method, i.e., a finite-volume method or a mixed finite-element method. It
follows that if Ti is the unique coarse cell that containsKm, then we have

∫
Km

∇·ψij =∫
Km

wi. For x ∈ Ti we have vms(x) =
∑

j vjψij(x). Then by the definition of the
pressure basis-functions (3.6) it follows from (3.2) that∫

Ti

q dx =
∫

Ti

∇ · vms dx =
∑

j

vj

∫
Ti

∇ · ψij dx =
∑

j

vj

∫
Ti

wi dx =
∑

j

vj .

By joining these fine-scale and coarse-scale conservation properties, we obtain∫
Km

∇ · vms(x) dx =
∑

j

vj

∫
Km

∇ · ψij dx

=
∫

Ti

q(x) dx ·
∫

Km

wi dx =
∫

Km

q(x) dx.
(3.8)

Here the last equality follows from (3.5) if Ti contains a source, and from the fact that∫
Ti
q =

∫
Km

q = 0 otherwise. Note that a prerequisite for this result to hold is that
the source distribution wi is the same for all basis functions with support in Ti.

It has been argued (see [1, 2, 3]) that if one alters the velocity base functions to
produce conservative velocity fields on a subgrid scale, it is also necessary to alter
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the approximation space for pressure. However, one can justify the present choice of
approximation space by arguing that the MsMFEM solution vms for velocity remains
the same for all approximation spaces V ⊂ P0(K) that admit a unique solution such
that the resulting vms is conservative on the fine grid. Here P0(K) denotes the space
of piecewise constants on the fine grid.

To see this, suppose that (v′ms, p
′) ∈ Ums × V ′ solves (3.1)–(3.2) with V replaced

by another approximation space V ′ ⊂ P0(K), and that v′ms is conservative on the fine
grid, i.e.,

∫
l∇ · v′ms =

∫
lq for all l ∈ P0(K). Then, since λK is bounded and positive

definite, there exists α > 0 such that α|ξ|2 ≤ ξ · (λK)−1ξ for all ξ ∈ Rd. It follows
from (3.1) that

‖vms − v′ms‖2α ≤
∫

Ω

(vms − v′ms) · (λK)−1(vms − v′ms) dx

=
∫

Ω

(p− p′)∇ · vms dx−
∫

Ω

(p− p′)∇ · v′ms dx = 0,
(3.9)

and hence that v′ms = vms. Note also that if the global velocity solution v computed
on the fine grid lies in Ums, then vms = v. Thus, since we are only interested in
an approximation for the velocity, and the MsMFEM solution vms is independent of
the choice of compatible approximation spaces for pressure, we choose for practical
reasons a simple approximation space that allows an efficient implementation.

Remark 1. The pressure equation is coupled to time-dependent saturations
through the mobility λ(S(x, t)). A crucial part of making the MsMFEM efficient is
an adaptive updating procedure for the basis functions, in which we only update basis
functions in regions where the saturation has changed substantially. This generally
implies that only a small portion of the basis functions need to be recomputed at each
time step. This adaptive updating process has been applied by Jenny et al. [20, 21] and
by Aarnes [1]. We also remark that the method in general performs well even without
updating, as long as the global boundary conditions do not change. This is discussed
for the multiscale finite-volume method by Efendiev et al. [14].

4. Tuning the Local Basis Functions for Velocity. In this section we dis-
cuss the choice of source distribution wi for the local basis functions introduced in
Section 3.2.1. We also introduce a generalisation of the basis functions, which we will
use when discussing the impact of nonconvex support domains.

4.1. Source Distribution for the Local Velocity Basis Functions. In [3]
a uniform source term wi was used, except when Ti contains a source or sink; that is:

wi(x) =

{
q(x)/

∫
Ti
q(ξ) dξ, if

∫
Ti
q(x)dx 6= 0,

1/|Ti|, otherwise.
(4.1)

A problem with this choice of wi is that unnaturally high flow may be introduced in
low-permeable regions. To illustrate, we consider a simple example (see Figure 4.1):

∇ · k∇p = 0, in Ωij = (0, 1)2,
p(0, y) = 1, p(1, y) = 0, ∂yp(x, 0) = ∂yp(x, 1) = 0,

where k(x, y) = kl for y < 1/2 and k(x, y) = kh for y ≥ 1/2. The unique velocity
solution v = −k∇p to this problem is given by

v(x, y) =

{
vl = (kl, 0)T , y < 1/2
vh = (kh, 0)T , y ≥ 1/2.

(4.2)
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Fig. 4.1. Schematic of a layered structure that traverses two neighbouring grid blocks. The left
figure shows the type of flow that one would get if the two-block domain is subjected to a constant
pressure drop in the horizontal direction. The right figure shows the corresponding streamlines
induced by the MsMFEM basis function with constant source.

We now compare this solution with the corresponding basis function ψij of (3.4) with
uniform source wj = wi = 1/|Ti| = 2. For a given velocity v, let fh(v) and fl(v)
be the corresponding fluxes across the top and bottom half of Γij , respectively. For
the true solution v defined by (4.2) we see that the associated flux ratio is given by
fh(v)/fl(v) = kh/kl. In contrast, fh(ψij)/fh(ψij) is bounded above and below by 3
and 1/3, respectively (see Appendix A for an argument).

