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Abstract. In this paper we study domain decomposi-
tion methods for solving some elliptic problem arising
from flows in heterogeneous porous media. Due to the
multiple scale nature of the elliptic coefficients arising
from the heterogeneous formations, the construction of
efficient domain decomposition methods for these prob-
lems requires a coarse solver which is adaptive to the
fine scale features, [4]. We propose the use of a multi-
scale coarse solver based on a finite volume - finite ele-
ment formulation. The resulting domain decomposition
methods seem to induce a convergence rate nearly inde-
pendent of the aspect ratio of the extreme permeability
values within the substructures. A rigorous convergence
analysis based on the Schwarz framework is carried out,
and we demonstrate the efficiency and robustness of the
preconditioner through numerical experiments which in-
clude problems with multiple scale coefficients, as well
as problems with continuous scales.

1 Introduction

Many problems of fundamental and practical importance
have multiple-scale solutions. Typical examples include
transport of flows in heterogeneous porous media and
heat conduction in composite materials. When applying
domain decomposition (DD) methods using conventional
coarse grid solvers to these problems, the convergence
rate may deteriorate because the coarse grid solver does
not account for fine scale heterogeneous features. Hence,
to attain a satisfactory convergence rate we need to use
a coarse solver that reflects the small scale structures.

The Multiscale Finite Element Method (MsFEM) in-
troduced by Hou et al. [16,17] generates a general class
of coarse elliptic solvers which are adaptive to the lo-
cal property of the differential operator and contain the
important subgrid information. A DD preconditioner for
multiscale elliptic problems using the MsFEM developed
in [16,17] was proposed and analyzed in [4].
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In this paper we recognize that a preconditioner of
this type can serve as an efficient tool for solving el-
liptic problems that arise from flows in heterogeneous
porous media. However, since the finite-volume method
has become the standing standard in reservoir engineer-
ing communities, we incorporate the MsFEM solver into
a DD algorithm for the finite volume solution of the el-
liptic pressure equation. The coarse subspace correction
introduced here differs from the one used in [4] only in
the way we construct the multiscale base functions.

To construct the coarse grid operator we need to re-
late the finite volume approximation space to a related fi-
nite element space. We further show how some finite vol-
ume methods are naturally related to certain mixed and
non-conforming FEM’s. This allows us to carry out the
analysis within a variational formulation framework, and
utilize the guidelines developed in [4]. The main steps in
the analysis is based on the abstract Schwarz framework,
[13,19,23]. To resolve the additional complexity of hav-
ing multiple-scale coefficients we split the analysis into
a ”homogenized” part which depends on the selection of
boundary conditions for the multiscale base functions,
and a multiscale part which only depends on the local
heterogeneous structures.

The type of elliptic problems that we encounter in
reservoir simulation may have 106-1010 number of grid
cells in the geological model and direct computations
can easily exceed the capacity of modern computers.
Moreover, in multi-phase flow simulations one solves the
elliptic pressure equation for each time step, requiring
a tremendous amount of computer resources. The new
multiscale DD methods that we propose here can not be
expected to bridge the gap between the geological scale
and the reservoir simulation scale, but it might open for
more accurate reservoir performance predictions by al-
lowing simulation runs at a finer scale.

The paper is organized as follows. In section two we
present the necessary mathematical background and de-
scribe the MsFEM. In section three we introduce the DD
preconditioner and provide the convergence analysis. We
discuss some implementational issues in section four and
show some numerical results in section five. Finally we
make some concluding remarks in section six.
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2 Mathematical Formulations

In section 2.1 we introduce the elliptic model problem
and derive the discretized equations based on a finite
volume formulation. In section 2.2 we discuss the rela-
tionship between finite volume methods and some P1

non-conforming FEM’s. In section 2.3 we describe the
MsFEM, [16,17], and derive the coarse grid operator.
Finally, the selection of boundary conditions for the mul-
tiscale base functions is addressed in section 2.4.

2.1 Model problem and the discretized equations

We consider solving the second-order elliptic equation

−∇ · (a(x)∇u) = f in Ω ⊂ Rd , (1)

u = 0 on ∂Ω , (2)

where a(x) = (aij(x)) a symmetric and positive definite
tensor with uniform upper and lower bounds:

0 < α <
ξ · a(x)ξ

ξ · ξ
< β <∞, ∀ξ ∈ Rd\{0}, ∀x ∈ Ω.

Eqn. (1) may represent single-phase porous media flow or
steady state heat conduction through a composite mate-
rial. These are typical examples of problems where a(x)
can span over many length scales and the solution of
(1)-(2) displays a multiple-scale structure.

We discretize the domain Ω on two scales with mesh
parameters h and H , h � H . Thus, let T h and KH

be partitionings of Ω into polygons or polyhedrons with
typical diameters h and H respectively. We do not re-
quire that T h forms a sub-partitioning of each K ∈ KH ,
but, for simplicity, we assume that a(T ) is a constant
(symmetric positive definite) tensor for each T ∈ T h.
We associate with T h the space of piecewise constants,

V h = {v ∈ L2(Ω) : v|T = constant , ∀T ∈ T h} ,

and denote by Nh the dimension of V h. Observe that,
by assumption, we have a(x) ∈ (V h)d×d.

For the fine mesh discretization we apply the popular
cell centered finite volume method, see e.g. [1,2,15]. To
derive the discrete equations it is convenient to introduce
a new variable q = −a(x)∇u so that the left hand side of
(1) becomes ∇·q. We remark that q is the Darcy velocity
in porous media flow and the thermal flux density for
heat transfer in composite materials. The finite volume
method is based on the conservation law,
∫

∂T

q · n dS =

∫

T

f dV , ∀T ∈ T h . (3)

Note that if q is sufficiently smooth, then
∫

T

∇ · q dV =

∫

∂T

q · n dS ,

by virtue of the Gauss-Green theorem. We observe that
eqn. (3) ensures mass conservation within each of the
control volumes T ∈ T h. In the finite volume method
we rewrite (3) in discrete form by approximating the net
flux out of each cell on the basis of the potentials (or

pressures) in a certain number of neighboring cells. The
general finite volume formulation is thus on the form

∑

j,k

tkijg
k
ij(v

h) =

∫

Ti

f dx , i = 1, . . . , Nh , (4)

where the gk
ij ’s are pressure dependencies for the inter-

face Sij = ∂Ti ∩ ∂Tj and the tkij ’s are corresponding

transmissibilities. For brevity we write (4) as

Σhvh = F h . (5)

First assume that T h is a partitioning of Ω into par-
allelepipeds and denote by nij the unit normal to Sij

pointing from Ti to Tj . T h is said to be a-orthogonal if

nij · a(Ti)nik = 0 , j 6= k , ∀Ti ∈ T h .

The notion of a-orthogonality generates a class of prob-
lems for which one may discretize (3) using a two-point
flux approximation scheme

∑

j

tij(vi − vj) =

∫

Ti

f dx , i = 1, . . . , Nh , (6)

where the transmissibilities are defined by,

tij =
Aij

dik
−1
i + djk

−1
j

. (7)

Here di and dj are the respective distances from the cell
centers to the interface Sij along the line segment con-
necting the cell centers. Furthermore, Aij is the surface
area of Sij and kl = nij · a(Tl)nij , l = i, j.

While two-point flux approximation schemes may be
natural and sufficient for problems on a-orthogonal grids,
they may be equally insufficient for non a-orthogonal
grids, [3,14]. For general polygonal or polyhedral grids
we need to allow multi-point flux approximations to ob-
tain better predictions of the velocity field. We shall see
below that the two-point flux approximation (6) on a-
orthogonal quadrilateral grids in 2D is equivalent with
the standard non-conforming P1 FEM on a dual sub-
triangulation of T h. Similarly, we describe how the P1

non-conforming FEM on a different type of dual grid is
naturally related to certain multi-point flux approxima-
tion schemes. The primary benefit of working with the
finite volume method rather than the P1 non-conforming
FEM is that we have fewer unknowns in the discretized
equations and that the grid structure is generally sim-
pler, in particular in 3D.

