Multi-objective Optimization of a Modular Power Converter Based on Medium Frequency AC-Link for Offshore DC Wind Park

Rene Barrera-Cardenas Marta Molinas

(rene.barrera, marta.molinas) @elkraft.ntnu.no Department of Electric Power Engineering

10th Deep Sea Offshore Wind R&D Conference, DeepWind'2013, Trondheim, Norway

NTNU – Trondheim Norwegian University of Science and Technology

Outline:

- 1. Introduction
- 2. Power converter topologies
- 3. Models and Constraints
- 4. Results
- 5. Conclusions

Offshore Wind turbine challenges

Optimal design targeting three objectives

Maximize efficiency (η): Reduce power losses. Less conversion stages. Maximize power density (ρ) and Maximize Ratio power to mass (σ) of conversion system: Minimize weight/Size for a given power. Increase the Frequency.

Assumption: DC Grid is more convenient for offshore wind farms [MEYER] New WECS architectures for offshore applications. Design taken into account all stages of the system.

Study of operative frequency in Power converter

WECS Studied*

 Generator Voltage and Power rating

*A. Mogstad, M. Molinas, "Power collection and integration on the electric grid from offshore wind parks," In proc. NORPIE 2008,

5

WECS Studied: Modular Power Converter

Outline:

- 1. Introduction
- 2. Power converter topologies
- 3. Models and Constraints
- 4. Results
- 5. Conclusions

Case of Study

AC/DC Converter Module

AC-LINK	Converter Topology (AC/AC)		
3 phase Sinusoidal waveform	B2B Back-to- Back	IMC Indirect Matrix Converter [Holtsmark]	DMC Direct Matrix Converter [Holtsmark]
Squared waveform	B2B-3pSq B2B with 3- phase output	B2B-1p B2B with 1- phase output	RMC Reduced Matrix Converter [Garces]

Selection of the AC-Link frequency and the Power per module in order to obtain the best relation of the three objectives

*Holtsmark and Molinas, "Matrix converter efficiency in a high frequency link offshore WECS," in IECON 2011. **A. Garces. "Design, Operation and control of series connected power converters for offshore wind parks". Thesis for the Degree of Doctor of Philosophy. NTNU 2012.

Module based on Back-to-Back Converter topology (B2B)

ftr : AC-Link frequency. Operating transformer frequency.

 \mathbf{f}_{sw1} : Switching Freq. generator side. It can be lower than sw. freq. of transformer side. It is optimized in this study. Minimum value of 500[Hz] (10*50Hz).

 \mathbf{f}_{sw2} : Switching Freq. transformer side. It should be higher than transformer freq. It is equal to $6^{*}\mathbf{f}_{tr}$ in this study.

Module based on Back-to-Back Converter with three phase squared wave output.(B2B3p-Sq)

ftr : AC-Link frequency. Operating transformer frequency.

 \mathbf{f}_{sw1} : Switching Freq. generator side. It can be lower than sw. freq. of transformer side.

Optimal selection in the switching frequency. Minimum value of 500[Hz] (10*50Hz).

 \mathbf{f}_{sw2} : Switching Freq. transformer side. It is equal to the transformer freq.

Module based on Back-to-Back singlephase Converter topology (B2B-1p)

ftr : AC-Link frequency. Operating transformer frequency.

 f_{sw1} : Switching Freq. generator side. It can be lower than sw. freq. of transformer side. It is optimized in this study. Minimum value of 500[Hz] (10*50Hz).

 f_{sw2} : Switching Freq. transformer side. It is equal to transformer freq.

Module based on Indirect Matrix Converter topology (IMC)

ftr : AC-Link frequency. Operating transformer frequency.

 f_{sw} : Switching Freq. It should be higher than transformer freq. It is equal to $6^{*}f_{tr}$ in this study.

 f_{Ic} : Cut-off frequency of LC filter. Setting it to be 3 times lower than the switching frequency and limiting it to 20 times the supply frequency (20*50=1[KHz]).

*In this study the Clamp Circuit is not taken into account.

Module based on Direct Matrix Converter topology (DMC)

ftr : AC-Link frequency. Operating transformer frequency.

 f_{sw} : Switching Freq. It should be higher than transformer freq. It is equal to $6^{*}f_{tr}$ in this study. f_{lc} : Cut-off frequency of LC filter. Setting it to be 3 times lower than the switching frequency and limiting it to 20 times the supply frequency (20*50=1[KHz]). *In this study the Clamp Circuit is not taken into account.

Module based on Reduced Matrix Converter topology (RMC)

ftr : AC-Link frequency. Operating transformer frequency.

 f_{sw} : Switching Freq. It is equal to transformer freq. The minimum value is 800[Hz], this limit is considered controllability and harmonics distortion in generator side. *In this study the Clamp Circuit is not taken into account.

Outline:

- 1. Introduction
- 2. Power converter topologies
- 3. Models and Constraints
- 4. Results
- 5. Conclusions

Objectives Evaluation

Barrera and Molinas. "A Simple procedure to evaluate the efficiency and power density of power conversion topologies for offshore wind turbines." In proc. DeepWind 2012. Elsevier Energy Procedia.

Semiconductor Losses

$$P_{cond} = \frac{1}{T} \int_{t_0}^{t_0 + T} V_{ce}(t) \cdot I_c(t) \cdot dt$$
$$V_{ce}(t) = K_{ce1} + K_{ce2} \cdot I_c(t)$$

$$P_{sw} = \frac{1}{T} \sum_{T} E_{on} + E_{off} + E_{rr}$$
$$E_{sw} = E_{test} \frac{V_{ce}(t) \cdot I_c(t)}{V_{test} \cdot I_{test}}$$

Vce

=

Evaluate at moment of each switching action. Switch On, Switch Off and Reverse Recovery

Number of switching actions are dependent of modulation scheme.