This example shows that the MsMFEM using uniform sources may produce sig-
nificant local errors in the velocity field if large permeability contrasts penetrate the
coarse-grid interfaces. Indeed, this follows by recalling that vms is a superposition of
the basis functions, and noting that ψij is the sole basis function that gives a flux
contribution across Γij .

To remedy this cause of error, we suggest to let the source distributions scale in
accordance to the permeability. Thus, we let

wi(x) =

{
q(x)/

∫
Ti
q(ξ) dξ, if

∫
Ti
q(x)dx 6= 0

σ(x)/
∫

Ti
σ(ξ) dξ, otherwise,

(4.3)

where σ(x) is some average of the permeability tensor K(x). Through numerical
testing we have settled on the arithmetic average:

σ(x) = trace(K(x))/d, (4.4)

where d is the number of space dimensions and trace(A) denotes the sum of the
diagonal entries of the matrix A and equals the sum of the eigenvalues. Thus for
an anisotropic tensor, high-permeable directions are weighted stronger than low-
permeable directions. We also considered geometric and harmonic averages, but the
best results were obtained from the selection (4.4). This indicates that the most im-
portant factor for the source distribution wi is capturing high-permeable directions.
A numerical experiment comparing constant versus scaled source-terms is presented
in Section 6.1.

4.2. Support Domains for the Local Velocity Basis Functions. In Sec-
tion 3.2.1 we defined the support domain of a basis function ψij as Ωij = Ti∪Γij ∪Tj .
For general coarse grids, the domains Ωij may have arbitrary shapes, and singularities
at reentrant corners of nonconvex domains may occur in the corresponding analyti-
cal solutions. Consider Figure 4.2. In the top-left plot we clearly see the artifact of
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Heterogeneous coefficients  −  Non−convex support Heterogeneous coefficients  −  Convex support

Homogeneous coefficients  −  Non−convex support Homogeneous coefficients  −  Convex support

Fig. 4.2. Velocity basis function associated with an edge between two cells of different size
in 2D. The plots show the x-component for four different cases with homogeneous/heterogeneous
coefficients and convex/nonconvex support.

the reentrant corner as a peak in the velocity field, and this may induce an error if
for example the true flow is uniform across the interface. In the top-right plot we
have extended the support domain, and the peak vanishes. To be precise, we chose a
convex Ωij that contained Ti and Tj , and computed ψij from

ψij = −λK∇φij , ∇ · ψij =


wi(x), for x ∈ Ti,

−wj(x), for x ∈ Tj ,

0, otherwise,
(4.5)

with ψ · νij = 0 on ∂Ωij . (We note that also this definition of basis functions results
in a conservative velocity field on the fine grid.) For special situations with uniform
flow perpendicular to the coarse edges, we are able to reproduce the flow exactly
on nonuniform grids through extending the support domains. For more complicated
flow-scenarios, however, extensive numerical experiments have shown that the selec-
tion of convex versus nonconvex domains does not seem to be of great importance,
even though the basis functions analytically have singularities. For heterogeneous
non-continuous coefficients, which is the typical case in reservoir simulation, one can
argue that the analytical solution will in any case have singularities due to jumps
in the permeability field around corners of the fine-grid cells. We therefore believe
that extending the support-domains of the basis functions is not worth the loss of
flexibility and the extra work due to stronger coupling in the resulting coarse sys-
tem. In Section 6.2 we present a numerical example that illustrates this claim. Thus,
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for all the other experiments presented in Section 6, we use tight support; that is,
Ωij = Ti ∪ Γij ∪ Tj .

Remark 2. Chen and Hou [10] employed an oversampling strategy to reduce
resonance errors caused by improper boundary conditions; that is, by extending the
support domain to include a border region around the coarse grid blocks, they were
able to improve the convergence results. Unfortunately, the corresponding MsMFEM
will no longer be conservative (at least not without modification) since the subgrid
fluxes will not match across coarse-grid interfaces in general. In addition the use of
enlarged support domains increases the computational effort. For these reasons, we
here refrain from using an oversampling strategy.

5. High-Quality Grids. The notion of high-quality grids is used in many ap-
plications, but often with different meanings. Roughly speaking, a high-quality grid
for numerical modelling should resolve the main features of the physical phenomena
of interest by introducing grid refinement only when it is required by nature, for in-
stance to track the tip of a crack propagating through a solid. For porous media flows
it is often acknowledged that it is important to have grids that properly account for
anisotropy and dominating heterogeneity structures. For instance, in layered reservoir
formations it is customary to use grids with coordinate directions along, and perpen-
dicular to the layers. This convention allows one to model the interface between the
layers accurately and express the permeability of the media using a diagonal tensor.
If, on the other hand, the layers are tilted relative to the coordinate system for an
orthogonal Cartesian grid, a full tensor will be needed to represent the permeability,
and grid refinement would be needed to correctly model the interfaces between the
layers.

Although a grid of high quality for the MsMFEM should obey the same physical
principles, one should keep in mind that in our case we always have a fine sub-grid.
Thus, local grid refinement on the coarse grid, for example, does not need to have the
same effect for the MsMFEM as for standard FEMs. By construction, the MsMFEM
is meant to capture small-scale heterogeneities through the use of multiscale basis
functions. However, if these basis functions are to capture the fine-scale properties,
their support domain cannot be too small (i.e., must contain sufficiently many fine-
grid cells). Thus, excessive coarse-grid refinement may destroy the subscale resolution
property. This observation has more theoretical foundations in the homogenisation
results in [10], which show that the error estimates of the original method are weakened
as the mesh size of the coarse grid approaches the scale of periodicity in the media.
Thus, the coarse grid should not be refined due to small-scale features, but rather be
refined or adapted to large-scale features of importance.