2.2 Relationship to finite element methods

It has been known for some time that the linear sys-
tems arising from (1)-(2) using certain mixed and non-
conforming FEM’s are equivalent, [5,10]. The purpose
of the following is to argue that the finite volume meth-
ods are naturally related to these methods, and in some
cases equivalent. To keep the presentation simple we only
work with the P1 non-conforming FEM. More general
non-conforming FEM’s, and their relation to the finite
volume methods (4), are treated similarly.
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The standard P1 non-conforming FEM is equivalent
with the lowest order Raviart-Thomas mixed FEM, [5].
This equivalence implies that there is an isomorphism
between the approximation space Uh for the P1 non-
conforming FEM and the approximation space Qh ⊂
H1

div(Ω) for the flow variable q in the equivalent Raviart-
Thomas mixed FEM. Hence, if we can prove an equiv-
alence between a finite volume method (4) and the P1

non-conforming FEM, then there is also a mapping from
V h onto Qh. This mapping will be uniquely determined
by the fluxes across the cell interfaces Sij and will al-
low us to view the finite volume solution vh ∈ V h as a
member of H1

div(Ω).
Let X h be a triangulation of Ω and define the stan-

dard non-conforming P1 finite element space Uh(X h),

Uh(X h) = {u ∈ L2(Ω) : u|X ∈ P1(X), ∀X ∈ X h,

u is continuous at the midpoints of interior sides

and vanish at the midpoints of sides on ∂Ω} ,

and supply Uh(X h) with the usual bilinear form,

ah(u, v) =
∑

X∈Xh

∫

X

∇u · a(x)∇v . (8)

The non-conforming P1 finite element solution uh to (1)-
(2) is now defined by,

ah(uh, v) = (f, v) , ∀v ∈ Uh , (9)

where (·, ·) denotes the standard L2 inner product on Ω.

jz z
ji

T T
i

Fig. 1. A quadrilateral parallelepiped mesh T
h and its dual

triangulation X
h. The black dots denote the Y h nodes and

the hollow circles denote the Zh nodes.

First assume that T h is an a-orthogonal grid in 2D,
and let X h be the triangulation of Ω formed by subdi-
viding each parallelepiped into two conformal triangles,
see Figure 1. Denote by Zh the set of nodes on the di-
agonals, i.e. cell centers, and by Y h the set of nodes on
the midpoints of the parallelepiped edges. Now, define
the nodal map Lh : V h → Uh by

ah(Lhv, u) = 0 , ∀u ∈ Uh , u = 0 on Zh . (10)

Hence, if u = Lhv, v ∈ V h and yij ∈ Sij ∩ Y h then

u(zi) − u(yij)

|yij − zi|2
(yij − zi) · a(Ti)nij =

u(yij) − u(zj)

|yij − zj |2
(zj − yij) · a(Tj)nij .

This relation states q ·nij is continuous at yij , and hence,
by linearity, across Sij .

To see that the two-point flux approximation scheme
(6) on the a-orthogonal grid T h and the non-conforming
FEM (9) on the dual subgrid X h give rise to equiva-
lent linear systems under the correspondence induced
by Lh, we only need to show that the linear system
(5) with the transmissibilities (7) is obtained by elim-
inating the variables associated with the vertex nodes
Y h from the P1 finite element stiffness matrix. To this
end, observe that the a-orthogonality implies that the
Y h nodes are not mutually connected, and can hence be
eliminated using simple local algebraic manipulations.
It is straight forward to check that this elimination pro-
cess results in the harmonic averaged coupling induced
by (7). This implies that uh = Lhvh and, in particular,
that the flux across Sij generated by v in (6) coincides
with the flux generated by Lhv in the physical space Uh.
Thus, if (·, ·)Σ = (Σh(·), ·) then the norm identity

(v, v)Σ = ah(Lhv, Lhv) , ∀v ∈ V h . (11)

holds for all v ∈ V h.

For general quadrilateral grids in 2D one can not re-
move the extra variables induced by the dual triangu-
lation using only local algebraic manipulations. This re-
flects that the two-point flux-approximation is no longer
appropriate, and is in fact not convergent in general [3,
14]. However, this ability to eliminate variables on the
cell boundaries using local algebraic manipulations is a
cornerstone in the construction of multi-point flux ap-
proximation (MPFA) schemes. MPFA schemes are of-
ten derived by constructing local interaction regions and
supplying them with a finite element-like space. The
transmissibilities and pressure dependencies are then ob-
tained by eliminating the variables on the interfaces. We
shall consider the popular O-method, [1,2], in detail and
show that it is, by construction, the linear system we
obtain by eliminating variables on the cell boundaries
from a special, non-standard, non-conforming P1 FEM.
We consider only quadrilateral grids in 2D, but the same
reasoning applies to more general polygonal grids in 2D
and polyhedral grids in 3D.

y
x

z
z

z zy

y

y

Fig. 2. A quadrilateral mesh T
h and its MPFA dual grid X

h.
The black dots denote the Y h nodes and the hollow circles
denote the Zh nodes.
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Hence, let T h be a quadrilateral grid in 2D and let
X h be the quadrilateral dual grid obtained by subdivid-
ing each quadrilateral into four sub-quadrilaterals with
vertices at the cell centers, Zh, the midpoints of the cell
edges, Y h, and the cell vertices, Xh, see Figure 2. For
each xi ∈ Xh ∩ Ω we associate the interaction region
R(xi) = ∪{X ∈ X h : ∂X ∩ xi 6= ∅}. We then define the
following non-conforming P1 finite element space

Uh(X h) = {u ∈ L2(Ω) : u|X ∈ P1(X), ∀X ∈ X h,

u is continuous at Zh, semi-continuous at Y h ∩Ω

and vanish on Y h ∩ ∂Ω} .

By semi-continuous at y ∈ Y h ∩ ∂R(x), x ∈ Xh, we
mean that it has a continuous limit at y as a function
defined on R(x). A function u ∈ Uh(X h) is therefore in
general discontinuous at Y h. Formally, this means that in
the discrete finite element equations we have two nodes
representing each grid point in Y h. This implies that
the Y h nodes only depend on each other within each
interaction region, and they can therefore be removed
from the non-conforming finite element equations with
local algebraic manipulations. The O-method is defined
to be the linear system of equations we obtain after this
elimination process. We thus see that the map (10) again
induces the proper norm identity (11) on V h.

For some MPFA schemes it may be difficult to define
an appropriate non-conforming finite element space Uh

on a dual grid and a corresponding map Lh : V h → Uh

so that the norm identity (11) holds. However, for the
convergence analysis it is sufficient to have an equiva-
lence relation,

(v, v)Σ . ah(Lhv, Lhv) . (v, v)Σ , ∀v ∈ V h . (12)

Here A(x) . B(x) means that there exist a positive
constant c independent of the mesh-parameters and the
problem coefficients so that A(x) ≤ cB(x) for all x ∈ Ω.
The preceding discussion should provide some helpful
guidelines for how one can construct MPFA schemes that
may satisfy (12).

2.3 Multiscale finite element methods

In order to capture the effect of the small scale details
on the large scales without resolving the small scale fea-
tures, Babus̆ka and Osborn [7] (for one dimensional prob-
lems), Babus̆ka, Caloz and Osborn [6] (for special 2D
problems) proposed the generalized FEM’s by introduc-
ing special base functions based on the differential op-
erator. Hou and Wu, [16], and Hou, Wu and Cai, [17],
generalized the idea in [7] to two dimensions and pro-
posed a multiscale finite element basis by solving local
leading order homogenization problems. The basic con-
vergence property was established for two scale periodic
coefficients in 2D [17]. It was shown that the solution
converges to the homogenized solution in the homoge-
nization limit ε→ 0.

