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Abstract. Multiscale simulation is a promising approach to facilitate direct simula-
tion of large and complex grid-models for highly heterogeneous petroleum reservoirs.
Unlike traditional simulation approaches based on upscaling/downscaling, multiscale
methods seek to solve the full flow problem by incorporating subscale heterogeneities
into local discrete approximation spaces. We consider a multiscale formulation based
on a hierarchical grid approach, where basis functions with subgrid resolution are
computed numerically to correctly and accurately account for subscale variations
from an underlying (fine-scale) geomodel when solving the global flow equations
on a coarse grid. By using multiscale basis functions to discretise the global flow
equations on a (moderately-sized) coarse grid, one can retain the efficiency of an
upscaling method, while at the same time produce detailed and conservative velocity
fields on the underlying fine grid.

For pressure equations, the multiscale mixed finite-element method (MsMFEM)
has shown to be a particularly versatile approach. In this paper we extend the
method to corner-point grids, which is the industry standard for modeling complex
reservoir geology. To implement MsMFEM, one needs a discretisation method for
solving local flow problems on the underlying fine grids. In principle, any stable and
conservative method can be used. Here we use a mimetic discretisation, which is a
generalisation of mixed finite elements that gives a discrete inner product and allows
for curved grid faces and polyhedral elements.

The coarse grid can in principle be any partition of the subgrid, where each
coarse block is a connected collection of subgrid cells. However, we argue that
when generating coarse grids, one should follow certain simple guidelines to achieve
improved accuracy. We discuss partitioning in both index space and physical space,
and suggest simple processing techniques.

The versatility and accuracy of the multiscale mixed methodology is demon-
strated on two corner-point models: a small Y-shaped sector model and a complex
model of a layered sedimentary bed. A variety of coarse grids, both violating and
obeying the above mentioned guidelines, are employed. The MsMFEM solutions are
compared with a reference solution obtained by direct simulation on the subgrid.
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1. Introduction

Modern methods for 3D geological modeling and reservoir character-
isation is leading industry to routinely build very large and detailed
reservoir models; grid models of the subsurface geology currently range
in size from 10 to 100 million cells and are growing. Moreover, the
industry is moving away from a single “best effort” modeling and to-
wards computations of many plausible realisations to assess uncertainty
in geomodels. Due to the highly heterogeneous nature of porous rock
formations, geomodels tend to have strongly irregular geometries and
very complex hydraulic connectivities. Unfortunately, reservoir sim-
ulation technology has not kept pace with the development within
geological modeling, and there is a steadily increasing gap between
the level of detail seen in industrial geomodels and the capabilities
of current flow simulators. In part, industry-standard simulators are
incapable of simulating models with multi-million cells, and, in part,
the underlying discretisation methods were not designed to handle the
challenges posed by current geomodels: high aspect ratios, anisotropic
properties, curved faces, degenerate cells, non-conformal grids, etc.

The traditional approach to overcome the gap in resolution between
geomodels and simulation models is to use upscaling/downscaling be-
tween a detailed geological model and a coarser simulation model. In
this paper we will discuss an alternative approach based on a multiscale
formulation for computing pressure and flow velocities, where the full
flow problem is solved by incorporating subscale heterogeneities into
local discrete approximation spaces. This means that the global flow is
computed on a coarse grid and fine-scale heterogeneity is accounted for
through a set of generalised, heterogeneous basis functions. The basis
functions are computed numerically by solving local flow problems (as
is done in many flow-based upscaling methods), and when included in
the coarse-grid equations, the basis functions ensure that the global
equations are consistent with the local properties of the underlying dif-
ferential operators. By using the multiscale basis functions to discretise
the flow equations on a (moderately-sized) coarse grid, one can retain
the efficiency of an upscaling method and at the same time produce
detailed and conservative velocity fields.

The multiscale mixed finite-element formulation [16, 1, 3] has previ-
ously proved to be a particularly versatile approach for flow simulation
on Cartesian grids in the sense that it produces more accurate and ro-
bust results than what is obtained by traditional upscaling approaches;
see [2]. Here we take the important step of extending the methodology
to the more complex corner-point grid format used in the oil indus-
try. In particular, we seek to demonstrate that by using a multiscale
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Figure 1. Side view in the xz-plane of corner-point grid with vertical pillars modeling
a stack of sedimentary beds (each layer indicated by a different colour).

formulation one avoids the usual difficulties of resampling grid proper-
ties when moving from a fine to a coarse grid, and vice versa. In the
multiscale formulation, the blocks in the coarse grid can, at least in
principle, be chosen as an almost arbitrary connected collection of cells
in the underlying fine grid. However, to obtain an accurate solution, the
generation of coarse grid blocks should follow certain simple guidelines
as discussed in [3] and in the following.

The flexibility with respect to grids is the major advantage of the
multiscale mixed formulation over other multiscale and upscaling-down-
scaling methods. We refer the reader to [24] for a more thorough dis-
cussion of the advantages and disadvantages of the multiscale mixed
method compared with other multiscale methods with respect to accu-
racy, robustness, efficiency, and ease of implementation.

The outline of the paper is as follows. We start by discussing the
complexity of geological grid models and some of the challenges they
pose for flow simulation in Section 2. In Section 3, we present our basic
flow model and its mixed and mimetic formulation. We then introduce
the multiscale method in Section 4 and discuss the generation of coarse
grids and how the method can be viewed as an attractive alternative
to traditional upscaling methods for complex grids. In Section 5, we
present the mimetic subgrid discretisation technique that will be used
to construct basis functions for the multiscale method. Finally, we
present and discuss two numerical examples in Section 6 to highlight
some of the properties of the multiscale method. In particular, we com-
pare the multiscale velocity fields obtained on different coarse grids and
solve a two-phase flow equation on the underlying fine grid to see how
strongly discrepancies in the velocity fields impact flow characteristics.

2. Complexity of Reservoir Simulation Models

To model the geological structures of petroleum reservoirs, a standard
approach is to introduce what is called a corner-point grid [26]. A
corner-point grid consists of a set of hexahedral cells that are aligned
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in a logical Cartesian fashion. One horizontal layer in the grid is then
assigned to each sedimentary bed to be modelled. In its simplest form,
a corner-point grid is specified in terms of a set of vertical or inclined
pillars defined over an areal Cartesian 2D mesh in the lateral direction.
Each cell in the volumetric corner-point grid is restricted by four pillars
and is defined by specifying the eight corner points of the cell, two on
each pillar. Figure 1 shows a side-view of such a corner-point grid.
Notice the occurrence of degenerate cells with less than eight non-
identical corners where the beds are partially eroded away. Some cells
also disappear completely and hence introduce connections between
cells that are not neighbours in the underlying logical Cartesian grid.

The corner-point format easily allows for degeneracies in the cells
and discontinuities (fractures/faults) across faces. Hence, using the
corner-point format it is possible to construct very complex geolog-
ical models that match the geologist’s perception of the underlying
rock formations. Due to their many appealing features, corner-point
grids are now an industry standard and the format is supported in
most commercial software for reservoir modeling and simulation. The
original corner-point format has been extended in several directions,
for instance to allow intersection of two straight pillars in the shape of
the letter Y. Similarly, the pillars may be piecewise polynomial curves,
resulting in what is sometimes called S-faulted grids.

Using geological models as input to flow simulation introduces sev-
eral numerical difficulties. First of all, typical reservoirs extend several
hundred or thousand metres in the lateral direction, but the zones
carrying hydrocarbon may be just a few tens of metres in the vertical
direction and consist of several layers with different rock properties.
Geological models therefore have grid-cells with very high aspect ratios
and often the majority of the flow in and out of a cell occurs across the
faces with the smallest area. Similarly, the possible presence of strong
heterogeneities and anisotropies in the permeability fields typically
introduces large condition numbers in the discretised flow equations.
These difficulties are observed even for grid models consisting of regular
hexahedral cells.

The flexible cell geometry of the corner-point format introduces ad-
ditional difficulties. First of all, since each face of a grid cell is specified
by four (arbitrary) points, the cell interfaces in the grid will generally
be bilinear surfaces and possibly be strongly curved. Secondly, corner-
point cells may have zero volume, which introduces coupling between
non-neighbouring cells and gives rise to discretisation matrices with
complex sparsity patterns. Finally, the presence of degenerate cells,
in which the corner-points collapse in pairs, means that the cells will
generally be polyhedral and possibly contain both triangular and bi-
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Figure 2. Examples of deformed and degenerate hexahedral cells arising in cor-
ner-point grid models.