In the grid-generation procedures we propose here, it is implicitly assumed that
the grid that models the porous medium at the subgrid scale is a suitable grid for
accurate flow simulation. The aim is then to define a coarse grid for the MsMFEM,
meaning that each grid block consists of a subfamily of the fine-grid cells, such that
one strikes a balance in capturing features at all scales that effect the important
characteristics of the flow scenario. Thus, we need to define what we consider as
important characteristics. For the nonuniform coarsening approach, Durlofsky et
al. [13] required agreement in

• the global flow-rate behaviour of the reservoir,
• the breakthrough characteristics of the displacing fluid,
• the post-breakthrough fractional flows of the reservoir fluids.

The authors demonstrated that if these requirements were satisfied for one-phase
11



flow (or for two-phase flows with unit mobility ratio), the model usually performed
well, also for simulation of two phases with a low or moderate mobility ratio. As we
shall see in the numerical experiments in Section 6, this also translates to our case.
One big difference in our setting, though, is that the MsMFEM produces a detailed
velocity field on the fine grid, and thus a direct comparison with a fine-scale solution is
possible. However, requiring that the MsMFEM should match the reference solution
at a detailed level is rather strict, and in any case not necessary to satisfy the above
requirements.

Thus ideally, a high-quality coarse grid for the MsMFEM should adapt to the
large-scale features of importance for the flow scenario, while small-scale hetero-
geneities should be resolved in the basis functions. In addition, we restrain the
bandwidth of the discretisation matrix B in (3.3) by requiring that the number of
neighbours for any coarse block is bounded and preferably small. The next subsec-
tion describes a block-splitting strategy to make the coarse grid adapt to barriers
and cross-flow. A more direct approach for the case of barriers, is described in the
numerical examples of Sections 6.3 and 6.5.

5.1. A Coarse-Grid Refinement Procedure. To generate a (nonuniform)
coarse grid for the MsMFEM we start with an arbitrarily given coarse grid and perform
some sort of refinement until the grid satisfies the selected criteria for a high-quality
grid. As for the basis functions, we distinguish between a local and a global approach,
where the global approach uses an initial fine-grid velocity field. Below we outline two
alternative refinement strategies. The first approach is independent of the flow process
and does not require computing v. The second approach, which is case-oriented,
exploits information about fine-scale flow patterns to avoid unnecessary refinement.
Hence, we consider two different approaches:

• Static grid refinement: In this approach the coarse grid is held constant, also
if boundary values and and/or well configurations change.

• Dynamic grid refinement: In this approach the coarse grid is regenerated
when boundary values or well configurations change.

Both procedures employ two different refinement criteria.
The first and most important criterion, which attempts to ensure that the MsM-

FEM does not force too much flow through low-permeable flow barriers, is the same
for both methods. This criterion is described and motivated in Section 5.2.

In the second criterion it is recognised that difficulties occur if we have large flow
velocities in opposite directions across Γij . This situation can occur in e.g., fluvial
porous formations, where the predominant flow tends to follow narrow high-permeable
flow channels. A criterion that attempts to detect cross-flow across interfaces is dis-
cussed in Section 5.3. Here an initial fine-scale velocity field is assumed in the dynamic
approach, while the static approach uses local flow computations.

5.2. Flow Across Low-Permeable Barriers. If a low-permeable wall, e.g., a
shale barrier, traverses a coarse grid block Ti, the local version of the MsMFEM may
produce an unnatural amount of flow through the barrier, even with the alternative
definition of the source distribution terms from Section 4.1. This is an artifact caused
since we impose no-flow boundary conditions on the boundary of the support domains.
To illustrate how flow barriers of this type may affect the MsMFEM solution, consider
the two examples shown in Figure 5.1. In the first example a low-permeable barrier
with permeability 10−10 mD traverses a block Ti with a homogeneous background
permeability of 1 mD. In the second example the low-permeable region traverses the
block only partially. The corresponding basis functions are illustrated with vector
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Traversing barrier Partially traversing barrier

Fig. 5.1. Vector plots of 2D basis functions. Flow being forced through a barrier (left), and
going around a barrier (right).

plots. We see that high flow is forced through the barrier only in the first example.
Indeed, in this case the flow on the left side of the barrier has no other escape route
than to pass through the barrier. For the second case we see that the base function
neatly allows the flow to go around the barrier. To define a criterion that detects
flow barriers, while at the same time is able to distinguish between the two cases
considered in the previous examples, consider the quantity

υij = ψij · (λK)−1ψij . (5.1)

For the above example, the basis function with the traversing barrier attains a maxi-
mum of size O(1010) for υij |Γij | , while in the case of the partially traversing barrier,
the corresponding value is of size O(1). Recall that the diagonal entry associated
with ψij in the matrix-block B in (3.3) is given by bij,ij =

∫
Ω
υij dx. The examples

considered above suggest that extremes in the indicator function υij signifies that a
flow barrier is present, and that the MsMFEM fails to model the local displacement
across the edge Γij properly. This situation leads to extreme diagonal entries in B,
which in turn will cause the MsMFEM to underpredict the flow across Γij . Thus, to
get a more correct velocity field we perform a grid refinement in Ti. That is, if for
some prescribed constant C, we have

max
x∈Ti

[υij(x)] |Γij | > C, (5.2)

then Ti is split into two new blocks Tk and Tl, such that the new interface Γkl is
approximately parallel to the “old” interface Γij . We note that by applying this
splitting iteratively, we will not necessarily get rid of the extremes (5.1), but they will
only appear for basis functions with small support.