Chen and Hou [11] recently developed a mixed multi-
scale FEM motivated by the numerical simulation of flow
transport in heterogeneous porous media. Both meth-
ods [11,16] can be reformulated within a finite volume

framework by constructing the base functions as local
finite volume solutions with prescribed boundary condi-
tions. We shall briefly outline the MsFEM [16] and show
how to reformulate it in a finite volume framework. The
mixed MsFEM [11] can be reformulated along the same
lines, but for reasons concerning the convergence analy-
sis, and because the mixed variant does not seem to give
any major benefits in the DD iteration, we restrict our
attention to the MsFEM in its original form.

Define the usual bilinear form on H1
0 (Ω),

a(u, v) =

∫

Ω

∇u(x) · a(x)∇v(x) dx .

The variational formulation of (1)-(2) is then to seek
u ∈ H1

0 (Ω) such that,

a(u, v) = (f, v) , ∀v ∈ H1
0 (Ω) . (13)

The base functions ψi
K ∈ H1(K) for the MsFEM intro-

duced in [16] satisfy the homogeneous equation,

a(ψi
K , v) = 0 , v ∈ H1

0 (K) , i = 1, . . . , n(K) , (14)

where n(K) is the number of base functions with sup-
port in K. To make (14) well posed we need to specify
boundary conditions on ∂K, but for now we just assume
that

V0 = span {ψi
K : K ∈ KH , i = 1, . . . , n(K)} ⊂ H1

0 (Ω) .

The MsFEM solution u0 ∈ V0 is defined by

a(u0, v) = (f, v) , ∀v ∈ V0 . (15)

For brevity we write this equation in operator form:
A0u = u0, where we refer to A0 as the continuous (as
opposed to discrete) multiscale finite element operator.

We turn to the finite volume formulation of (14). The
idea is to use the finite volume method to construct the
multiscale bases and interpret the base functions as func-
tions in a finite element dual space. We now assume that
T h also forms a sub-partitioning of each K ∈ KH . We
let Uh be a dual non-conforming finite element space
supplied with the non-conforming bilinear form (8) and
assume that Lh : V h → Uh is a linear map so that the
equivalence relation (12) holds true. For each K we de-
note by ΣK the local stiffness matrix in K and define
the multiscale finite volume base functions vn

K , K ∈ K,
n = 1, . . . , n(K), to be the solution to the homogeneous
equation,

ΣKv
n
K = 0 in K , (16)

vn
K = µn

K on ∂K , (17)

where µn
K is some prescribed boundary data on ∂K.

Now, let φn
K = (Lhvn

K)|K , V h
0 = span{vn

K}, Uh
0 = LhV h

0

and define the multiscale finite volume - finite element
solution vh

0 = (Lh)Tuh
0 where uh

0 ∈ Uh
0 is defined by

ah(uh
0 , v) = (f, v) , ∀v ∈ Uh

0 . (18)

We also write this equation in operator form: Ah
0u

h = uh
0

where uh = Lhvh. Hence, it follows that vh
0 = T0v

h

where T0 = (Lh)TAh
0L

h is the discrete (finite volume)
MsFEM operator.
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2.4 Boundary conditions for the base functions

In one dimension the boundary conditions for the mul-
tiscale base functions are determined by µi(xj) = δij ,
xj ∈ Γ := ∂KH\∂Ω. We demonstrate that this leads to
the special super convergence result u0 = uI where uI is
the interpolant of u in V0, i.e. the unique function in V0

with uI = u on Γ . Indeed, since u − uI vanishes on Γ ,
we have

a(uI , v) = a(u, v) = (f, v) , ∀ v ∈ V0 .

Thus, by (15) and choosing v = uI − u0 we obtain

a(uI − u0, uI − u0) = 0 ,

which implies u0 = uI . The solution to (13) can thus be
decomposed as u0 + u∗ where u∗ is defined by,

a(u∗, v) = (f, v) , ∀v ∈ H1
0 (KH) .

Hence, we see that the variational problem (13) in one di-
mension is naturally decomposed into a coarse subspace
correction in V0 and independent local solves.

There is, however, a fundamental difference between
1D and higher dimensional problems since the ”reso-
nance error” caused by non-matching boundary condi-
tions only occurs in multi-D. Therefore the selection of
proper boundary conditions for the base functions be-
come important to achieve accurate approximations. It
was e.g. observed in [16,17] that u − u0 may display
a boundary layer structure within the coarse grid ele-
ments if improper boundary conditions are chosen. In
fact, since the multiscale base functions satisfy the homo-
geneous equation (14) or (16), the boundary conditions
determines how well the local property of the operator
is sampled into the base functions.

To clarify the relation between the approximation
properties of A0 and the selected boundary conditions
for the multiscale base functions, let Γ = ∂KH\∂Ω and
define

M = {µ = v|Γ : v ∈ H1
0 (Ω)}

and

M0 = {µ = v|Γ : v ∈ V0(Ω)} .

Thus, M0 is the space spanned by the boundary condi-
tions for the multiscale base functions.

Now, define the space Wa consisting of generalized
harmonic functions

Wa = {w ∈ H1
0 (Ω) : a(w, v) = 0 , ∀v ∈ H1

0 (KH )} ,

and the associated extension operator Ha : M →Wa,

a(Haµ, v) = 0 , ∀v ∈ H1
0 (KH) .

We can then reformulate (13) as follows: Find µ ∈ M
and u∗ ∈ H1

0 (KH) such that,

a(Haµ,Haν) = (f,Haν) , ∀ν ∈M , (19)

a(u∗, v) = (f, v) , ∀v ∈ H1
0 (KH) . (20)

We then recover u in (13) with the generalized harmonic
extension u = Haµ+ u∗.

The relevant bilinear form for the alternative for-
mulation (19) is (µ, ν)M = a(Haµ,Haν). Now, since

V0 ⊂ Wa and u0 is the orthogonal projection of u onto
V0 with respect to a(·, ·)1/2, it follows that µ0 = u0|Γ
is the orthogonal projection of µ onto M0 with respect

to (·, ·)
1/2
M . This implies that A0 is optimal, in a cer-

tain sense, for non-overlapping DD algorithms among
all coarse solvers AH : H1

0 (Ω) → V H with V H |Γ = M0.
Computational experience indicate that the use of

boundary conditions which adapt to the heterogeneous
structures on the element boundaries in general lead to
better accuracy than simple (smooth) boundary condi-
tions. But they do not necessarily achieve faster conver-
gence of the DD iteration consisting of additional local
solves. To understand this we should keep in mind that
the coarse solver usually act the role of removing low
frequency errors, while the local solves remove high fre-
quency errors. In particular, we shall see that for the
proposed multiscale DD methods the boundary condi-
tions for the multiscale base functions determine how
well we capture the ”homogenized” part of the solution.

The role of the boundary conditions for the base func-
tions is thus to generate a good coarse space M0 in M .
We wish to point out that allowing non-matching bound-
ary conditions so that V0 6⊂ H1

0 (Ω) can improve the con-
vergence rate for the DD iteration in the same way the
non-conforming FEM’s may give superior performance
to the analogous conforming FEM’s. For instance, it is
well known that if the subdomains have sufficient over-
lap, then the non-conforming linear FEM coarse solver
allows an optimal rate of convergence for the precon-
ditioning of elliptic problems with quasi-homogeneous
coefficients, [22]. On the other hand, we know that the
conforming linear FEM coarse solver induce a subopti-
mal rate of convergence, [8].