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Figure 3. Two examples of fault surface in a three-dimensional model with
non-matching interfaces across the faults. (Left) Three-dimensional view. (Right)
Two-dimensional view, where the shaded patch illustrates a “sub-interface” on the
fault surface.

linear faces (see Figure 2). This calls for a very flexible discretisation
that is not sensitive to the geometry of each cell or the number of
faces and corner points. Moreover, the discretisation should be capable
of handling non-conforming grids. Non-conforming grids arise, using
the corner-point format, in fault zones where a displacement along a
hyperplane has occurred, see Figure 3. Another consequence is that
generation of coarse grids to be used e.g., in upscaling is generally
difficult; see the discussion in Sections 4.1 and 4.2.

3. Mixed Formulation of Elliptic Model Problem

Let Ω ⊂ IR3 be a polyhedral domain, and let n be the outward unit
normal on ∂Ω. As a prototype flow problem, we consider the following
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second-order elliptic equation:

v = −K∇p, x ∈ Ω,
∇ · v = f, x ∈ Ω,
v · n = 0, x ∈ ∂Ω,

(1)

where we require, for compatibility, that
∫
Ω f dx = 0. Since this is a pure

Neumann boundary-value problem, p is defined only up to an arbitrary
constant. An extra constraint, such as

∫
Ω p dx = 0, must therefore be

added to close the system. Henceforth we refer to p as the pressure and
v as the velocity.

To discretise (1), we introduce an arbitrary partition of Ω into
polyhedral-like cells T = {T}, and define the following function spaces:

Hdiv(T ) =
{
v ∈ L2(T )d : ∇ · v ∈ L2(T )

}
,

Hdiv
0 (T ) =

{
v ∈ Hdiv(∪T∈T T ) : v · n = 0 on ∂Ω

}
,

Hdiv
0 (Ω) = Hdiv

0 (T ) ∩Hdiv(Ω).

Furthermore, introduce the following bilinear forms:

b(·, ·) : Hdiv
0 (T )×Hdiv

0 (T ) → IR, b(u, v) =
∑
T∈T

∫
T

u ·K−1v dx (2.1)

c(·, ·) : Hdiv
0 (T )× L2(Ω) → IR, c(v, p) =

∑
T∈T

∫
T

p∇ · v dx (2.2)

d(·, ·) : Hdiv
0 (T )×H

1
2 (∂T ) → IR, d(v, π) =

∑
T∈T

∫
∂T

π v · nT ds (2.3)

(·, ·) : L2(Ω)× L2(Ω) → IR, (p, q) =
∫

Ω

pq dx. (2.4)

Here nT is the unit normal on ∂T pointing outward. We will now
use these bilinear forms to develop a discretisation based on a mixed
formulation. The mixed formulation will later be used for two purposes.
Primarily, it will be used to formulate the multiscale mixed finite-
element method to be introduced in Section 4. Secondly, the mixed
formulation will be used in Section 5 to develop the mimetic finite-
difference discretisation scheme for the subgrid problems arising in the
multiscale formulation.

3.1. Mixed Formulation

In the general mixed formulation of (1), one seeks a pair of functions
(p, v) ∈ L2(Ω)×Hdiv

0 (Ω) such that

b(u, v)− c(u, p) = 0, ∀u ∈ Hdiv
0 (Ω),

c(v, q) = (f, q), ∀q ∈ L2(Ω). (3)
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In mixed FEMs, the system (3) is discretised by replacing L2(Ω) and
Hdiv

0 (Ω) with finite-dimensional subspaces U and V . One then seeks
approximations p ∈ U and v ∈ V that satisfy (3) for all test functions
q ∈ U and u ∈ V . A typical example of subspaces is the lowest-order
Raviart–Thomas functions [27], for which U is the space of piecewise
constants and V has piecewise linear components.

A mixed FEM solution (p, v) of (3) in U ×V is a saddle-point of the
following Lagrange functional:

L(v, p) =
1
2
b(v, v)− c(v, p) + (p, f).

This means that L(v, q) ≤ L(v, p) ≤ L(u, p) for all u and q. Con-
sequently, mixed FEM discretisations lead to indefinite linear systems.
Indefinite systems require special linear solvers and are often considered
hard to solve. Next, we therefore introduce an alternative formulation
of the mixed method that will give a positive definite discrete system
and thereby simplify the computation of a discrete solution.

3.2. Hybrid Formulation

In a hybrid formulation [11], the need to solve a saddle-point problem
is avoided by using Lagrange multipliers. The hybrid formulation is
therefore sometimes called the Lagrange multiplier technique. For (1),
the hybrid formulation is obtained by replacing the mixed formulation
(3) with the following problem: find (v, p, π) ∈ Hdiv

0 (T ) × L2(Ω) ×
H

1
2 (∂T \∂Ω) such that

b(u, v)− c(u, p) + d(u, π)= 0, ∀u ∈ Hdiv
0 (T ),

c(v, q)= (f, q), ∀q ∈ L2(Ω),

d(v, µ)= 0, ∀µ ∈ H
1
2 (∂T \∂Ω).

(4)

Here ∂T = ∪T∈T ∂T and the new unknowns π correspond to pressures
at element faces. To discretise (4), one selects finite-dimensional sub-
spaces V ⊂ Hdiv

0 (T ), U ⊂ L2(Ω), and Π ⊂ H
1
2 (∂T \∂Ω), and seeks

(v, p, π) ∈ V × U ×Π such that (4) holds for all (u, q, µ) ∈ V × U ×Π.
Observe that in this approach one departs from the constraint V ⊂
Hdiv(Ω). Instead flux continuity is enforced through the Lagrange mul-
tipliers. In other words, the idea is to first remove the constraint that
the normal velocity must be continuous across element faces and inte-
grate (1) to get a weak form containing jump terms at block boundaries.
Continuity of the normal component is then reintroduced by adding an
extra set of equations, where the pressure π at the interfaces plays
the role of Lagrange multipliers. This procedure does not change v,
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nor p, but enables the recovery of pressure values at element faces,
in addition to inducing the desired change in structure of the linear
system resulting from the discretisation.

3.3. Mimetic Formulation

Recent mimetic finite-difference methods (FDMs) [15, 14] can be seen
as finite-difference counterparts of mixed FEMs. The discretisation in
a standard mixed method is introduced by picking discrete function
spaces U and V and using numerical quadrature to evaluate the in-
tegrals over cell volumes and cell faces in the variational formulation
(3). In a mixed method, the discretisation is introduced already in
the variational formulation in the form of a discrete inner product.
Mathematically, this means that the subspace V in Hdiv

0 (Ω) is replaced
by a discrete subspace of L2(∂T ), and the associated bilinear form b(·, ·)
is replaced by a bilinear form that acts on L2(∂T ) × L2(∂T ). Hence,
instead of seeking an unknown velocity field v defined over each element
T , one seeks a set of fluxes defined over the cell faces ∂T .

The most apparent advantage of mimetic FDMs relative to mixed
FEMs, is the ability to handle complex polyhedral grids cells (with
strongly curved faces [14]) in a straightforward manner. Stability and
optimal convergence of mimetic FDMs were established by [12, 13]
for very general grids. For flow in porous media, polyhedral cells arise
frequently in geological models when conforming hexahedral corner-
point grids are deformed to model geological phenomena like erosion
and pinch-outs. Similarly, for corner-point grids containing faults and
throws, one can subdivide grid faces and turn the non-conforming
corner-point grids into conforming polyhedral grids. However, in the
current paper we only consider conforming corner-point grids. We will
return to the discrete formulation of mimetic FDM in Section 5.1 and
introduce a particular variant [15] that closely resembles the lowest-
order Raviart–Thomas MFEM for hexahedral cells.

In the hybrid formulation of a mimetic FDM, one only needs to
replace V with a discrete subspace M ⊂ L2(∂T ), and b(·, ·) with a
bilinear form m(·, ·) that acts on L2(∂T )× L2(∂T ).