5.3. Detecting Alternate Directions of Flow Across Coarse Edges. The
local MsMFEM basis functions are characterised by a unit total flux across the re-
spective coarse-grid interfaces. Thus, if the true positive and negative fluxes across
Γij are of the same magnitude, i.e., if∫

Γij

max(v · ν, 0) ds ≈ −
∫

Γij

min(v · ν, 0) ds,

then it becomes particularly difficult to obtain a good match between vms and v
on Γij . This situation can occur if e.g., a high-permeable channel enters and exits
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Velocity − fine scale solution Velocity − multiscale solution Velocity − multiscale solution

Fig. 5.2. Part of a velocity field computed on the fine grid (dark regions indicate high absolute
velocity). The coarse-grid solution (middle), can only reproduce this flow scenario after a refinement
(right).

Ti through Γij as depicted in Figure 5.2. We will refer to situations with flow in
opposite directions as cross-flow. The use of global basis functions (Section 3.2.2)
will, in principle, resolve cross-flow across interfaces, but can be sensitive to small
perturbations in the flow conditions on faces with large cross-flow and total flux close
to zero.

The problem with cross-flow for the local basis functions is demonstrated in Fig-
ure 5.2. The figure also demonstrates that we are able to produce an accurate flow
scenario by inserting an extra edge in Tj and using the MsMFEM with local basis
functions defined by (3.4). Indeed, neither of the two new interfaces on the ‘old’
interface are now subjected to cross-flow. If cross-flow occurs on a coarse-grid inter-
face Γij , the total flux across Γij may be small even though the magnitudes of the
corresponding fine-scale fluxes are not. Thus, to detect cross-flow over coarse-grid
interfaces we will use the following criterion:∣∣∣∣∣

∫
Γij

v · ν ds

∣∣∣∣∣ �
∫

Γij

|v · ν| ds and C <

∫
Γij

|v · ν| ds. (5.3)

The second inequality is introduced to avoid refinement where cross-flow is apparent,
but where the absolute total flux is too small to have a global impact. We now discuss
what type of refinement procedure is most appropriate for making the MsMFEM
resolve flow scenarios with cross-flow over interfaces.

To simplify the discussion of the splitting strategy, let T be a regular partitioning
of Ω ⊂ R3 into hexahedrons, and consider a face Γij = ∂Ti ∩ ∂Tj with normal vector
parallel to the x-axis, i.e.,

Γij = {(x, y, z) ∈ Ω : x = x0, y0 < y < y1, z0 < z < z1} .

If the inequality (5.3) is satisfied for Γij for some given threshold, we consider either
splitting Γij vertically or horizontally by splitting either Ti or Tj into two blocks. For
example we perform a horizontal splitting if the inequality∣∣∣∣∫ y1

y0

∫ z1

z0

(v(x0, y, z) · n)dzdy
∣∣∣∣ < C1

∫ z1

z0

∣∣∣∣∫ y1

y0

(v(x0, y, z) · n)dy
∣∣∣∣ dz (5.4)

holds for some given threshold C1. From this formulation it is not given which of the
two blocks, Ti or Tj , should be split, and in the numerical experiments we performed,
the splitting was chosen randomly. A more sophisticated approach to minimise the
amount of refinement could be applied, but for the purposes of this paper we settled
on the above. One such splitting is illustrated in Figure 5.3. If a global fine-scale
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Ti

Fig. 5.3. Horizontal splitting of the block Ti.

velocity field is not attainable, one can consider a localised version of the above:
Consider again the face Γij from above, and let vy = −K∇py be the velocity field
obtained from the local flow problem

∇ · vy = 0, in Ωij , (5.5)

subject to

py = 1, on Γy0 ,

py = 0, on Γy1 ,

vy · ν = 0, on ∂Ωij \ (Γy0 ∪ Γy1).
(5.6)

Here Γy0 and Γy1 denote the two faces of ∂Ωij parallel to the xz-plane. If the in-
equality (5.4) is satisfied for the velocity field vy, and the total absolute flow across
the edge is larger than some fraction of the total flow through the localised model, it
is likely that cross-flow can also appear for the global solution, and thus a splitting
is performed. Through this procedure we are able to identify edges with potential
cross-flow, although the local approach above is not quite as reliable as using an ini-
tially computed fine grid velocity field. Both the global and the local approaches are
illustrated in the numerical examples in Section 6.4.

6. Numerical Experiments. In the following numerical experiments, our main
objectives are to test the proposed scaling of source terms in the MsMFEM basis func-
tions (from Section 4.1) and to illustrate our proposed refinement strategies. Thus,
in an attempt to eliminate causes of error not directly relevant for these issues, we
do not use adaptive updating of basis functions (Remark 1), but rather update all
basis functions every time step. We also assume for simplicity that porosity is equal
unity everywhere in Ω. All time units are in PVI (pore volumes injected), which in
the unit porosity case is equal to the total amount of injected water divided by the
total volume of the model.