3 The Domain Decomposition Preconditioner

Many non-overlapping DD methods can be categorized
as so-called Schwarz methods for which a simple frame-
work for the convergence analysis exists, [13,19,23,24].
The abstract Schwarz framework is based on a split-
ting of a finite dimensional Hilbert space V into sub-
spaces with in general much smaller dimension. Thus,
let Vi be a sequence of finite dimensional Hilbert spaces
and let Ii : Vi → V be a corresponding sequence of
interpolation-like operators such that V allows the fol-
lowing decomposition,

V =

p
∑

i=0

IiVi := {v : v =
∑

i

Iivi, vi ∈ Vi} .

The space V0 represents a coarse global approximation
space while Vi, 1 ≤ i ≤ p, are subspaces corresponding
to some localized region in space. Let V be supplied with
a symmetric positive definite bilinear form a(·, ·) and as-
sume that each Vi is supplied with an auxiliary sym-
metric positive definite bilinear form (·, ·)i on Vi which
approximates a(·, ·) on Vi in the following sense:

a(Iiv, Iiv) ≤ ω(v, v)i , ∀v ∈ Vi , ∀i .
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The parameter ω is assumed to be bounded and plays
a special role in the analysis of Schwarz methods. Now,
define the projection-like operators Ti : V → Vi by,

(Tiu, v)i = a(u, Iiv) , ∀u ∈ V, ∀v ∈ Vi .

Finally, let P be a polynomial with no zero order term
and suppose we want to find u∗ ∈ V such that

a(u∗, v) = f(v) , ∀v ∈ V , f ∈ V ′ . (21)

The idea behind the abstract Schwarz method is to re-
place (21) with a better conditioned operator equation

P(T0, . . . , Tp)u = g∗ ,

where g∗ = P({Ti})u∗. The additive Schwarz method is
e.g. obtained by choosing P(·) =

∑p
i=0 Ti. The following

result bounds the condition number for the precondi-
tioned abstract additive Schwarz method [19,23].

Theorem 1 Let C0 be a positive constant such that for
any v ∈ V there exists a decomposition v =

∑p
i=0 Iivi,

vi ∈ Vi with

p
∑

i=0

(vi, vi)i ≤ C0a(v, v) ,

and let

C1 = max1≤j≤p

p
∑

i=1

εij

where εij = 0 if TiTj = 0, and 1 otherwise. Then the
abstract additive Schwarz method admits the following
estimate

κ(

p
∑

i=0

Ti) ≤ ωC0(1 + C1) . (22)

Similar convergence estimates hold for the multiplica-
tive Schwarz method in which we update the residual
in between each application of the subspace correction
operators Ti. Another attractive variant is the hybrid
Schwarz preconditioner

P(·) = T0 + (I −

p
∑

i=1

Ti)T0 , (23)

for which it is known that κ(P) ≤ κ(
∑p

i=0 Ti), [23]. We
see that (23) can be viewed as a multiplicative Schwarz
method on the splitting V = V0 +V∗, V∗ = V , where the
bilinear form on V∗ is approximated with an additive
Schwarz splitting into V1 to Vp. Also note that the mul-
tiplicative Schwarz method and the operator (23) can
be symmetrized by including a sweep of the local sub-
space corrections (in opposite order) before and after the
coarse subspace correction. This implies that we can use
the preconditioned conjugate gradient algorithm to ac-
celerate the DD iteration.

3.1 Convergence analysis

Let NK be a set of coarse grid nodal points on Γ and let
Ω be decomposed into the overlapping subdomains

Ωi = ∪{K ∈ KH : ∂K ∩ xi 6= ∅, xi ∈ NK} ,

where we require Ωi ∩ NK = xi. Now, define V h
i =

V h(Ωi). The local Schwarz operators Ti are defined to
be the orthogonal projection onto V h

i with respect to

(·, ·)
1/2
Σ . Thus, we immediately obtain,

(Tiu, v)Σ = (u, v)Σ , ∀u ∈ V h , ∀v ∈ V h
i .

We recall that T0 = (Lh)TAh
0L

h. Hence, to obtain a
proper Schwarz algorithm, we only need to define an
appropriate bilinear form on V h

0 . To this end, we simply
define the bilinear form (·, ·)Σ0

on V h
0 such that,

(T0u, v)Σ0
= (u, v)Σ , ∀u ∈ V h , ∀v ∈ V h

0 . (24)

To check that this bilinear form has the desired approx-
imation property, we need to verify that the Schwarz
parameter ω is bounded. Since T0 maps V h onto V h

0 , we
may represent v0 ∈ V h

0 as v0 = T0v for some v ∈ V h.
Thus, by (12) and (24) we have

(v0, v0)Σ0
= (v, v0)Σ = (T

1/2
0 v, T

1/2
0 v)Σ

. ah(LhT
1/2
0 v, LhT

1/2
0 v) .

But, since LhT
1/2
0 = (Ah

0 )1/2Lh, we have

ah(LhT
1/2
0 v, LhT

1/2
0 v) = ah((Ah

0 )1/2Lhv, (Ah
0 )1/2Lhv)

= ah(Lhv,Ah
0L

hv) .

Finally, since Ah
0 is an orthogonal projection with respect

to ah(·, ·)1/2 and Ah
0L

hv = Lhv0, we have

ah(Lhv,Ah
0L

hv) = ah(Ah
0L

hv,Ah
0L

hv)

= ah(Lhv0, L
hv0)

. (v0, v0)Σ ,

and it follows that ω . 1. This confirms that the coarse
subspace correction also fits into the Schwarz framework.

To obtain a bound on the condition number of our
preconditioner we only need to bound the parameters
C0 and C1 in (22). The parameter C1 is bounded in-
dependent of the mesh parameters by a standard color-
ing argument, [23,24]. To bound C0 we need to show
that, for each v ∈ V h, there exists a representation
v =

∑p
i=0 vi, vi ∈ V h

i , with

(v0, v0)Σ0
+

p
∑

i=1

(vi, vi)Σ ≤ C0(v, v)Σ . (25)

Owing to the equivalence relation (12), we may carry
out the analysis in the equivalent finite element space
Uh = LhV h. We thus define Uh

i = LhVi and seek C0 such
that any u ∈ Uh allows a decomposition u =

∑p
i=0 ui,

u ∈ Uh
i with

p
∑

i=0

ah(ui, ui) ≤ C0a
h(u, u) . (26)
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We start by introducing the space of generalized discrete
harmonic functions,

W h
a (KH ) = {u ∈ Uh : ah(u, v) = 0 , ∀v ∈ Uh

0 (KH )} ,

where

Uh
0 (KH) = {u ∈ Uh : u = 0 at the nodal points on Γ} .

Now, let Mh be the space of nodal values on Γ and de-
fine the generalized discrete harmonic extension operator
Hh

a : Mh →W h
a by,

ah(Hh
aµ, u) = 0 , ∀u ∈ Uh

0 (KH) . (27)

It is important to observe that the space of generalized
discrete harmonic functions can be viewed as the the
space of functions with minimal energy with prescribed
data on Γ . Indeed, if µ ∈Mh and u ∈ Uh is any function
with u|Γ = µ, then, letting v = Hh

aµ and applying (27)
twice, we obtain

0 ≤ ah(u− v, u− v) = ah(u, u− v)

= ah(u, u) − ah(v, v) .

Thus, ah(v, v) ≤ ah(u, u) for all u ∈ Uh with u|Γ = µ.
We also need to define the following local discrete norm,

|u|2a,h,K =
∑

X∈Xh(K)

∫

X

∇u · a(x)∇u .

We omit the subscript a and write | · |h,K , W h and Hh

if a(x) ≡ I . We are now ready to state our main result.