3.4. Discrete Formulations

The algebraic systems that arise from a mixed finite-element or a
mimetic finite-difference discretisation of (1) take the same general
form, whether we employ a standard or a hybrid formulation. In this
paper we employ a hybrid formulation only. The hybrid formulation
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(4) gives rise to linear systems of the following form: B −CT ΠT

C 0 0
Π 0 0

 v
p
π

 =

 0
f
0

 . (5)

In the multiscale mixed FEM and the mimetic FDM considered
herein, the approximation space U consists of functions that are cell-
wise constant

U = span{χm : Tm ∈ T }, χm(x) =
{

1, if x ∈ Tm,

0, otherwise.

Consequently, for v ∈ Hdiv
0 (T ) and p ∈ U , we have

c(v, p) =
∑
m

pm

∫
Tm

∇ · v dx =
∑
m

pm

∫
∂Tm

v · nT ds.

This shows that c(v, p) can be evaluated without having an explicit
representation of the velocity inside each cell, only values on the cell
boundaries are needed. Clearly, this is the case also for d(v, π) for any
π ∈ Π ⊂ H

1
2 (∂T ). We therefore assume that Π consists of functions

that are constant on each grid face γi
j = ∂Ti ∩ ∂Tj ; that is,

Π = span{πi
j : |γi

j | > 0}, πi
j(x) =

{
1, if x ∈ γi

j ,

0, otherwise.

To derive a discrete formulation, it only remains to define an ap-
proximation space V for velocity in the multiscale mixed FEM, or
alternatively a discrete approximation space M ⊂ L2(∂T ) and a cor-
responding bilinear form m(·, ·) to be used in the mimetic FDM. This
will be done in the subsequent sections. For now, we only assume that
a “velocity” basis function ψm

i is associated with each face γm
i of every

grid cell Tm. Thus, whereas we have one Lagrange multiplier for each
“interface”, we have a velocity basis function for each face of every grid
cell. Note that ψm

i lives in different spaces, depending on whether a
mixed FEM or a mimetic FDM is used.

The matrices C and Π in (5) are now given by

C = [c(ψm
i , χn)] and Π = [d(ψm

k , µ
i
j)],

and the matrix B is given by

B = [b(ψm
i , ψ

n
j )], or B = [m(ψm

i , ψ
n
j )]

for the mixed FEM and the mimetic FDM, respectively.
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The hybrid system (5) is indefinite, but b(ψm
i , ψ

n
j ) and m(ψm

i , ψ
n
j )

are nonzero only if n = m. Hence, by numbering the basis functions
ψm

i on a cell-by-cell basis, the matrix B becomes block diagonal, and
a Schur-complement reduction with respect to B can be performed to
obtain the following positive-definite system for p and π:[

D −FT

F −ΠB−1ΠT

] [
p
π

]
=
[

f
0

]
, (6)

where D = CB−1CT and F = ΠB−1CT .
Next, we use the fact that c(ψm

i , χn) = 0 for n 6= m to deduce that
D is a diagonal matrix. A Schur-complement reduction with respect to
D can therefore be performed to yield the following positive-definite
system for π alone:

Sπ = FD−1f , where S = ΠB−1ΠT − FD−1FT . (7)

Once π is computed, one can easily compute p and v by solving a
diagonal and a block-diagonal system, respectively.

4. A Multiscale Mixed Finite-Element Method

Elliptic (or parabolic) equations used to model pressure and velocity
in porous media flow applications have velocity solutions that often
exhibit a multiscale structure. To solve such equations, Hou and Wu [19]
introduced the idea of using a finite-element formulation with special
finite-element basis functions that are constructed to be adaptive to
local properties of the differential operator. Their method was called
the multiscale finite-element method (MsFEM) and was able to gen-
erate solutions that reflect important subscale characteristics of the
coefficients in the elliptic equation. However, MsFEM did not produce
(locally) mass-conservative solutions. By introducing a mixed formula-
tion, Chen and Hou [19] obtained a method that gave mass-conservative
velocity fields on the coarse discretisation grid and also on the under-
lying subgrid in coarse blocks not containing sources. This method will
herein be referred to as the multiscale mixed FEM (MsMFEM). In
this paper we will use a variant of MsMFEM developed by Aarnes and
coworkers [1, 2, 3] that provides a mass-conservative velocity field on
the entire underlying subgrid. We note that MsMFEM is related to
subgrid upscaling introduced by Arbogast [10, 7, 8]. The connection
between these two approaches has been addressed in [9]. Other numer-
ical subgrid methods (based on the variational multiscale method [20])
include [23, 25]. Distinctly different, but related approaches include the
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multiscale finite-volume method by Jenny, Lee and Tchelepi [21, 22],
and the nested-gridding method by Gautier, Blunt and Christie [18].

To formulate MsMFEM, let B = {B} be a grid where each grid
block B is a connected union of grid cells in an underlying subgrid T .
The grid B will be referred to as the coarse grid, and the subgrid T will
be referred to as the fine grid. Moreover, to clearly distinguish between
cells in the coarse grid and cells in the fine grid, we will henceforth use
block to denote a cell in the coarse grid.

For each interface Γij = ∂Bi ∩ ∂Bj in the coarse grid, we assign
a corresponding basis function Ψij designed to embody the local im-
pact of subgrid variations in the permeability K. This basis function
is related to an unknown function Φij through the gradient relation
Ψij = −K∇Φij . The function Φij is supported in Ωij = Bi ∪ Γij ∪ Bj

and is obtained by solving (numerically) a local elliptic problem

Ψij · nij = 0 on ∂Ωij , ∇ ·Ψij =
{

fi(x), for x ∈ Bi,

−fj(x), for x ∈ Bj .
(8)

Here nij is the outward-pointing unit normal to Ωij , and the source
terms fi and fj are given by

fi(x) =
wi(x)∫

Bi
wi(x)dx

, wi =
{
f, if

∫
Bi
f dx 6= 0,

trace(K), otherwise.
(9)

The source terms {fi} are defined as in (9) for the following reasons:

1. With this definition, the basis function Ψij forces unit flux across
Γij ; that is,

∫
Γij
ψij · nds = 1, where n is the unit normal of Γij

pointing into Bj . This implies that the velocity solution {vij} gives
the fluxes across the respective coarse-grid interfaces.

2. If a conservative method is used to compute basis functions, the
velocity v =

∑
vijψij conserves mass on the subgrid T .

3. Choosing special source terms in blocks containing nonzero source
terms allows the method to model radial flow on the subgrid scale
around point or line sources, such as wells in oil-reservoirs.

4. By letting fi scale according to the trace of K, as in (9), one can to
some extent avoid unnaturally high velocities across flow barriers,
see [3].

For regular hexahedral blocks, homogeneous permeability, and no source
terms, the multiscale basis functions simplify to the first-order Raviart–
Thomas (RT0) basis functions. In addition to capturing the influence
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of subgrid heterogeneity, the multiscale basis functions provide a gen-
eralisation of the RT0 basis functions to general polyhedral elements.

The main computational effort when solving (1) using MsMFEM
is spent on constructing the basis functions {Ψij}. The work asso-
ciated with this task alone is proportional to the amount of work
spent on solving the full problem on the fine grid using the best linear
solvers available, like state-of-the-art algebraic multigrid methods. This
illustrates that MsMFEM does not necessarily reduce the computa-
tional cost considerably compared to a fine-grid solver for a single
pressure solve. However, MsMFEM offers significant computational
savings for multiphase flow problems. Indeed, for two-phase flow sim-
ulations, where the pressure equation needs to be solved repeatedly, it
has been demonstrated that the basis functions need to be computed
only once, or updated infrequently [1, 22, 24]. This means that the
main computational task is related to solving the global coarse-grid
system, which is significantly less expensive than solving the full fine-
grid system. It should also be noted each basis function ψij can be
computed independently, which means that the computation of basis
functions is a so-called embarrassingly parallel task. Significant speedup
of MsMFEM should therefore be expected for parallel implementations.

4.1. Generation of Coarse Grids

The above formulation of basis functions is very flexible with respect to
the geometry and topology of both the coarse grid and the underlying
fine grid. This is a major advantage of the multiscale mixed formulation.
A bit simplified, the grid flexibility can be stated as follows: given an
appropriate solver for the local flow problems on a particular type of
fine grids, the multiscale method can be formulated and basis functions
can be computed on any coarse grid where each grid block consists of
an arbitrary collection of connected fine-grid cells.