In the experiments we use both linear and nonlinear relative permeability curves.
In the linear case we use

krw = S, kro = 1− S, (6.1)

with initial saturation S0 = 0 and viscosities µw = µo = 1 cP . In the nonlinear case
we use

krw = (S∗)2, kro = (1− S∗)2, S∗ =
S − Swc

1− Swc − Sor
, (6.2)
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with Swc = Sor = 0.2, viscosities µo = 3.0 cP and µw = 0.3 cP , and initial saturation
S0 = Swc. Note that in the linear case, the total mobility does not change over
time, and thus the velocity needs to be computed only once. In this case, the use of
global basis functions (Section 3.2.2) makes no sense, since it will only reproduce the
reference solution. In all examples, the reference solution is computed directly on the
fine grid by a mixed finite-element method using the lowest-order Raviart–Thomas
elements.

For the saturation equation (2.4), we use a conservative scheme on the following
form:

Sk+1
i = Sk

i +
4t
|Ki|

Qi(Sm)−
∑
j 6=i

Fij(Sm)vij

 , m = k, k + 1. (6.3)

Here 4t denotes the time step and |Ki| is the measure of grid cell Ki (in the fine grid
K). Furthermore, Qi(S) =

∫
Vi
qw(S) is the source contribution in Ki, and

Fij(S) = max{sign(vij)fw(Si),− sign(vij)fw(Sj)}

is the upstream-weighted fractional flow function for γij = ∂Ki ∩ ∂Kj . Finally, vij =∫
γij
v · nij ds, where nij is the unit normal to γij pointing from Ki to Kj . In the

explicit case (m = k) this type of scheme requires a CFL condition, which may put
severe restrictions on the time steps. For large problems arising in, for instance, oil
reservoir simulation, it is therefore customary to use an implicit scheme (m = k + 1)
with a Newton–Raphson solver. In this paper, however, our primary focus is on the
pressure equation, and the assumption of unit porosity allows us to use the more
accurate explicit scheme.

6.1. Source Terms for the Basis Functions. In Section 4.1, we argued that
scaling the source terms in the basis functions would give more correct flow over coarse
edges. In this experiment we consider a 3D subsample of Model 2 from the 10th SPE
Comparative Solution Project [11]. The model consists of 40×40×12 fine-grid blocks
from the top corner of the full model, and we introduce a source in cell (1, 1, 1) and
a corresponding sink in cell (40, 40, 12). The initial saturation is S0 = 0, and we use
linear relative permeability curves (6.1). We note that this is a difficult test case as
the flow is being forced vertically through several horizontal layers.

Let vref(t) be the reference velocity computed on the fine grid, and let vms(t)
denote the velocity field computed by the MsMFEM. There are a number of ways to
compare the two velocity fields, but for reservoir simulation the most crucial factor
is the transport properties of a velocity field. That is, a large local error in the
velocity field may not be crucial as long as the overall transport properties are correct.
Figure 6.1 shows four different error measures for the multiscale velocity field vms

computed on ten different coarse grids (given on the x-axes).
As a direct measure of the error in the computed velocity field, we consider the

L2-norm and the energy-norm:

‖v‖2 =
(∫

Ω

v · v dx
) 1

2

, ‖v‖E =
(∫

Ω

v · (λK)−1v dx

) 1
2

, (6.4)

where the corresponding relative errors are given as ‖vref − vms‖/‖vref‖. The energy
norm is perhaps the most natural choice, since the original problem (2.3) is equivalent
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to the minimisation problem

min
v∈Hdiv

0

‖v‖E , for ∇ · v = q

To assess the transport properties of the computed velocity field, we compare the
induced saturation profiles. Let Sref(x, t) and Sms(x, t) be the saturations obtained
from the reference and from the multiscale velocity fields, respectively. We then
measure the relative difference in these saturation profiles at a given time t:∫

Ω
|Sref(x, t)− Sms(x, t)| dx∫

Ω
|Sref(x, t)− Sref(x, 0)| dx

. (6.5)

Finally, we consider the watercut, i.e., the fraction of water in the produced fluid.
Here we measure the maximal error, that is

max
0≤t

|f(Sref(xpw, t))− f(Sms(xpw, t))|, (6.6)

where the saturations are evaluated at the midpoint xpw of the producing well in grid
cell (40, 40, 12). Note that this is a quite strict measure, since the watercut curves
tend to be steep right after breakthrough, and thus a small deviation in breakthrough
time may give a large value in the error measure (6.6).

The plots in Figure 6.1 show that computations with scaled source terms are more
accurate in all four error measures, and in particular for the saturation error at time
t = 0.5 PVI (saturation errors measured at other times t gave similar plots). For this
particular example, it appears as if the errors in energy norm and in saturation are
correlated. However, in our experience the error in energy norm depends strongly on
the given flow process and a prediction based on this error is only reliable if the error
is small. In other words, a large error in energy norm does not necessarily mean a
large error in the saturation profile.

Through this, and also several other test cases, we have seen that scaling the
source terms improves the accuracy of the MsMFEM solution, even for high anisotropy
ratios (the current case has anisotropy ratios up to O(104)). The scaling strategy is
applied in the remaining numerical examples of this paper. Note, however, that scaling
the source terms has no effect for the global basis functions discussed in Section 3.2.2
since the MsMFEM solution is completely determined by the boundary conditions of
the basis functions.