Theorem 2 Assume there exist a constant β > 0 such
that each u ∈ Uh allows a decomposition u =

∑p
i=0 ui,

u0 ∈ HhM0, ui ∈ Uh
i , 1 ≤ i ≤ p, with

p
∑

i=0

|ui|
2
h,K ≤ β|u|2h,K , ∀K ∈ KH . (28)

Furthermore, let γ1,K and γ2,K be the sharpest positive

constants such that for all µ ∈Mh we have,

γ1,K |Hhµ|2h,K ≤ |Hh
aµ|

2
a,h,K ≤ γ2,K |Hhµ|2h,K . (29)

Then, each u ∈ Uh allows a decomposition u =
∑p

i=0 ui,

ui ∈ Uh
i with

p
∑

i=0

ah(ui, ui) ≤ βγah(u, u) . (30)

where γ = maxK∈KH (γ2,K/γ1,K).

Proof : First observe that any function u ∈ Uh has
a unique decomposition u = w + u∗, w ∈ W h

a , u∗ ∈
Uh

0 (KH) since W h
a is, by definition, the orthogonal com-

plement to Uh
0 (KH ) with respect to ah(·, ·). We thus have

ah(u, u) = ah(w,w) + ah(u∗, u∗)

= ah(w,w) +
∑

K∈KH

ah(u∗,K , u∗,K) .

But, since each K ∈ KH is contained in at least one
subdomain Ωi, it is clear that we may represent u∗ =
∑p

i=1 u∗,i, u∗,i ∈ Uh
i ∩ Uh

0 (KH ) with

ah(u∗, u∗) =

p
∑

i=1

ah(u∗,i, u∗,i) .

Now if µ = u|Γ and w = Hh
aµ allows a decomposition

w =
∑p

i=0 vi, vi ∈ Uh
i , then we also have w =

∑p
i=0 wi,

wi = Hh
a (vi|Γ ). Thus, letting ui = u∗,i+wi with u∗,0 = 0

we obtain
p

∑

i=0

ah(ui, ui) =

p
∑

i=0

ah(u∗,i, u∗,i) + ah(wi, wi)

= ah(u∗, u∗) +

p
∑

i=0

ah(wi, wi) .

Hence, it only remains to bound the energy of the compo-
nents wi in terms of the energy of w. It follows from (28)
that each v ∈ W h allows a decomposition v =

∑p
i=0 vi,

v0 ∈ HhM0, vi ∈ Uh
i , 1 ≤ i ≤ p, with

p
∑

i=0

|vi|
2
h,K ≤ β|w|2h,K , ∀K ∈ KH . (31)

But, then we also have that v =
∑p

i=0 wi where wi =

Hh(vi|Γ ). Thus, by the minimal energy property of the
generalized discrete harmonic functions we have that
|wi|h,K ≤ |vi|h,K and the desired result follows from (31).

Now, let v = Hhµ be decomposed as in (31) and
define and µi = vi|Γ . Then, by (29), we have

p
∑

i=0

|Hh
aµi|

2
a,h,K ≤

p
∑

i=0

γ2,K |Hhµi|
2
h,K

≤ βγ2,K |Hhµ|2h,K

≤ βγ|Hh
aµ|

2
a,h,K .

The desired result now follows by summing over K ∈
KH . This completes the proof of theorem 3.1.

A sufficient condition for (28) to hold is the existence of
an operator J : Uh → HhM0 such that for each K ∈ KH

and u ∈ Uh we have

|Ju|2h,K . β|u|2h,K ,

‖u− Ju‖2
L2(K) . βH2|u|2h,K .

Estimates of this kind is has been established for a great
variety of coarse spaces in the finite element literature,
see e.g. [8,13,22,24]. For instance, if conforming linear fi-
nite elements are used on both the fine and coarse scale,
then it was proved by Bramble and Xu, [8], that β .
log(H/h) in 2D and β . H/h in 3D. If non-conforming
linear finite elements are applied on both scales, then
β can be bounded independently of the mesh parame-
ters, [22]. Note that this corresponds to non-matching
boundary conditions so that M0 6⊂Mh.

If aε(x) is a symmetric periodic matrix in Rd×d, then
the homogenized matrix a0 satisfy the convergence of
energies, [18] section 1.3,

lim
ε→0

|Hh
aε
µ|2aε,h,K = |Hh

a0
µ|2a0,h,K , ∀µ ∈Mh .

Moreover, by the Voigt-Reiss’ inequality, [18], we have

(
1

K

∫

K

a−1
ε (x) dx)−1 ≤ a0 ≤ (

1

K

∫

K

aε(x) dx) ,

where the inequalities are to be interpreted in a spectral
sense. The upper and lower bounds for the homogenized
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matrix are sharp in the sense that they are attained for
perfectly stratified media with flow either perpendicu-
lar or parallel to the layers. But, they are also crude in
the sense that they do not account for the heterogeneous
structures within the periodic cells. Many other and bet-
ter bounds can be found in the literature on upscaling
for porous media flow, and some of these bounds can be
found in [20].

Though a(x) is not periodic in general, the multiscale
analysis only concerns the local nature of a(x) and we
may think of K as a periodic cell in an infinite periodic
media. We therefore expect similar bounds to hold so
that

γ2,K

γ1,K
≤
κ

(∫

K a(x) dx
∫

K a−1(x) dx
)

|K|2
.

Unfortunately, this factor can still be quite large, but we
have not yet been able to see a strong dependence of this
kind on the local heterogeneous structures in practice.

4 Implementational issues

The use of a multiscale method as a coarse solver for
DD type algorithms should reduce the negative impact
on the convergence rate caused by the subgrid heteroge-
neous structures provided that we select proper bound-
ary conditions for the base functions. If we want to em-
ploy smooth boundary conditions, e.g., piecewise linear,
then the coarse grid should preferably be chosen so that
we ”minimize” the presence of strong heterogeneous fea-
tures that penetrate the grid-block interfaces. This might
suggest the use of flexible gridding schemes like the non-
uniform coarsening approach proposed by Durlofsky et
al., [12]. The non-uniform coarsening technique, which
generates grids that are finely gridded in high flow re-
gions, was developed because it was acknowledged that
it is important to model the high flow regions in porous
media flow correctly in order to produce reliable pro-
duction scenarios. If we use a fixed grid that does not
reflect the heterogeneous formations, then we may have
to use an oversampling strategy in order to obtain robust
boundary conditions.

We shall for the most part employ the hybrid Schwarz
preconditioner (23). One loop of the DD iteration thus
consists of the following steps,

(i) vk+1
0 = vk + T0(v

h − vk),

(ii) vk+1
i = Ti(v

h − vk+1
0 ) , i = 1, . . . , p,

(iii) vk+1 = vk+1
0 +

∑p
i=1

∑

K⊂Ωi
n(K)−1χKv

k+1
i ,

where vk is the current approximation to vh after k it-
erations and χK is the characteristic function with re-
spect to K. The partition of unity ν(Ω) = {n(K)−1χK}
is needed to ensure convergence since the subdomains
overlap, but it does not alter the Schwarz analysis, [4].

On a single processor computer, the subspace correc-
tions are solved successively. This means that the sub-
domains Ωi should be chosen so that the local subspace
corrections can be solved efficiently with a simple iter-
ative method such as the conjugate gradient method.

It may be appealing to view the distinct heterogeneous
features in the permeability field as building blocks that
can be used to define the subdomains. However, when
we use a multiscale method as a coarse solver, then the
main purpose of the subdomain solvers is to approximate
the solution at the grid-block interfaces. It is therefore
natural to use the coarse grid as a starting point when
we design the local subdomains. For instance we may
associate with each grid block K the subdomain

ΩK = {x ∈ Ω : dist(x,K) < δ} (32)

where δ is some specified overlap distance, see Figure 3.
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������������������� Ω KK

δ

Fig. 3. Example of a selection of subdomains with a two row
overlap

The multiscale base functions will only have support
in a few neighboring grid blocks K and the number of
base functions will typically be roughly the same as the
number of grid blocks. This implies that the computation
time associated with the construction of the multiscale
base functions is comparable with one sweep of the local
subspace corrections (ii). The construction of the multi-
scale base functions and the local subspace corrections
in (ii) can be computed in parallel. Hence, if one has
a multi-processor computer available, then one can dis-
tribute the work associated with the construction of the
base functions and the local subspace corrections among
the processors. Also, if we use a multiplicative Schwarz
algorithm then we can use a coloring argument [23,24]
to group the subdomains into a few subsets for which
the subdomain subspace corrections can be computed
independently.