To illustrate, consider a small model where Ω is defined as the union
of the three blocks depicted in Figure 4. Although these blocks are
stacked on top of each other, each pair of blocks has a common interface.
Thus, in the multiscale formulation we construct three basis functions
for this set of blocks, one for each pair depicted in Figure 4.

In principle, any conservative numerical method may be used to
construct the basis functions. However, one must also be able to eval-
uate the b(·, ·) inner product between two basis functions (see (2.1)).
Hence, if the numerical method used to compute the basis function
only provides fluxes over cell faces (i.e., is based on a finite-volume or
finite-difference method), one must have means to interpolate velocities
internal to the cells. Alternatively, one can use an approximate inner
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Figure 4. A three-block domain and the corresponding subdomains constituting the
support of the resulting MsMFEM basis functions.

product like the one used in the mimetic formulation discussed in Sec-
tion 3.3, for which b(·, ·) is approximated with an inner product that
only involves interface fluxes.

A mass-conservative subscale solver guarantees that the coarse-scale
and fine-scale velocities will be conservative. In fact, the fine-scale
fluxes can be used to define conservative fluxes on any grid with blocks
consisting of simply-connected unions of cells from the fine grid. This
means that the grid used by an accompanying transport solver does not
have to coincide with the coarse grid in the multiscale method or with
the underlying fine grid. The multiscale method can therefore easily be
combined with, e.g., transport solvers using adaptive mesh refinement.

Extensive tests, some of which are reported in Section 6, show that
the accuracy of MsMFEM is generally not very sensitive to the shape
of the blocks. In fact, accurate results are obtained for grids containing
blocks with rather ’exotic’ shapes, see e.g., Figure 8 and [3]. This means
that the process of generating a coarse simulation grid from a complex
geomodel can be greatly simplified, especially when the fine grid is fully
unstructured or has geometrical complications due to faults, throws,
and eroded cells. However, MsMFEM does have some limitiations, as
identified in [3]. Here it was observed that barriers (low-permeable
obstacles) may cause inaccurate results unless the coarse grid adapts to
the barrier structures. In addition it was demonstrated that MsMFEM
in its present form has limited ability to model bidirectional flow across
coarse-grid interfaces; fine-grid fluxes at coarse-grid interfaces in the
reconstructed flow field will usually go in the same direction.
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Figure 5. Illustration of some of the guidelines for choosing a good coarse grid. In
the left plot, all blocks except for Block 1 violate at least one of the guidelines each.
In the right plot, the blocks have been improved at the expense of more couplings
in the coarse-grid system.

As a remedy for the limitations identified in [3], it is possible to
exploit global information (e.g., from an initial fine-scale pressure solve)
when constructing the basis functions [1]. However, with the present
definition of the basis functions, our experience indicates that accurate
results are obtained if the coarse grid obeys certain guidelines; see the
left plot in Figure 5 for illustrations:

1. The coarse grid should preferably minimize the occurence of bidi-
rectional flow across coarse-grid interfaces. Examples of grid struc-
tures that increase the likelihood for bidirectional flow are:

− Coarse-grid faces with (highly) irregular shapes, like the ’saw-
tooth’ faces between Blocks 6 and 7 and Blocks 3 and 8.

− Blocks that do not contain source terms and have only one
neighbour, like Block 2. (A simple remedy for this is to split
the interface into at least two sub-faces, and define a basis
function for each sub-face.)

− Blocks having interfaces only along and not transverse to the
major flow directions, like Block 5. (To represent flow in a
certain direction, there must be at least one non-tangential
face that defines a basis function in the given flow direction.)

2. Blocks and faces in the coarse grid should follow geological layers
whenever possible. This is not fulfilled for Blocks 3 and 8.

3. Blocks in the coarse-grid should adapt to flow obstacles (shale
barriers, etc.) whenever possible; see [3].

In addition, to enhance the efficiency of the method, one should try
to keep the number of connections between coarse-grid blocks as low
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as possible (to minimise the bandwidth of the coarse-scale system),
and avoid having too many small blocks (this increases the dimension
of the coarse-scale system, but does not necessarily improve accuracy
significantly).

In the right plot of Figure 5, we have used the guidelines above
to improve the coarse grid from the left plot. In particular, we have
increased the size of Block 5 to homogenise the block volumes and
introduce basis functions in the major flow direction for this block. In
doing so, we increase the number of couplings from nine to twelve (by
removing the coupling between Blocks 2 and 4 and introducing extra
coupling among Blocks 1, 3, 5, 6, and 8). In general it may be difficult
to obtain an ’optimal’ coarse grid, since guidelines may be in conflict
with each other. On the other hand, this is seldom necessary, since the
multiscale formulation is relatively robust with respect to the choice of
coarse grids. We will return to some of these issues in Section 6.2, where
we discuss the generation of coarse grids for a real industry model.

4.2. Robust Alternative to Upscaling

Multiple direct solutions of the elliptic (or parabolic) pressure equation,
as required in reservoir simulation, is generally infeasible on multimil-
lion cell geomodels with current simulators. Hence, rather than using
the original geomodel as input, current simulators normally take as in-
put coarsened and simplified grid-models derived through an upscaling
process. Modeling the flow on a coarser grid is sufficient only if the
upscaled model model accounts for the influence of dominant fine-scale
features. Unfortunately, because upscaling methods do not offer suffi-
cient resolution, they often fail to capture important subscale features,
such as narrow high-flow channels or shale barriers. Multiscale methods,
on the other hand, generally model subscale features adequately, even
though the global flow equations are solved on a coarse grid only.

Multiscale methods, such as MsMFEM and the multiscale finite-
volume method [21], may therefore be viewed as a robust alternative
to upscaling. Indeed, if one avoids recomputing basis functions at each
time step, the computational cost of a multiscale method is comparable
to that of standard flow-based upscaling methods. However, the flex-
ibility to handle grids with very general block geometries is currently
a unique feature for MsMFEM. We consider this feature to be a very
important advantage. For instance, it allows for automated strategies
for generation of coarse grids. In particular, by allowing geomodels to
be used as direct input for simulations, MsMFEM opens up for more
efficient reservoir modeling and simulation workflows.
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As opposed to MsMFEM, most upscaling procedures for the pressure
equation are devised for coarse grids having hexahedral blocks. For
grids with general polyhedral coarse blocks like in Figures 4 and 8,
the choices of upscaling methods are limited, in particular since it is
difficult to specify natural flow directions and appropriate boundary
conditions. There exist upscaling techniques that are applicable to grids
with general polyhedral blocks (e.g., simple averaging approaches), but
these usually give less accurate results. Indeed, averaging approaches
are in general very crude and create upscaled models where all infor-
mation about the subscale heterogeneous structures is lost. The main
limitation, however, is the lack of a robust numerical method for coarse
grids with general polyhedral geometries. Multi-point finite-difference
methods, for instance, are not applicable to grids with a wide variety
of block geometries. A generalisation of the two-point finite-difference
(finite-volume) method may be applied, but will generally give very
poor results. Indeed, this method is convergent only for so-called K-
orthogonal grids, meaning that the connections between cell centres are
K-perpendicular to the cell faces.

Hence, in conclusion, upscaling methods for the pressure equation
combined with standard numerical methods usually do not provide
sufficiently accurate pressure and velocity solutions on coarsened grids
having complex block geometries. Thus, to remedy grid limitations
associated with upscaling, it is common to spend a significant effort
on constructing and improving coarsened simulation grids. In fact,
the process of generating simulation grids is generally the most time-
consuming part of the upscaling phase. Using MsMFEM, the generation
of coarsened grids is greatly simplified. MsMFEM applies and usually
gives adequate accuracy for any given partitioning of the fine-grid (e.g.,
geomodel) into a collection of connected coarse blocks, provided that
one has a numerical method for computing the basis functions on the
fine grid and means to evaluate the b(·, ·) inner product between two
basis functions (approximately). However, improved accuracy is to be
expected if the grid generation follows the guidelines from Section 4.1.
By allowing grid blocks to consist of a collection of cells in the fine
grid, one avoids resampling of geological data, which is a complicating
part of standard grid-generation procedures. In summary, we believe
that MsMFEM is both a robust and flexible alternative (or even a
replacement) of upscaling methods on complex grids. We will make an
effort to demonstrate this for corner-point grids in Section 6.
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5. Subgrid Discretisation Methods

As pointed out in the previous section, MsMFEM relies on a pressure
solver on the underlying grid to compute basis functions by solving the
local flow problems (8). To this end, there are several options available,
as outlined below. However, the choice of a good method is complicated
by the fact that real-life corner-point grids may be highly irregular, as
illustrated in Figure 2.