NTNU – Trondheim Norwegian University of Science and Technology

()

DC link Capacitor

Proportional model in order to estimate the capacitor volume from the reference capacitor.*

$$Vol_{Cap} = \frac{C}{C_{ref}} \left(\frac{V_{DC}}{V_{ref}}\right)^2 \cdot Vol_{ref}$$

The capacitance is designed in order to limit the DC voltage ripple*.

$$C \propto \frac{I_{rms}}{V_{DC}f_{sw}}$$

*M. Preindl and S. Bolognani, "Optimized design of two and three level full-scale voltage source converters for multi-MW wind power plants at different voltage levels," in IECON 2011.

Filters

The Inductance is designed in order to limit the current ripple*,**.

$$L_{B2B} \propto \frac{V_{DC}}{I_{rms} f_{sw}}$$

Proportional model in order to estimate the Inductor volume* and losses from the reference Inductor.

$$Vol_{induc.} = K_{ind} \cdot \left(L_{filter} \cdot I^{2}\right)^{3/4}$$

$$P_{loss_L} = \left(P_{cuRef} + P_{coreRef} \cdot \left(\frac{f_{ref}}{f}\right)^{\frac{(7\alpha-2)}{(12\beta-\alpha)}}\right) \cdot \left(\frac{Vol_{ind.}}{Vol_{Ref}}\right)$$

- 1

*M. Preindl and S. Bolognani, "Optimized design of two and three level full-scale voltage source converters for multi-MW wind power plants at different voltage levels," in IECON 2011.

**M. hamouda, F. Fnaiech, and K. Al-Haddad, "Input filter design for SVM Dual-Bridge matrix converters," in 2006 IEEE International Symposium on Industrial Electronics, vol. 2. IEEE, Jul. 2006.

Magnetic components losses

Core Losses → based on Steinmetz equation

$$P_{core} = K_{core} \cdot Vol_{core} \cdot f^{\alpha_c} \cdot B^{\beta_c}$$

highly dependent of magnetic material, volume and waveform voltage

• Copper Losses \rightarrow losses of all windings

$$P_{cu} = \sum_{i=1}^{nw} K_{cu(i)} \frac{\rho_{cu} N_{(i)} M L T_{(i)}}{A_{w(i)}} I_i^2 (1 + T H D^2)$$

 K_{δ} as a function of frequency, winding design (layers, conductor)

Transformer volume and losses

Design process aims to minimize the volume of the transformer taking into account some assumptions.

- Type transformer structure
 - dry shell-type transformers
 - optimal set of relative dimensions***
- Temperature rise
 - $\succ \alpha$ Power losses
 - $\succ \alpha$ 1 / (surface area)
- Power rating
 - each winding carry the same current density

*S. Meier, et al. "Design Considerations for Medium-Frequency Power Transformers in Offshore Wind Farms." IEEE 2010.

** T. Mclyman. "Transformer and Inductor Design Handbook." CRC Press 2004.

***N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed. Wiley, Oct. 2002

Transformer volume and losses

*Optimum flux density calculation based on W. G. Hurley, W. H. Wolfle, and J. G. Breslin, "Optimized transformer design: inclusive of highfrequency effects," IEEE Transactions on Power Electronics, vol. 13, no. 4, pp. 651–659, Jul. 1998. **Wire design based on Litz wire structure: http://www.elektrisola.com/litz-wire/technical-data/formulas.html

Outline:

- 1. Introduction
- 2. Power converter topologies
- 3. Models and Constraints
- 4. Results
- 5. Conclusions

Parameters and Design Constraints

Parameter	Value
Total Power	10 [MW]
Input Voltage	690[V]
Output DC Voltage	33 [kV]
Generator Frequency	50[Hz]
DC-Link Voltage ripple	1%
Current Input ripple	20%
Current Output ripple	20%
Generator Power factor	0.9
Magnetic material	Metglas alloy 2605SA1
Max. DT Transformer	70 K
AC-Link Freq. [kHz]	[0.5, 10]
Power x module [MW]	[0.2, 10]

Device	Reference	
Ref. Inductor (filters)	Siemens 4EU and 4ET	
Ref. DC-link Capacitor	EPCOS MKP DC B256	
Ref. AC-Capacitor	EPCOS MKP AC B2536	
IGBT Module	Infineon IGBT4 FZXXR17HP4	
DIODE Module	Infineon IGBT3 DDXXS33HE3	
Heat Sink	Bonded Fin - DAU series BF	
Axial FAN – Heat sink	Semikron SKF 3-230 series	

Back-to-Back Topologies: Generator Side VSI and input filter

www.ntnu.edu

AC Link Frequency

Power per module

Pareto Front

RMC the best tradeoff between efficiency and power density

DMC the best tradeoff between Efficiency and ratio power to mass

www.ntnu.edu

Conclusions

- Six different modular power converters solution based on medium frequency link have been compared and their convenience for offshore WECS is evaluated.
- It has been found that WECS based on RMC and square wave AC-Link will lead the best tradeoff between efficiency and power density in range of AC-Link frequencies from 500[Hz] to 10[KHz].

ГNU – Trondheim Norwegian University of Science and Technology

Thanks for your attention

Multi-objective Optimization of a Modular Power Converter Based on Medium Frequency AC-Link for Offshore DC Wind Park

Rene Barrera-Cardenas and Marta Molinas

(rene.barrera, marta.molinas) @elkraft.ntnu.no Department of Electric Power Engineering

NTNU – Trondheim Norwegian University of Science and Technology