5 Numerical Results

Our primary purpose in this section is to try to reveal
how the convergence rate of the DD iteration depends
on the heterogeneous structures. In particular, we try to
reveal how the convergence rate parameter γ depends
on the local heterogeneous structures, and how the con-
vergence rate parameter β depends on the selection of
boundary conditions for the multiscale base functions.
For the latter case, it is of special interest to see if we
can select boundary conditions for the multiscale base
functions which allow β to be bounded independent of
the ratio between the mesh parameters H/h.
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Hence, let T h and KH be uniform partitionings of
Ω = [0, 1]d into squares or cubes with edges of length h
and H respectively. The right hand side in (1) is cho-
sen to be f ≡ 1 and the stopping criteria is set to
be when the relative size of the current residual to the
initial residual in the L2-norm drops below 10−5, i.e.
when ‖f −Σhvk‖L2(Ω) ≤ 10−5 · ‖f‖L2(Ω) = 10−5. Since
the convergence rate parameter γ is independent of the
macroscopic heterogeneous structures, we use periodic
media to track down the relation between γ and the
heterogeneous formations in Ω. Similarly, since β is in-
dependent of the local heterogeneous structures, we use
quasi-homogeneous media to track down the relation be-
tween β and the heterogeneous formations in Ω.

5.1 Periodic Media

We study three different periodic structures. The first
choice kh

1,p(x) resembles the coefficient function which
brought out the large contrasts in [4] and contain a high
permeability spike at the center of the coarse grid blocks,
i.e. the periodic cells. The other two choices kh

2,p(x) and

kh
3,p(x) are respectively a coefficient function with a high

permeability streak and a coefficient function with a
checkerboard kind of structure. To be more precise, let
Y = [0, H ]d and define kh

1,p, k
h
2,p and kh

3,p in Y as follows.
First define σ1(x) = (2/H)dist(x, ∂Y ) and let σ2(x)

be the Y -periodic function with a diagonal high per-
meability streak with σ2(x) = 2 inside the streak and
σ2(x) = 1 outside the streak. In three dimensions we use
the same pattern in the x-y plane, and have constant per-
meability in the z direction, i.e. σ2(x, y, z) = σ2(x, y, 0)
for all z ∈ [0, H ]. Finally, let σ3(x) be the 2×2 or 2×2×2
checkerboard coefficient function in Y with values 1 and
2 in two dimensions and values, 1, 2, 3 and 4 in three
dimensions. We then define

kh
i,p(x) = σi(x)

p , i = 1, 2, 3 .

The functions {kh
i,p(x) : i = 1, 2, 3} are plotted for p = 8

in Figure 4. We observe that the parameter p scales the
local aspect ratios, and we should therefore be able to
investigate if a scaling of the aspect ratios have an impor-
tant effect on the convergence rate of the DD iteration.
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Fig. 4. Plots of kh
1,p, kh

2,p and kh
3,p in R

2 with p = H/h = 8.

5.1.1 Numerical results in 2D

We first select boundary conditions for the multiscale
base functions so that the induced MsFEM is the ”mul-

tiscale extension” of the bilinear FEM, i.e. the bound-
ary conditions for the base functions are linear on each
edge and determined by the requirement µi(xj) = δij
where xj range over the set of vertices for the coarse
grid blocks. We compare the induced MsDDM with the
DDM obtained by replacing the ”bilinear” MsFEM with
the standard bilinear FEM. Figure 5 shows iterations
counts for h = H2 = 1/64 and kh

1,p, k
h
2,p and kh

3,p as a
function of p.
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Fig. 5. Iteration counts for the DD algorithms with the stan-
dard bilinear FEM coarse solver (dashed line) and the ”bi-
linear” MsFEM coarse solver (solid line) as a function of p.
Left: kh

1,p. Middle: kh
2,p. Right: kh

3,p.

We see that the iteration count for the ”bilinear”
MsDDM is stable and nearly independent of the local
aspect ratios. In contrast, we see that the convergence
rate for the DDM using standard bilinear finite elements
deteriorate rapidly with p for each of the three coefficient
functions. This clearly illustrates that coarse grid solvers
constructed from (smooth) base functions that are not
adaptive to the local heterogeneous structures can not be
expected to perform well if the permeability distribution
contain sharp contrasts at the subgrid level.

We now select boundary conditions for the multi-
scale base functions which correspond to the popular face
based coarse solver in the literature on DD methods for
elliptic partial differential equations. Thus, let Eij be the
edge common to the blocks Ki and Kj in KH and define

µij(x) =

{

1 if x ∈ Eij ,
0 otherwise .

The multiscale base functions generated by the boundary
conditions µij then generate a coarse space which take
constant values on each edge Eij , but is in general dis-
continuous at the vertices of the coarse grid elements. We
compare the induced MsDDM with the DDM obtained
by replacing the face-based MsFEM with the standard
face based coarse solver.

Figure 6 shows iteration counts for h = H2 = 1/64
and kh

1,p, k
h
2,p and kh

3,p as a function of p. Again we see
that the iteration count for the MsDDM is stable and
nearly independent of the local aspect ratios. This con-
vergence behavior is in sharp contrast to the performance
of the DDM with the standard face based coarse grid
solver which deteriorate rapidly with p for each of the
three coefficient functions. The two MsDDM’s discussed
in this section therefore show the same ability to capture
the essential subgrid information and indicate that γ is
bounded independent of the local heterogeneous forma-
tions in R2.
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Fig. 6. Iteration counts for the DD algorithms with the stan-
dard face based coarse solver (dashed line) and the face based
MsFEM coarse solver (solid line) as a function of p. Left: kh

1,p.

Middle: kh
2,p. Right: kh

3,p.

5.1.2 Numerical Results in 3D

Now, consider the MsDDM induced by the multiscale
version of the trilinear FEM. The boundary conditions
for the multiscale base functions are thus bilinear on each
interface F and determined by the requirement µi(xj) =
δij where xj ranges over the set of vertices for the coarse
grid blocks. We compare the induced MsDDM with the
DDM using the standard trilinear FEM as the coarse
grid solver. Figure 7 shows iteration counts for h = H2 =
1/64 and kh

1,p, k
h
2,p and kh

3,p as a function of p.
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Fig. 7. Iteration counts for the DD algorithms with the stan-
dard trilinear FEM coarse solver (dashed line) and the ”tri-
linear” MsFEM coarse solver (solid line) as a function of p.
Left: kh

1,p. Middle: kh
2,p. Right: kh

3,p.

Figure 7 shows that the convergence rate for the
DDM induced by using the trilinear FEM as the coarse
grid solver deteriorates quickly for each of the three co-
efficient functions, and that the number of iterations to
reach convergence grows rapidly with p. We see that the
iteration count for the ”trilinear” MsDDM is stable for
kh
1,p, but, unfortunately the convergence rate now starts

to deteriorate with p for kh
2,p and kh

3,p. This indicates
that the convergence rate is more sensitive to the se-
lected boundary conditions in three spatial dimensions
than in two spatial dimensions. The poor convergence
property of the MsDDM for kh

2,p and kh
3,p is due to the

fact that the bilinear boundary conditions that we use
to define the multiscale base functions imply that the
approximation space V0 is smooth on the interface struc-
ture, while the elliptic solution is nearly discontinuous at
the grid-block vertices.