Two-point FDMs: Most commercial reservoir simulators use tradi-
tional finite-difference methods like the two-point flux approxima-
tion scheme. These methods were not designed to cope with the
type of corner-point grid models that are built today using modern
geomodelling tools. For instance, routinely generated corner-point
grid models are seldom K-orthogonal. Hence, if one is interested
in accurate solutions, two-point schemes should be avoided.

Multi-point FDMs [5, 6, 17] are more advanced finite-difference meth-
ods that amend the shortcomings of two-point scheme. These meth-
ods are accurate, but are unfortunately hard to implement for
general corner-point grids, especially if the grid is non-conforming
with non-matching faces.

Mixed FEMs are more accurate than two-point schemes and gener-
ally quite robust. However, since cells with five to seven corners
are not diffeomorphic to the unit cube, one cannot use a straight-
forward mixed FEM relying on a transformation from hexahedral
cells back to the unit cube. Instead, one must introduce special
reference elements and corresponding Piola transforms for each of
the degenerate cases, and this complicates the implementation of
a mixed FEM considerably.

To overcome this problem, one can introduce a conforming tetrahe-
dral subdivision of the corner-point grid and use the lowest-order
Raviart–Thomas MFEM to discretise (8). To partition the grid,
one can simply subdivide each corner-point cell as depicted in
Figure 6, and then remove all tetrahedrons with zero volume. This
approach does not extend easily (without introducing mortars) to
non-conforming grids with non-matching faces.

Mimetic FDMs can be seen as finite-difference counterparts of mixed
FEMs. The methods are very flexible with respect to cell geome-
tries and easy to formulate for general polyhedral cells. This opens
up for a natural way of treating degenerate cells with less than six
faces and non-conforming grids with non-matching faces. However,
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Figure 6. Subdivision of a hexahedral cell into six tetrahedrons.

the mimetic formulation has not yet been widely tested for models
with industry-standard geometrical complexity.

In the following we will use a mimetic discretisation. Although mimetic
FDMs can handle curved interfaces, we will henceforth make a geo-
metrical simplification. We assume that an underlying subdivision of
the corner-point cells into tetrahedrons as illustrated in Figure 6, such
that interfaces in the corner-point grid can be described as the union
of two planar triangles. The convention in reservoir simulation is to
assume that interfaces are bilinear surfaces. Thus, what we consider to
be a corner-point cell here is not according to common practice, but
we believe that the fact that we define the grid differently is a minor
cause of concern. Indeed, geological reservoir models are a result of non-
deterministic modelling approaches, and the associated corner-point
grid is populated with permeabilities from a stochastic distribution.
The assumption that interfaces are bilinear is therefore, in our opinion,
invoked only to facilitate numerical reservoir simulation.

The main reason for viewing the corner-point grid cells as a union
of tetrahedrons is that it easily allows a consistent treatment of cell
geometries. Indeed, the mimetic FDM requires that the following grid
information is available for all cells: cell volumes, cell mass centers,
face areas, face mass centers, and a net normal vector for each face. In
the implementation of the mimetic FDM outlined below, we derive the
necessary grid information as follows:

− Cell volumes: sum of tetrahedron volumes.

− Cell centres: volume-weighted average of tetrahedron centres.
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− Face areas: sum of sub-triangle areas.

− Face centres: area-weighted average of sub-triangle centres.

− Face normals: area-weighted average of sub-triangle normals.

5.1. A Mimetic FDM for Corner-Point Grids

In this subsection we describe the ideas of the mimetic FDMs in [15].
Since the method is very recent, and not yet in widespread use, we have
chosen to present it in some detail. To this end, denote by Fm the set of
faces of Tm, and expand v and u in the basis {ψm

i : Fi ∈ Fm, Tm ∈ T }:

v =
∑
i,m

vm
i ψ

m
i and u =

∑
i,m

um
i ψ

m
i .

Since b(ψm
i , ψ

n
j ) is nonzero only if n = m, we may write

b(u, v) =
∑

Tm∈T
uT

mBmvm, (10)

where Bm is the block diagonal of B associated with Tm, and vm,um ∈
IRNm and Nm is the number of faces of Tm. The main idea in mimetic
FDMs is to define matrices Mm so that (·, ·)Mm = (Mm(·), ·) defines
inner-products that mimic the corresponding inner-products (·, ·)Bm =
(Bm(·), ·) associated with the continuous bilinear form b(·, ·), but which
do not require explicit representations of the velocity in each cell.

In the current presentation, we assume that vm
i represents the total

flux out of Tm across Fi ⊂ Fm:

vm
i =

∫
Fi

v(s) · n ds, Fi ∈ Fm. (11)

Brezzi et al. [12] established that, in addition to symmetry, the following
conditions are sufficient to ensure stability and convergence in pressure
and velocity of the mimetic FDM for very general polygons:

1. There exist positive constants s∗ and S∗ such that

s∗|Tm|vTv ≤ (v,v)Mm ≤ S∗|Tm|vTv, (12)

for all Tm ∈ T and v ∈ IRNm . Notice that the bounds in this
expression differ from the bounds given in [15] in the sense that we
use flux unknowns rather than velocity unknowns. Thus, to obtain
the constants s∗, S∗ in [15], one should scale the components of v
by the inverse area of the corresponding faces.
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2. For every Tm ∈ T , every vm obtained by inserting v = K∇p into
(11) for a linear function p on Tm, and every um ∈ IRNm , we have

(vm,um)Mm +

(
Nm∑
i=1

u(i)
m

)∫
Tm

p dx =
Nm∑
i=1

u
(i)
m

|Fi|

∫
Fi

p ds. (13)

These conditions state that there should exist a global bound on the
eigenvalues of all Mm, and that the inner-products (·, ·)Mm should obey
the Gauss–Green formula for linear pressure. A direct consequence is
that the method will be exact for linear pressure; that is, the fluxes
obtained by the numerical solution will match the fluxes corresponding
to the exact solution.

Implementation of Mm

Explicit formulae for computing Mm-matrices that obey (12)–(13) in
the case where the variables vm

i represent net face velocities were given
in [15]. Below we give the corresponding formulae for the case where
the variables represent fluxes. To this end, let Nm be the matrix whose
i’th row is defined by

nm,i =
1
|Fi|

∫
Fi

nT
i ds, (14)

where ni is the unit normal to face Fi pointing out of Tm; let Cm be
the matrix whose i’th row is defined by

cm,i =
1
|Fi|

∫
Fi

(x− xm)T ds, (15)

where xm is the centre of Tm; and let Dm be the diagonal matrix
containing the areas |Fi| of each face. Note that for cells that are
unions of a collection of tetrahedrons, as we assume that corner-point
grid cells are, these matrices are easily derived from the correspond-
ing tetrahedral grid properties. Finally, let Zm be a Nm × (Nm − d)
matrix whose columns form an orthonormal basis for the null space of
NT

m, and let Um be a symmetric positive-definite matrix of dimension
(Nm − d)× (Nm − d). Then the matrix Mm defined by

Mm = Mm,1 + Mm,2, (16)

where

Mm,1 =
1

|Tm|
CmK

−1CT
m, Mm,2 = D−1

m ZmUmZT
mD−1

m , (17)

satisfies the discrete Gauss–Green formula (13). In addition, some mild
restrictions must be imposed on the grid and on the eigenvalues of Um

paper-rev3.tex; 10/11/2006; 13:57; p.20



21

in order for Mm to also satisfy condition (12). We should also remark
that explicit formulae for the inverse of Mm (for the case where the
variables represent face velocities) were also given in [15]. These formu-
lae may be used to assemble B−1 directly. This is advantageous both
with respect to computational efficiency, and with respect to avoiding
numerical inversion of nearly singular Mm-matrices that arise for el-
ements having one or more faces with almost zero area. The reader
should consult [14, 12] for further details.