It is also worth noting that the MsMFEM using scaled source terms in this ex-
ample performs well for all grids, and thus one would not gain much through local
grid refinement. It also illustrates the fact discussed earlier: that the accuracy of the
MsMFEM does not necessarily increase with decreasing coarse mesh size.

6.2. A Comparison of Support Domains. We now compare the use of convex
versus nonconvex support domains for the MsMFEM base functions, as discussed in
Section 4.2. Also in this example we use linear relative permeability (6.1), and thus
the velocity field is computed only once.

First, we consider a homogeneous 2D model consisting of 60×220 fine-grid blocks,
where a source and a sink are introduced in cells (1, 1) and (60, 220), respectively. The
MsMFEM is now applied to three different coarse grids (see Figure 6.2), where both
convex and nonconvex support for the velocity basis functions are applied. In the
convex case, we use the smallest bounding box with sides parallel to the x- and y-
axes, and in the nonconvex case we use the union of the two neighbouring cells. The
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Fig. 6.1. Four different measures of error for the MsMFEM computed with scaled and constant
source terms.

saturation profiles at 0.6 PVI for the two approaches are plotted in Figure 6.2. We
see that the choice of grid clearly has an impact on the MsMFEM solution, but it
is not evident that using convex support for the basis functions is superior to using
nonconvex support.

We now repeat the above experiment, but replace the homogeneous permeability
with a heterogeneous field taken from the top layer in the SPE10 test case [11].
Again we see that the choice of support domain is not important for the MsMFEM
approximation, as the method captures the main features of the reference solution
for all three grids regardless of the choice of support. Although reentrant corners in
support domains can induce unwanted numerical artifacts (as seen in Figure 4.2), we
have not seen that these effects play a crucial role for the overall MsMFEM solution,
neither in this example nor in several others we have investigated. Defining convex
support domains for general grids (especially in 3D) can be difficult, and in addition
it induces a stronger coupling in the stiffness matrix of the coarse grid. Therefore,
enforcing convex support does not seem to be worth the extra effort, especially for
strongly heterogeneous coefficients, which are our primary application.

6.3. A 2D Example with Barriers. In this numerical experiment we consider
a synthetic 128× 128 fine-grid permeability field with several barriers of permeability
10−8 relative to the homogeneous background permeability (see Figure 6.4). Water
is injected in cell (1, 1) at a constant rate and oil (and water) is produced in the
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Reference Convex Convex Nonconvex Convex Nonconvex

Fig. 6.2. Saturation profiles at 0.6 PVI for the reference solution and several MsMFEM solu-
tions for homogeneous coefficients.

Reference Convex Convex Nonconvex Convex Nonconvex

Fig. 6.3. Saturation profiles at 0.6 PVI for the reference solution and several MsMFEM solu-
tions for heterogeneous coefficients.

opposite corner. In this experiment we use nonlinear relative-permeability functions
(6.2) (the corresponding linear case (6.1) gave similar results and is not reported). We
perform several MsMFEM computations, and compare with the reference solution
obtained from the fine 128 × 128 grid. We apply the MsMFEM with (local) basis
functions (3.4) on a 6 × 6 and on a 48 × 48 uniform grid, and then on the two
nonuniform grids shown in Figure 6.5. The first grid consists of rectangular cells
and is obtained automatically from applying condition (5.2) for detecting barriers
iteratively and stopping the refinement when a coarse-grid cell reaches a size of three
fine cells in each direction. This means that the smallest cells of the nonuniform grid
are of about the same size as the cells in the uniform 48 × 48-grid. In addition the
grid is regularised such that no cell has more than six active edges. We note that
this is an illustrative example, and thus the amount of refinement is probably higher
than what one would require in practise. The second nonuniform grid has grid-cells
of more general shapes and is obtained from intersecting the uniform 6× 6 grid with
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Fig. 6.4. Permeability field, and saturation profile for the reference solution.

Uniform grid

20 40 60 80 100 120

20

40

60

80

100

120

Nonuniform grid, rectangular cells

20 40 60 80 100 120

20

40

60

80

100

120

Nonuniform grid, general cells

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 6.5. Saturation profiles obtained from the MsMFEM on different coarse grids.

the exterior edges of the barriers.
The saturation profile for the reference solution is plotted in Figure 6.4. The

corresponding profiles from the MsMFEM solution obtained on the coarse 6× 6 grid
and on the two nonuniform grids are depicted in Figure 6.5. On the uniform grid,
several cells stay unsaturated due to the traversing barriers, as discussed in Section 5.2,
and the multiscale method fails to produce the correct solution. The two nonuniform
grids, on the other hand, capture the flow around the barriers correctly.

Watercut curves and saturation errors over time are shown in Figure 6.6. Al-
though the watercut curve for MsMFEM on the uniform 6 × 6 grid is not far from
the reference solution, the method clearly overpredicts the production of water, as
one would expect from the unsaturated coarse cells in Figure 6.5. The plot of satu-
ration errors clearly demonstrates the improvement obtained from using nonuniform
grids. For comparison, we have also plotted the results from the global approach
(Section 3.2.2) on a uniform 6× 6 grid, for which the initial fine-scale solution is used
to determine boundary conditions on the velocity basis functions. The global method
performs excellent without any refinement. We have also plotted the saturation error
on the coarse grid, which is the analogue when saturation is averaged back onto a
uniform 6× 6 grid.