One way to regain a stable convergence rate is to
select boundary conditions that are adaptive to the het-
erogeneous structures at the coarse grid-block interfaces.
This might, however, seem a bit cumbersome. Another

approach is therefore to select boundary conditions that
impose less continuity constraints on the interface struc-
ture. We therefore select boundary conditions for the
multiscale base functions that correspond to the 3D ver-
sion of the face-based coarse solver. Thus, let Fij be the
interface between Ki and Kj in KH and define

µij(x) =

{

1 if x ∈ Fij ,
0 otherwise .

(33)

These boundary conditions allow functions in V0 to be
discontinuous at the grid block vertices, but not on the
interfaces. We compare the face-based MsDDM with the
DDM induced by the traditional face based coarse solver.
Figure 8 shows iteration counts for h = H2 = 1/64 and
kh
1,p, k

h
2,p and kh

3,p as a function of p.
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Fig. 8. Iteration counts for the DD algorithms with the stan-
dard face based coarse solver (dashed line) and the face based
MsFEM coarse solver (solid line) as a function of p. Left: kh

1,p.

Middle: kh
2,p. Right: kh

3,p.

The DDM induced by the face based coarse solver
show poor convergence properties for these heteroge-
neous structures and displays a similar convergence be-
havior to the DDM induced by the trilinear FEM coarse
solver. The MsDDM again display a stable convergence
rate for kh

1,p, and the convergence rate is more stable for

kh
2,p and kh

3,p than we observed for the ”trilinear” Ms-
DDM. However, as long as we do not attempt to resolve
the heterogeneous features that penetrate the interface
structure, then we must expect to see some dependence
on the local heterogeneous structures. But there is no
doubt that the two MsDDM’s that we have studied here
perform superior to the associated DDM’s that do not
employ a MsFEM as a coarse solver. As such they of-
fer the possibility of significant savings in computation
time over traditional domain decomposition methods.
Whether they will prove to be competitive with other
state-of-the-art preconditioning techniques, like multi-
grid methods, is a topic for further research.

5.2 Quasi-Homogeneous Media

We now investigate how the selection of boundary con-
ditions for the multiscale base functions influence the
convergence rate. In particular, we want to study how
the parameter β in (28) depends on the heterogeneous
formations in Ω. Since β is independent of the local het-
erogeneous structures, we apply the MsDDM’s to prob-
lems with quasi-homogeneous coefficients, i.e. problems
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where the permeability a(x) is constant within the coarse
grid elements. Thus, for each K let σH (K) be sampled
at random from (0, 1) and define

kH
p (x) = σH (x)p .

We see that the parameter pmagnifies the discontinuities
across the coarse grid interfaces. We should therefore be
able to reveal if the convergence rate of the proposed Ms-
DDM’s depend on the quasi-homogeneous coefficients.
We also observe that the convergence rate parameter γ
is identical to one, so that the convergence rate should
only depend on β.

For the quasi-homogeneous coefficient problem, the
MsDDM’s discussed above reduce to the associated tra-
ditional coarse grid solvers. The bilinear or trilinear FEM
coarse grid solvers and the two face based coarse grid
solvers inherit different approximation properties. The
bilinear and trilinear FEM coarse grid solvers work well
for smooth coefficient problems, but not so good for dis-
continuous coefficient problems because they are not able
to handle the singularities at the vertices of the elements
properly. The face based coarse grid solvers, on the other
hand, allow the solution to be discontinuous at the ver-
tices and handle discontinuities much better, but does
not work so well for smooth coefficient problems. This
suggests that it might be a good idea to construct a
coarse grid solver using both bilinear or trilinear and
face-based base functions. After all, it is worthwhile to
spend extra effort on constructing the coarse subspace
correction if it can reduce the number of iterations, and
thereby reduce the total computational cost.

We first study the DDM for the 2D case where the
coarse solvers are constructed with bilinear, face-based
and both bilinear and face-based base functions respec-
tively. Figure 9 illustrates that the bilinear FEM works
well for smooth coefficient problems, but that the con-
vergence rate deteriorates with p. The face-based coarse
solver, on the other hand, shows good performance for
highly discontinuous coefficients, but not so good for the
homogeneous coefficient problem with p = 0. Combin-
ing the two generates a coarse solver which seem to be
nearly independent of both p and the mesh parameter
ratio H/h, and hence, in particular, allows β to be al-
most independent of p and the problem dimensions.

Further testing showed that if the bilinear FEM and
face based base functions were replaced with their mul-
tiscale variants, then the convergence behavior depicted
above was not affected by adding heterogeneous struc-
tures to the coarse grid blocks. This confirms that we
can decompose the convergence rate as the product of γ
and β. We have therefore shown how one can construct
a nearly optimal DD preconditioner for the elliptic prob-
lem (1)-(2) in R2 which seems to converge at a rate in-
dependent of the elliptic coefficients.

Finally we turn to the case with a quasi-homogeneous
media in 3D. Figure 10 shows iteration counts using the
DDM’s induced by the coarse solvers constructed with
trilinear, face-based and both trilinear and face-based
base functions respectively. We see much the same situ-
ation as in two dimensions. In particular, by using both
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Fig. 9. Iteration counts for the DDM’s induced by bilinear
(solid line), face-based (dashed line) and bilinear + face-based
(dash-dot line) base functions for the coarse subspace correc-
tion. Left: Iteration counts for h = H2 = 1/64 as a function
of p. Right: Iteration counts for p = 5 and H = 1/8 as a
function of H/h.

trilinear and face based base functions we achieve an iter-
ation count which indicates that β is nearly independent
of p and the problem dimensions.

Since we recall that the numerical tests in section
4.1.2 showed that γ was not independent of the local
heterogeneous structures, we can not hope to achieve a
(nearly) optimal DD preconditioner for the elliptic prob-
lem (1)-(2) in three dimensions by replacing the trilinear
FEM and face based base functions with their multiscale
variants. However, further tests showed that by adding
heterogeneous structures to the coarse grid blocks, we
obtain a rate of convergence which is consistent with the
convergence rate that we observed for periodic media.
Thus, the splitting of the condition number estimate for
the DD preconditioner in (30) into a parameter γ which
depends on the local heterogeneous structures and a pa-
rameter β which depend on the global structures seem
to be justified.
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Fig. 10. Iteration counts for the DDM’s induced by trilin-
ear (solid line), face-based (dashed line) and trilinear + face-
based (dash-dot line) base functions for the coarse subspace
correction. Left: Iteration counts for h = H/8 = 1/32 as a
function of p. Right: Iteration counts for p = 5 and H = 1/4
as a function of H/h.
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5.3 A test case with real reservoir data

We conclude this study by showing that the MsDDM
induced by the face-based coarse solver performs well
for a test-case with real data taken from the the 10th
SPE comparative solution project, model 2, see [9]. A
schematic of the reservoir domain is shown in Figure 11.
In order not to deviate from the framework that we have
developed in the previous sections we impose homoge-
neous Dirichlet boundary conditions on the boundary of
the reservoir domain instead of no-flow boundary condi-
tions as was used in [9]. However, Neumann boundary
conditions can be handled with no extra difficulty.

Injector
Producer 3

Producer 4

Producer 1

Producer 2

170ft.

1200ft.

2200ft.

Fig. 11. The figure depicts the reservoir domain with a pro-
ducer at each corner and an injector at the center.

The permeability field consists of two separate het-
erogeneous formations that are sampled from the SPE
comparative solution project, model 2, [9]. The top 70
ft. represent the Tarbert formation and the bottom 100
ft. represent the Upper Ness formation. We have plotted
the logarithm of the average of the permeability layers
in the Tarbert and Upper Ness formations in Figure 12.
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Fig. 12. The figure illustrates the heterogeneous structures
in the Tarbert formation (top) and the Upper Ness formation
(bottom) that was used in the 10th SPE comparative solution
project, model 2.