Motivation
To motivate the form of Mm given in (16), we consider multiscale basis
functions similar to (8), and thus make a twist to the presentation given
in [15]. Hence, for each face Fi ⊂ Fm, define ψi by

ψi = −K∇pi, ∇ · ψi =
1

|Tm|
, ψi · n =

{
1/|Fi| for x ∈ Fi

0 for x ∈ Fj .
(18)

One could now, theoretically, define the matrix Mm by [Mm]ij =
b(ψi, ψj) (where b is given by (2.1)), but for general polyhedral cells,
the computation of b(·, ·) is non-trivial, and thus not practical. Instead
one could consider a first order approximation, i.e., find Mm such that
[Mm]ij = b(ψi, ψj) +O(h2), where h is the grid-cell diameter. For this
to hold true, it is sufficient to require uTMmv = b(u, v) whenever the
sum of the polynomial orders of u and v are less or equal to one. The
mimetic FDMs are based on a somewhat stricter requirement, that is,
uTMmv = b(u, v) if one of the functions are constant, and the other is
any expansion in the basis functions (18).

In (17), the matrix Mm,1 is defined so that b(u, v) = uTMm,1v if u
or v belongs to the space of constant velocities V0, and Mm,2 is defined
so that the inner-product (u,v)Mm is not influenced by Mm,2 if either
u or v corresponds to a constant velocity field. This leaves freedom to
choose Um only. If we view the mimetic methods as a discrete variant
of the mixed finite-element method defined by the basis functions in
(18), one should try to define Um so that the following equivalence
relation holds:

m∗(v,v)Bm ≤ (v,v)Mm ≤M∗(v,v)Bm , ∀v ∈ IRNm (19)

for some positive constants m∗ and M∗ independent of the mesh and
coefficients K of the problem. Here Bm is the local stiffness matrix that
stems from the mixed finite-element method defined by (18). Requiring
that an equivalence relation of this form should hold might imply that
Um should be chosen differently for different cell geometries. However,
one generally would like to be able to define Um independent of the
grid.
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To provide some insight into how Um should be chosen, we con-
sider hexahedral elements (shaped like a shoe-box), and compare Mm

with the corresponding matrix Bm for the RT0 space for hexahedral
elements. For a full tensor K, one can show that Mm = Bm if

Um =
|Tm|

6
diag(K−1), ZT

m =
√

2
2

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 , (20)

where diag(K−1) denotes the diagonal part of K−1. In particular, if K
is isotropic, then

Um =
|Tm|

2trace(K)
I. (21)

This example indicates that Um should scale proportional to the
eigenvalues of K−1 and proportional to the volume of |Tm|. The latter
form is more general than (20) in the sense that it allows cells to have
an arbitrary number of faces. Since the number of faces may vary for
cells in a corner-point grid, we use Um defined by (21) in our im-
plementation. Results that are reported in [4] reveal that the mimetic
FDM outlined above with Um chosen as in (21) generally gives accurate
results, also for cases with full tensor permeability. In particular it tends
to be more robust than the RT0 method for tetrahedral grids. However,
loss of monotonicity is observed for some cases with skew grids, and
large anisotropy ratios.

5.2. General Remarks

Although mimetic methods are less mature than mixed FEMs and
multi-point FDMs, they are quite easy to implement on complex grids
and allow for a large degree of freedom in using unstructured grids
consisting of general polyhedral cells to model complex geology. We
believe that using a mimetic method as subgrid solver will be partic-
ularly advantageous to model flow in reservoirs with faults. Faults are
usually modelled as hyperplanes, i.e., as surfaces. Across fault-faces, the
corner-point grids are generally non-conforming, having non-matching
interfaces, see Figure 3. A mimetic method handles grids with non-
matching faces in a natural way by assigning a “basis function” for
velocity to each “sub-face” γij = ∂Ti ∩ ∂Tj of the faults. In a mixed
method, flux continuity across fault-faces can be modelled using the
hybrid formulation with a Lagrange multiplier (a mortar) for each “sub-
face” of the fault-faces. However, although we feel that the mimetic
method handles non-matching faces in a more natural way, we will
not demonstrate this flexibility with respect to non-conforming grids
arising in grid-models with faults in this paper.
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6. Numerical Comparisons

In this section we examine the quality of MsMFEM solutions obtained
using the mimetic method to compute basis functions. To this end, we
consider two examples. In Section 6.1, we consider a small Y-shaped
synthetic sector model with three different isotropic permeability struc-
tures and discuss several fundamental numerical properties of the mul-
tiscale method. Then in Section 6.2, we consider a larger and more
complex model of a layered bed on meter-scale.

In the following we will only compare the quality of the MsMFEM
velocity solutions. To compare the quality of the multiscale velocity
fields we will consider two error measures: (i) errors in fluxes across
interfaces in the corner-point grid, and (ii) saturation errors in a two-
phase flow scenario. The error in fluxes is measured as follows:

e(v) = ‖(vref − v) · n‖L2(∂T )/‖vref · n‖L2(∂T ). (22)

Here vref is obtained by solving (1) using the mimetic solver directly
on the subgrid, v is the multiscale solution, T is the corner-point grid,
and n is a unit vector normal to ∂T .

The error in fluxes (22) is not always a good indicator for the overall
accuracy of a solution, especially when the velocity oscillates rapidly.
We therefore also monitor the impact the errors in the velocity have on
the saturation field obtained by solving a two-phase transport equation
of the form,

st +∇ · (Fw(s)v) = max{f, 0}+ Fw(s) min{f, 0}, (23)

where Fw(s) = s2/(s2 + (1 − s)2). This nonlinear hyperbolic equation
is discretised by the first-order implicit upwind scheme on the subgrid
and solved using a Newton–Raphson method. To assess the accuracy
of the solutions of (23), we measure how much they differ from the
reference solution at 0.5 PVI, i.e., we compute

e(s) = ‖sref(·, T )− s(·, T )‖L2/‖sref(·, T )‖L2 ,

where s is the saturation induced by the MsMFEM velocity fields, sref
is the saturation induced by vref , and T is defined by∫ t=T

t=0
max{f, 0} dt = 0.5|Ω|.
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6.1. A Y-shaped Reservoir

The first example is a synthetic reservoir in the shape of the letter Y
represented by a grid with 32×32×8 blocks, see Figure 7. (Notice that
neither the domain nor the grid blocks are perfectly symmetric about
the yz-plane.) This grid model is much smaller than models to which
one usually would apply a multiscale method. However, the size of the
model is chosen on purpose to illustrate some fundamental aspects of
the multiscale method.

The model is equipped with three different isotropic permeabil-
ity fields: (i) homogeneous permeability; (ii) a log-normal field where
the permeability values vary six orders of magnitude; and (iii) a flu-
vial type permeability field consisting of high-permeable channels on
a low-permeable log-normal background; see Figure 7. The log-normal
permeability field has been generated by sampling random numbers
independently in each cell, applying a Gaussian smoothing with vari-
ance 5.0 in each direction, adjusting the variance by multiplying with a
constant, and finally taking the exponential. The mean is 2.58 and the
variance is 184.1. The artificial, fluvial-like permeability was generated
by adding random sinusoidal curves of high permeability to a low-
permeable log-normal background field. The mean of the resulting field
is 29.0 and the variance is 2246.

We consider two different well configurations (see Figure 7): (WC1)
an injector is placed at the base of the Y and one producer in each of
the outer corners of the arms of the Y; and (WC2) an injector and a
producer in the two outer corners of the arms of the Y (to the right and
left, respectively, in Figure 7). The pressure and velocity distributions
are only computed once.

To define the coarse grids for the multiscale method, we use a very
simple strategy and partition the grid uniformly in index space. In other
words, think of the geomodel as a regular 32 × 32 × 8 Cartesian grid,
and partition it into coarse Mx ×My ×Mz grids, in which each block
consists of (32/Mx) × (32/My) × (8/Mz) cells. Tables I and II report
errors in fluxes and saturations obtained on four different coarse grids
for well configurations number one and two, respectively.