Overall the uniform 48 × 48 grid gives the least error, which is to be expected
since this particular problem only contains large-scale heterogeneities in the form of
low-permeable barriers that are best resolved using a coarse grid that is as small as
possible. Still, it is clear that both nonuniform grids are able to capture the reference
flow in this example. It is worth noting that the nonuniform grid with grid cells
obtained directly from the barriers performs slightly better than the automatically
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Fig. 6.6. Watercut curves, fine- and coarse saturation errors for MSMFEM on various grids
in the 2D barrier example.

generated grid, even though it has a substantially smaller number of coarse-grid cells.

6.4. A 2D Example With Cross-Flow. We now consider a horizontal section
of the SPE test case [11] (the top layer of the Upper Ness formation), see Figure 6.7.
The section is characterised by a high permeability channel with sharp turns resem-
bling the example in Figure 5.2. The initial 5× 11 coarse grid is chosen deliberately
so that the MsMFEM runs into trouble: if the coarse grid is placed on top of the
reference solution, a large amount of cross flow will appear over a few coarse edges.
An injector is placed in the centre of the model, and four equal producers are situated
in the corners. We use nonlinear relative-permeability functions given by (6.2).

The MsMFEM is applied in four different ways:
• A 5× 11 uniform grid, and local basis functions (Section 3.2.1).
• A nonuniform grid with local basis functions, where the refinement is per-

formed in the local way described in Section 5.3.
• A 5 × 11 uniform grid with global basis functions computed with boundary

conditions obtained from an initial fine-scale velocity field (Section 3.2.2).
• A nonuniform grid, where both the refinement (see Section 5.3) and the com-

putation of the basis functions are performed based on the initial fine-scale
solution.

Thus, the first two approaches are completely local in the sense that no knowledge of
a fine-scale velocity field is utilised. The nonuniform grids are shown in Figure 6.7.
The refinement is performed only for extreme values, and thus only four cells are
split in the local approach. Two of the cell splittings occur where the high-permeable
channel produces cross-flow over coarse edges, and thus the procedure is able to detect
edges of potential cross-flow correctly. The other two splittings are performed in low-
permeable regions where there is not much flow at all for the current flow pattern.
Such splittings can hardly be avoided in a local approach, since no apriori information
about flow patterns is available during the refinement procedure. In fact, being able
to identify problem regions apriori makes the method more robust with respect to
changes in the flow pattern as a result of e.g., changes in the well configuration due
to infill drilling, etc.

Although the errors produced by the local version of the MsMFEM on the uniform
grid are not too large, the improvement due to the four local splittings is evident.
Figure 6.8 shows that refinement also improves the solutions obtained by the global
version of the MsMFEM, even though these improvements are harder to spot by just
looking at saturation profiles in Figure 6.7.
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Fig. 6.7. Permeability field and saturation profiles at 0.12 PVI.
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Fig. 6.8. Watercut curves and saturation errors for various simulations in the cross-flow
experiment.

Through this experiment we see that cross-flow can have an impact on the MsM-
FEM solution and that we are able to correctly detect edges with potential problems.
We note, however, that the impact of cross-flow on the MsMFEM seems to be less
substantial than the impact of barriers. Especially in 3D, the flow-scenarios become
so complex that it is difficult to find a case where cross-flow has a substantial impact
on the MsMFEM solution. We return to this discussion in the concluding remarks of
Section 7.
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Fig. 6.9. Permeability field (right), and the interior barriers (left).

Fig. 6.10. The two nonuniform grids used in the 3D experiment. To the right: one of the
grid-cells in the second grid.

6.5. A 3D Example with Barriers. In this experiment we once again consider
a subsample of the SPE test case [11] consisting of 30×80×10 fine-grid cells from the
smoothly varying Tarbert formation, where we have introduced a few low-permeable
walls (10−8 mD). The permeability field and the barriers are plotted in Figure 6.9. A
source is introduced along the vertical line at (x, y) = (1, 1), and a corresponding sink
at (x, y) = (30, 80). The simulation is run with linear relative permeabilities (6.1).

As in the 2D experiment with barriers (Section 6.3), the low-permeable barriers
can be detected automatically through the criterion (5.2). The resulting nonuniform
grid with local refinement around the barriers is depicted in Figure 6.10. In the
refinement procedure, we prescribed a minimum size for the coarse grid such that each
coarse-grid cell should contain at least 4×4×1 fine-grid cells, and a regularisation was
performed to ensure that each cell has at most nine active faces. We also constructed
a coarse grid by intersecting the faces of the barriers with a uniform 3× 5× 2 grid as
shown in Figure 6.10. On this grid no regularisation was performed, and one of the
resulting grid-cells is also shown in Figure 6.10; the original 10 × 16 × 5 hexahedral
grid-cell is almost split in two by the barrier, and the resulting cell is only connected
through a single fine-grid cell. One would perhaps expect that this situation would
effect the resulting MsMFEM solution, but this is not the case.