Though the ratio of the extreme permeability values
is ”almost” the same for the two heterogeneous forma-
tions (∼ 8 versus ∼ 12 orders of magnitude), the per-
meability field for the the Tarbert formation is much
smoother than the permeability field for the Upper Ness
formation. In fact, the contrasts in the permeability field
for the Upper Ness formation are so strong that simple
iterative methods will not converge unless the discretized
linear system has been preconditioned with some robust
preconditioner.

The purpose of this section is not to compare the
proposed MsDDM’s with traditional DDM’s. Instead we
want to show that even though the convergence rate for
the MsDDM’s may deteriorate in the presence of strong
heterogeneous structures like we have in the Upper Ness
formation if we use simple smooth boundary conditions,
we may still achieve good convergence behavior by using
the preconditioned conjugate gradient (PCG) method.
We therefore apply the MsDDM’s to the elliptic prob-
lems that arise from the two heterogeneous formations
separately, instead of having the Tarbert formation on
top of the Upper Ness formation.

Hence, let the boundary conditions for the multi-
scale base functions be defined by (33) and let the sub-
domains be defined by (32) using a two row overlap.
For problems with such an extreme range of scales it
is necessary to use the Multiplicative Schwarz method
to ensure convergence. Thus, denote by MsDD-MS the
Multiplicative Schwarz method and by MsDD-PCG the
PCG algorithm induced by the symmetrized Multiplica-
tive Schwarz method. A description of the PCG method
can be found in any text book on iterative methods for
sparse linear systems such as [Saad], but we have also
included it in the appendix for completeness.

The fine grid for the Tarbert formation and Upper
Ness formation that we employ here consists of 60 ×
110 × 35 and 60 × 110 × 50 cells respectively. For both
cases the coarse grid is chosen so that each grid block
consists of 10×10×5 grid cells. Iteration counts, i.e. the
number of sweeps of the respective DD methods that is
needed to reach convergence, is shown in Table 1.

Algorithm Tarbert form. Upper Ness form.
MsDD-MS 37 > 500

MsDD-PCG 11 24

Table 1. The table shows iteration counts for the MsDD-MS
and MsDD-PCG algorithms for when applied to (1),(2) with
data sampled from a Tarbert formation and a very heteroge-
neous Upper-Ness formation.

We see that the MsDD-MS method performs reason-
ably well for the Tarbert formation, but for the problem
with data from the Upper Ness formation the conver-
gence rate starts to stagnate and the MsDD-MS method
needs an excessive number of iterations to converge. The
situation does not improve much if we replace the MsDD-
MS with the symmetrized version of the Multiplicative
Schwarz method. Indeed, it is primarily the coarse grid
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solver that governs the convergence rate, although it
helps to extend the overlap regions for the subdomains
defined by (32). We should also be able to reduce the
number of iterations by selecting better boundary con-
ditions for the base functions, but we see that the MsDD-
PCG algorithm performs well even if we do not extend
the overlap region or alter the boundary conditions for
the base functions. This shows that it is possible to
achieve a very robust and efficient solver for elliptic prob-
lems with multiple scales by using a DD method with
small subdomain overlap and a relatively simple multi-
scale coarse grid solver.

6 Concluding Remarks

We have demonstrated that the proposed domain decom-
position methods can be used to solve the elliptic prob-
lem arising from flows in strongly heterogeneous porous
media with a permeability distribution that may span
over multiple length scales. The numerical tests indicate
that the multiscale domain decomposition methods con-
verge at a rate independent of the heterogeneous features
at the subgrid level in R2, but they reveal that we may
see a weak growth in the convergence rate in R3 if we
do not use boundary conditions that are adaptive to the
heterogeneous structures at the grid-block interfaces.

All the multiscale domain decomposition methods
considered in this paper lead to a significant gain in it-
erations compared with their respective non-multiscale
variants. These non-multiscale variants employ coarse
solvers which are among the most popular coarse solvers
in the domain decomposition literature. We have illus-
trated that each of them induce a convergence rate which
may deteriorate rapidly as the local aspect ratios blow
up. The multiscale domain decomposition methods can
therefore give substantial computational savings over the
traditional domain decomposition methods. As the ellip-
tic coefficients arising from heterogeneous porous forma-
tions can vary several orders of magnitude at the mi-
croscale level, we conclude that the multiscale domain
decomposition methods can be a very effective tool for
simulating porous media flows.

Since we are dealing with a transport phenomena, we
have developed a finite volume version of the MsFEM,
and constructed a corresponding domain decomposition
preconditioner. The convergence analysis for this pre-
conditioner rests on the assumption that the subgrid
discretization is mathematically equivalent with an ap-
propriate non-conforming FEM on a dual grid. That is,
we assume the two discretization matrices give rise to
equivalent norms under the correspondence induced by
a linear map between the two approximation spaces. The
virtue of this equivalence relation was established for the
two-point flux-approximation finite volume scheme on
a-orthogonal grids and for the multi-point flux approxi-
mation finite volume scheme, the O-method, on general
quadrilateral grids in two dimensions. It was further in-
dicated that it extends to general polygonal and polyhe-
dral grids by considering similar dual grids.

We would like to emphasize that we have not claimed
that the proposed domain decomposition methods pro-
vide the only efficient solution strategy for elliptic prob-
lems with multiple scale coefficients. Indeed, multigrid
methods are somewhat less sensitive to rapidly oscilla-
tory coefficients, but their convergence properties do de-
pend on the condition number of the discrete matrix.
What we do claim, and have made an effort to show,
is that the convergence rate of domain decomposition
methods may deteriorate dramatically if we do not use
a coarse solver which reflects the fine scale structures
in the elliptic coefficients. The reason that we have not
supplied computation times is that the DD iterations are
run on a slow single processor computer using Matlab.
The computation times are therefore not representative
of the computation time that we can obtain with modern
computers using e.g. C++ programming code.

The proposed domain decomposition methods have
many important applications, but are perhaps particu-
larly valuable for multi-phase flow simulations in het-
erogeneous porous media since these problems involve
solving the elliptic part repeatedly throughout the sim-
ulation run. The computational cost associated with up-
dating the pressure usually dominates the total compu-
tational cost, and an efficient preconditioner for the el-
liptic part is mandatory. The proposed domain decom-
position methods are also naturally suited for parallel
computing environments. They can therefore provide a
valid alternative to upscaling for reservoir simulation,
i.e. an alternative to upscaling the elliptic coefficients in
order to run simulations on a coarsened grid. This possi-
bility, and the use of more advanced boundary conditions
for the multiscale base functions will be investigated in
further work.
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Appendix

The preconditioned conjugate gradient method

Let A be a symmetric and positive definite matrix and
consider the linear system

Ax = b . (34)

Moreover, let M be a symmetric and positive definite
preconditioner for A. Then the M -preconditioned con-
jugate gradient algorithm for (34) reads as follows:

(i) Pick an initial guess x0

(ii) Set r0 = b− Ax0, z0 = M−1r0 and p0 = z0.
(iii) For j = 0, 1, . . . , until convergence, do

(a) vj = Apj

(b) α = (rj , zj)/(pj , vj)
(c) xj+1 = xj + αpj

(d) rj+1 = rj − αvj

(e) zj+1 = M−1rj+1

(f) β = (rj+1, zj+1)/(rj , zj)
(g) pj+1 = zj+1 + βpj .

(iv) Enddo.

Here (·, ·) is the Euclidean inner product. It is important
to note that we do not have to compute M−1 explicitly,
only its action is needed. Hence, M−1 may for instance
be one multigrid cycle or a sweep of a loop of a domain
decomposition iteration provided that the methods in-
duce a symmetric and elliptic operator.