Let us first consider well configuration WC1 with homogeneous and
log-normal permeability fields, for which the flow tends to take place
almost independently in the two half domains. Table I shows that the
best resolution is obtained with the 16 × 16 × 4 and the 2 × 2 × 1
grids. For the 16 × 16 × 4 coarse grid, the coarse-scale system is able
to resolve the majority of the global flow. Similarly, for the 2 × 2 × 1
coarse grid, the multiscale basis functions are able to capture most of
the flow pattern in the arms and the leg of the Y, in particular for
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Figure 7. The Y-shaped reservoir: log-normal permeability field and WC1 (left),
fluvial permeability field and WC2 (right), and partitioning into 4 × 4 × 1 coarse
blocks (bottom).

Table I. Errors in fluxes and saturations for the Y-shaped reservoir computed
using MsMFEM for well configurations number one.

Mimetic FDM Homogeneous Log-normal Fluvial

Coarse grid e(v) e(s) e(v) e(s) e(v) e(s)

16× 16× 4 0.1152 0.0193 0.1963 0.0532 0.4143 0.2278

8× 8× 2 0.1282 0.0213 0.3174 0.1157 0.4742 0.3607

4× 4× 1 0.1070 0.0249 0.2212 0.1582 0.3119 0.2442

2× 2× 1 0.0111 0.0103 0.1214 0.0751 0.1589 0.0679

the homogeneous case, for which there is a very small flux across the
yz-plane. For the other two coarse grids, the coarse-scale system is too
small to accurately capture the global flow and the local fine-scale sys-
tems are too small to represent the (global) flow patterns accurately in
the multiscale basis functions. Previous experience with MsMFEM on
Cartesian grids indicates that typical upscaling factors of 4–16 in each
direction are the most computationally feasible, giving local problems
with between 100 and 1 000 cells.
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Table II. Errors in fluxes and saturations for the Y-shaped reservoir computed
using MsMFEM for well configuration number two.

Mimetic FDM Homogeneous Log-normal Fluvial

Coarse grid e(v) e(s) e(v) e(s) e(v) e(s)

16× 16× 4 0.1409 0.0266 0.2307 0.0478 0.4215 0.2440

8× 8× 2 0.1567 0.0584 0.3472 0.0934 0.4466 0.3331

4× 4× 1 0.1776 0.1527 0.2097 0.1302 0.2974 0.2711

2× 2× 1 0.2537 0.3735 0.2810 0.3720 0.1846 0.1799

The flow pattern for the fluvial permeability field is dominated by
high-permeable heterogeneous structures that have the same length
scale as the whole reservoir. The flow patterns represented in the mul-
tiscale basis functions are restricted locally to each pair of coarse-grid
blocks by the assumption of no-flow boundary conditions on the local
flow problems. In other words, the local flow problems are not able to
accurately resolve and represent the long correlation structures in the
high-permeable channels. This is reflected in Tables I and II, where
one can observe that the resolution is improved by increasing the size
of the coarse blocks. For fluvial, and other heterogeneities with long
correlation lengths, a better approach would be to use global boundary
conditions to define the multiscale basis functions. That is, to use a
single initial pressure solution on the fine grid to compute representative
boundary conditions for the local flow problems; see e.g., [2]. This way,
the multiscale basis functions are able to represent local parts of flow
patterns extending beyond a single block in the coarse grid.

For WC2, the velocity profile has a sharp turn at the intersection
of the two arms of the Y. The basis functions are formed by driving a
unit flow from one grid-block to its immediate neighbour, which here
lies along one of the coordinate directions. MsMFEM therefore has no
natural representation of flow fields turning ninety degrees. This effect
is particularly evident for the homogeneous case, where the multiscale
basis functions will correspond roughly to the RT0 basis functions on
the coarse grid. The sharp turn at the intersection will therefore be more
smeared out as the size of the blocks increases. Hence, the resolution
deteriorates when the size of the coarse blocks increases, as observed
for the homogeneous and log-normal permeabilities in Table II.

Similar results are reported in [4] for a multiscale method using
a mixed FEM with RT0 elements as subgrid solver on a tetrahedral
subdivision of the fine grid.
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Figure 8. Nine different blocks arising from a uniform partitioning of the wave-bed
model in index space.

6.2. A Wavy Depositional Bed

In the second example we consider a corner-point grid modelling a wavy
depositional bed on a meter-scale. The corner-point grid has vertical
pillars that form a uniform 30 × 30 grid in the horizontal plane. The
model has 100 very thin layers, of which many collapse to a hyper-
plane in some regions; see Figure 10. The grid has 29 629 active cells
originally. However, thirty-one of the cells have a degeneracy as in the
lower-right plot in Figure 2. If we assume that all corner-point cells are
unions of tetrahedrons as in Figure 6, the two internal parts of each
of these thirty-one cells are only connected through a single line (i.e.,
through an interior interface of zero area). These cells are therefore
split into two cells each, giving a grid that altogether consists of a total
of 29 660 cells.

Coarse-Grid Partition in Index Space
We first partition the grid uniformly in index space to obtainMx×My×
Mz coarse grids. However, unlike the previous example, we now obtain
blocks that have zero volume, blocks that are disconnected, and blocks
that contain internal holes; see Figure 8. We therefore split disconnected
blocks and remove blocks with zero volume so that each new block
consists of a connected collection of fine-grid cells with positive volume.
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We now consider three different permeability fields; a homogeneous
and isotropic field; a homogeneous and anisotropic field for which K is
diagonal with kxx = kyy = 1000 and kzz = 1; and a heterogeneous and
isotropic field for which the permeability in each layer is log-normally
distributed with spatial correlation. The permeability varies between
0.10 mD and 1.69 D with mean 200.9 mD (log(K) = 2.01) and standard
deviation 154.1 mD (σ(log(K)) = 0.89). Although our grid geometry
originally models a depositional bed, we here use it as a sector model
and specify a standard quarter-five-spot flow scenario with injection
in the first vertical column and production in the last vertical column
of the grid. Table III reports the corresponding errors in fluxes and
saturations measured relative to the MFDM subgrid solution for four
different coarse grids and Figure 9 shows the corresponding watercut
curves. For comparison, Table III also reports errors for a multiscale
method using MFEM with RT0 elements as a subgrid solver on the
tetrahedral subdivision of the fine grid consisting of 147 334 cells. These
errors are measured relative to the RT0 fine-grid solution project onto
the hexahedral grid.

MsMFEM generally gives good results for both subsolvers on all
four coarse grids, both in terms of errors for all three permeability
models and watercuts for the heterogeneous model. The worst results
for the velocity-error are obtained on the 5×5×10 grid. This particular
grid violates several of the guidelines set forth in Section 4.1, and the
blocks depicted in Figure 8 are not among the worst in this sense. Due
to pinch-out and erosion, several blocks have an ’ellipsoidal’ shape (as
in Block 5 in the left plot of Figure 5) and have very poor connections
in the horizontal direction; in fact, for a few blocks there is no hori-
zontal connection at all. With flow occurring mainly in the horizontal
direction, these ‘ellipsoidal’ blocks tend to be effectively zeroed out in
the coarse-scale solution. This is because a horizontal flow will create a
bidirectional flow over the top and bottom faces (e.g., enter on the left
half and leave on the right half), which can not be modeled correctly
unless special measures are taken to account for bidirectional flows in
the MsMFEM basis functions. As an additional complication, several
of the layers have very thin blocks, in particular in the second coarse
layer from the bottom, and some blocks even consist of only one or two
(almost flat) fine-grid cells. Altogether, this gives a somewhat higher
error in the velocity approximation. However, since the worst blocks
typically have small volumes, the enlarged errors in velocity only have
a limited effect on the saturation distribution.
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Table III. Errors in fluxes and saturations for the wavy depositional bed computed
using the MsMFEM with subgrid solver MFDM (top) and RT0 MFEM (bottom).