As in Section 6.3, the MsMFEM solution obtained on the uniform coarse grid
experiences problems around the barriers. This is illustrated in Figure 6.11, where
we have plotted an isosurface of the saturation for the reference solution and for the
uniform grid MsMFEM solution. Again we see that a few coarse grid-cells stay unsat-
urated, and thus the watercut is overpredicted, see Figure 6.12. Both the nonuniform
grids produce watercut-curves in close agreement with the reference solution. The
improvements over the uniform coarse solution are even more evident in the error-
plots for fine-scale and coarse-scale saturations. We see that the nonuniform grid with
hexahedral grid cells gives a bit better resolution than the general nonuniform grid,
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Fig. 6.11. Waterflow through the model.
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Fig. 6.12. Watercut curves and saturation errors for various simulations.

but then it also has almost five times as many grid cells (317 compared to 66).

7. Concluding remarks. The main focus of this paper has been to analyse and
test the performance and capabilities of the MsMFEM on nonuniform and unstruc-
tured coarse grids. We have also improved the accuracy of the method by introducing
a scaling of the source terms used to determine the multiscale basis functions for the
velocity. We have pointed out two potential problem scenarios for the MsMFEM and
suggested both a detection procedure and an amelioration strategy through splitting
of coarse cells:

• Traversing barriers. We have seen that barriers traversing a coarse-grid
cell may have the effect of zeroing the velocity in the entire cell. An automatic
approach for detecting this situation based on extremes in the energy-norm
of the corresponding basis functions is described. By iteratively splitting
cells around barriers, we obtain improved solutions by ensuring that the flow
barriers only traverse cells of small support in the coarse grid. An alterna-
tive approach, where coarse-grid cells constitute the actual barriers, is also
presented, and improved results are obtained with only a moderate increase
in the number of coarse cells. These strategies are illustrated for numerical
experiments in both two and three spatial dimensions.

• Cross-flow. The way the current MsMFEM using local basis functions is
defined, the relative distribution of fine-scale fluxes across a coarse edge is
completely determined by the corresponding basis function. As a result,
alternate directions of flux are hard to reproduce. Also in this situation one
can split coarse cells to introduce an extra degree of freedom over the original
coarse edge. Both a local and a global detection strategy for cross-flow is
described.
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We believe that the described strategies for improving the MsMFEM around barriers
can be applied successfully to model fractures and faults also, for instance by including
these irregular structures directly in a more regular coarse grid, but this is a topic for
further study. Secondly, although we have addressed a problem with cross-flow for
the MsMFEM, we do not believe that this situation is of great importance for real-life
flow-scenarios. This conclusion is based on the fact that we have not been able to find
a single non-synthetic 3D-case where cross-flow substantially effects the MsMFEM
solution. Nevertheless, if the problem should occur, we have devised a procedure for
detecting and fixing it.

Altogether we believe that the current multiscale method has a great potential
for being applied to real-life flow simulations, in particular due to the great flexibility
in choosing the coarse grid. The ability to include actual flow barriers directly in the
coarse grid illustrates the great flexibility of the method in this respect. Being able
to use coarse grids of an almost arbitrary shape immediately simplifies the usually
complex process of choosing an appropriate coarse grid and upscaling and resampling
petrophysical parameters like permeability and porosity.

Appendix A. In this appendix we prove the claim of the example in Section 4.1.
We want to show that the flux ratio fh

l (ψij) = fh(ψij)/fl(ψij) for the basis function
ψij computed with constant source satisfies

1
3
≤ fh

l (ψij) ≤ 3, (A.1)

independently of the ratio kh/kl (see Figure 4.1), where the support-domain Ωij is the
unit square, and Γij is at x = 1

2 . Let φij be the pressure function of zero average such
that ψij = −k∇φij . By a change of variable x̃ = 1− x, one sees that −φij(x̃, y) also
solves (3.4), and thus φij(x, y) = −φij(1−x, y). It follows that φij is zero on Γij , (and
by the maximum principle) non-negative in Ti, and non-positive in Tj . Consider the
upper left square Ω1. It has two edges with no flow, one edge (say e1) with constant
pressure equal zero, and one edge (say e2) with pressure greater than or equal zero
everywhere. Thus in Ω1, we can make the splitting ψij = ψ0 + ψ̂ = −k∇φ0 − k∇φ̂,
where ψ0 and ψ̂ are characterised by

∇ · ψ0 = 2 in Ω1, φ0 = 0, on e1, e2, (A.2)

∇ · ψ̂ = 0 in Ω1, φ̂ = φij , on e1, e2. (A.3)

The problem (A.2) is symmetric about the line x+ y− 1 = 0, so fh(ψ0) =
∫

e2
ψ0 · ν2,

where ν2 is the outward-pointing unit normal to e2. For ψ̂, however, the corresponding
flux integrals will have opposite signs, i.e., fh(ψ̂) = −

∫
e2
ψ̂ · ν2 ≥ 0, where the

last inequality follows since φ̂ is nonnegative on e2 and equals zero on e1 (By the
maximum principle, φ̂ij has minimal value 0, and thus fh(ψ̂) ≥ 0). It now follows
that fh(ψij) ≥

∫
e2
ψij · ν2, and that

fh(ψij) ≥
1
2

∫
Ω1

∇ · ψij dx =
1
2

∫
Ω1

wi dx =
1
4
.

This implies that fl(ψij) =
∫

Ti
wi − fh(ψij) ≤ 3

4 , and therefore fh
l (ψij) ≥ 1

3 . From a
similar argument for the lower left square Ω3, it follows that fh

l (ψij) ≤ 3.
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