Mimetic FDM Isotropic K Anisotropic K Heterogeneous K

Coarse grid e(v) e(s) e(v) e(s) e(v) e(s)

10× 10× 10 0.2028 0.0264 0.2485 0.1427 0.2152 0.0941

6× 6× 2 0.1302 0.0420 0.2071 0.1691 0.1547 0.1406

3× 3× 1 0.0624 0.0651 0.0948 0.1271 0.0807 0.1057

5× 5× 10 0.3521 0.0604 0.3058 0.1381 0.3474 0.1415

RT0 MFEM e(v) e(s) e(v) e(s) e(v) e(s)

10× 10× 10 0.1910 0.0223 0.2314 0.1434 0.1967 0.0912

6× 6× 2 0.1256 0.0412 0.2030 0.1734 0.1499 0.1456

3× 3× 1 0.0607 0.0653 0.0931 0.1300 0.0793 0.1077

5× 5× 10 0.3359 0.0541 0.2846 0.1344 0.3294 0.1380
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Figure 9. (Left) Watercut curves for the mimetic FDM simulations reported in
Table III with a total injection of 1.5 pore volumes of water. (Right) The same
watercut curves zoomed in around the breakthrough time.

Alternative Grid Generation Procedures
As discussed in Section 4.1, there are several simple guidelines one can
use to improve the quality of the coarse grids, and thereby increase
the accuracy of the multiscale methods. To shed some light on the
general robustness of the method, we give three examples of possible
grid generation procedures: (i) uniform partitioning in index space,
(ii) partitioning in physical space, and (iii) constrained partitioning in
index space. The latter may be viewed as a grid-processing routine to
improve grids obtained with uniform partitioning in index space.

When partitioning in physical space, we draw a uniform Cartesian
Mx ×My ×Mz grid overlaying the fine-grid model, and let a block in
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the coarse grid be the union of all grid cells with mass center inside
the associated cell in the Cartesian grid. Although more advanced
approaches can be applied, such as trying to preserve the shape of
the target cells as closely as possible, partitioning in physical space
typically gives coarse grids that do not follow the geological layers and
have (highly) irregular interfaces.

For the constrained partitioning, we start with a uniform partition-
ing in index space. Then, starting at the bottom (or top), we stack
layers of grid blocks together until the minimum thickness of each stack
(except possibly the stack on top or bottom) is larger than Hz/Mz

where Hz is the total height of the model. This way, we get a coarse
grid that follows the geological layers and gas no non-neighbouring
connections in the horizontal direction. At the same time, we avoid
saw-tooth interfaces and blocks with very small volumes.

To evaluate the different grid partitioning procedures, we compare
results obtained for the three procedures. First we consider the most
difficult grid above, i.e., Mx = 5, My = 5, and Mz = 10. The corre-
sponding results are presented in Table IV. In the constrained parti-
tioning in index space (starting stacking layers from the top) we reduce
the number of layers in the coarse grid to 3. Thus, as a reference,
we include also results obtained for Mx = 5, My = 5, and Mz = 3
using uniform partitioning in index space, and (uniform) partitioning
in physical space. All grids used to obtain the results in Table IV are
depicted in Figure 10.

The results clearly illustrate that partitioning in physical space gives
significantly less accurate results than partitioning in index space. This
is not surprising, considering the very rough surfaces of the blocks
obtained. Indeed, as seen in Figure 10, grids obtained by partitioning in
physical space violate many of the guidelines in Section 4.1; in partic-
ular, they do not follow the geological layering and have very irregular
interfaces. In contrast, we see that partitioning uniformly in index
space gives significantly more accurate results. The results indicate
also that constraining the thickness of the layers in the coarse grid to
prevent non-neighboring connections may improve accuracy, although
the improvement relative to uniform partitioning in index space is not
necessarily substantial. Nevertheless, constraining the thickness of each
layer is a very simple grid-processing procedure, and the small effort it
requires pays off by providing consistently accurate results.
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Table IV. Errors in fluxes and saturations for the wavy depositional bed computed
using the MsMFEM with subgrid solver MFDM for coarse grids obtained using
uniform partitioning in index space (UPI), uniform partitioning in physical space
(UPP), and constrained partitioning in index space (CPI). The dimensions of the
(unconstrained) coarse-grid are given in parenthesis.

Grid generation Isotropic K Anisotropic K Heterogeneous K

procedure e(v) e(s) e(v) e(s) e(v) e(s)

UPI (5× 5× 10) 0.3521 0.0604 0.3058 0.1381 0.3474 0.1415

UPI (5× 5× 3) 0.1719 0.0566 0.3158 0.1927 0.1790 0.1292

UPP (5× 5× 10) 0.5905 0.1339 0.6531 0.2743 0.6011 0.2000

UPP (5× 5× 3) 0.3326 0.0535 0.3502 0.1699 0.3777 0.1457

CPI (5× 5× 10) 0.1809 0.0573 0.2131 0.1479 0.1962 0.0993

Original grid UPI (5× 5× 10) UPI (5× 5× 3)

UPP (5× 5× 10) UPP (5× 5× 3) CPI (5× 5× 10)

Figure 10. Corner-point grid for the wavy depositional bed: original grid (left) and
a coarse grid obtained with different grid processing procedures.

7. Concluding Remarks

Multiscale methods have become popular among researchers in many
engineering disciplines. Nevertheless, multiscale methods are generally
regarded as immature, and few, if any, have penetrated into industrial
use. In this paper we have tried to promote the use of multiscale meth-
ods for flow simulation of geometrically complex and highly heteroge-
neous reservoir models. To this end, we have extended the multiscale
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finite-element method (MsMFEM) to corner-point grids, which is the
grid format used by most commercial geomodelling software and reser-
voir simulators to model porous rock formations containing producible
hydrocarbon.

In the current paper and in [4], the multiscale mixed formulation was
used in combination with two different subgrid solvers that both aim to
give accurate and robust discretisations with minimal grid-orientation
effects on grids with strong anisotropies and irregular geometries. Al-
though both subgrid solvers give good results, the results obtained
with the recent mimetic formulation are particularly promising and
encourage further development towards future use within reservoir sim-
ulation. Mimetic methods work directly on the corner-point grid, can
be formulated for general polyhedral cells with curved faces, and are
easy to implement. Moreover, our (limited) experience indicates that
they are quite robust with respect to the anisotropies and geometrical
complexities encountered in industry-standard corner-point grids.

The numerical results presented in the paper demonstrate that the
multiscale mixed method provides detailed and (quite) accurate veloc-
ity fields and saturation profiles for two-phase simulations on typical
geomodels arising in real-life reservoir engineering. Combined with pre-
vious results on Cartesian grids [1, 2, 3], we believe that these results
demonstrate that the multiscale mixed formulation is a versatile and
robust alternative to the traditional upscaling/downscaling approach
used in the petroleum industry. For a further comparison of various
state-of-the-art upscaling and multiscale methods we refer the reader
to another paper in this special issue [24].

A particular advantage of the multiscale mixed formulation is its
ease of implementation. Given a proper discretisation methodology on
the underlying corner-point grid, it is straightforward to implement
the multiscale mixed method on top of the existing pressure solver. In
fact, our coarse-grid Matlab code used in Section 6—including grid
processing, hybrid formulation, and linear algebra—only consists of
about 200 code lines. Implementing MsMFEM in a commercial solver
should therefore not be a daunting task.

Another advantage of the MsMFEM formulation is the ease with
which one handles the coarse grids. In particular, we have demonstrated
how one can avoid the difficulties of resampling that are usually encoun-
tered in grid coarsening, since the multiscale mixed formulation allows
the cells in the coarse grid to be chosen as an (almost) arbitrary con-
nected collection of cells in the underlying geological model. A simple
partition of cells in index space often produces a coarse grid that gives
sufficient accuracy in the multiscale method. If not, we have presented
several simple guidelines that can be used to improve the coarse grids.
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Using these guidelines, it should not be very difficult to derive a robust
and automated algorithm for producing good coarse grids.

We believe that the ease with which one handles coarse grids will
prove to be very advantageous when considering more complex ge-
omodels containing fractures and faults, for which the correspond-
ing geological models will generally be non-conforming and therefore
have non-matching interfaces. In ongoing research, we try to extend
the multiscale formulation to industry-standard geological models with
fractures/faults and non-conforming fine grids.

In summary, we believe that the multiscale mixed finite-element
method can greatly facilitate flow simulation on complex grid models
and potentially be used for reservoir simulation directly on full-scale
geological models if one is able to extend the methodology to more
complex flow physics like black-oil and compositional models.
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