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Abstract. We consider a hierarchy of hyperbolic models describing single-
component two-phase flows in pipelines, with applications to CO2 capture
and storage. The hierarchy is characterized by the number of equilibrium
assumptions made. We present a formal proof that every additional level of
enforced equilibrium lowers the propagation velocity of pressure waves. This
subcharacteristic condition holds for arbitrary thermodynamic state equations.
We present numerical examples relevant for CO2 transport, and argue the
importance for pipeline integrity simulations.
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1. Introduction

Two-phase pipe flow simulations have a number of industrial applications, in-
cluding nuclear reactor safety analysis [1, 16], petroleum production [2, 8] and CO2

capture and storage [10, 11]. In order to obtain models sufficiently tractable for such
large-scale industrial simulations, some simplifying assumptions must be made. In
particular, most relevant flow models are averaged in space to yield one-dimensional
systems of hyperbolic balance laws, expressible in the form:

∂U

∂t
+
∂F (U)

∂x
+B
∂W (U )

∂x
= S(U), (1)

to be solved for the unknown M -vector U .
Furthermore, dynamical two-phase flow processes will generally not take place in

thermodynamic equilibrium. However, the relaxation time towards equilibrium may
for several practical purposes be small. For such cases, the equilibrium assumption
may be a valid approximation.

In this paper, we are interested in studying how the assumptions of mechanical,
thermal, and phase equilibrium influence the propagation of pressure waves in the
resulting fluid-mechanical models. For smooth solutions, the models may be written
in the general relaxation form [13]:

∂U

∂t
+A
∂U

∂x
=

1

ε
Q(U), (2)
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where

A =
∂F (U)

∂U
+B
∂W (U )

∂U
. (3)

The relaxation term Q is assumed to be endowed with a constant linear operator
P with rank m < M such that

PQ(U) = 0. (4)

This yields n homogeneous equations

∂V

∂t
+ PA

∂U

∂x
= 0 (5)

in the reduced variable

V = PU . (6)

We further assume that each V uniquely determines a local equilibrium value U =
E(V ), satisfying Q(E(V )) = 0 as well as

PE(V ) = V . (7)

One may then close the system (5) by imposing the equilibrium condition for U :

U = E(V ). (8)

As ε→ 0, the solutions to the relaxation system (2) are expected to approach the
solutions to the relaxed system (5).

1.1. The Subcharacteristic Condition. A main issue in the study of such hy-
perbolic relaxation systems is the question of stability of the reduced solution V .
Central to this question is the subcharacteristic condition, a concept introduced by
Liu [9]. This may be interpreted as a causality principle – the wave velocities of
the relaxed system must be interlaced between the wave velocities of the relaxing
system. A general, precise definition is stated by Chen et al. [3]:

Definition 1. Let the M eigenvalues of the relaxing system (2) be given by

λ1 ≤ . . . ≤ λk ≤ λk+1 ≤ . . . ≤ λM (9)

and the m eigenvalues of the relaxed system (5) and (8) be given by

λ̃1 ≤ . . . ≤ λ̃j ≤ λ̃j+1 ≤ . . . ≤ λ̃m. (10)

Herein, the relaxation system (2) is applied to a local equilibrium state U = E(V )
such that

λk = λk(E(V )), λ̃j = λ̃j(V ). (11)

Now let the λ̃j be interlaced with λk in the following sense: Each λ̃j lies in the

closed interval [λj , λj+M−m]. Then the relaxed system (5) is said to satisfy the

subcharacteristic condition with respect to (2).
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1.2. Outline of This Paper. The purpose of this paper is to investigate the
eigenvalues of relaxation two-phase flow models, with a particular focus on the
subcharacteristic condition. The relaxation models we consider are highly related
to the models presented by Saurel et al. [14]. Furthermore, exact expressions for the
eigenvalues of these models already abound in the literature [6, 7, 15, 14]. However,
these expressions typically involve different thermodynamic variables, making a
direct comparison between them difficult.

The original contribution of this paper is expressing the eigenvalues in a form
suitable for directly proving the subcharacteristic condition. In particular, for each
new level n of equilibrium condition added, we are able to express the mixture
sound velocity as

ĉ−2
n+1 = ĉ−2

n + Sn, (12)

where Sn can be written as a positive sum of squares. From this, the subcharac-
teristic condition follows directly.

Our paper is organized as follows: in Section 2, we describe the basic relaxation
model of our hierarchy. Here no thermodynamic equilibrium assumptions are made.

In Section 3, we make our first equilibrium assumption; we instantaneously im-
pose equal pressures for both phases. In Section 4, we add instantaneous tempera-
ture equilibrium to this model. Finally, in Section 5, we assume full thermodynamic
equilibrium, including phase transitions.

Our work is briefly summarized in Section 7.

2. The Basic Model

Our starting point is the following relaxation two-phase flow model:

• Mass conservation:

∂

∂t
(ρgαg) +

∂

∂x
(ρgαgv) = K(µℓ − µg), (13)

∂

∂t
(ρℓαℓ) +

∂

∂x
(ρℓαℓv) = K(µg − µℓ). (14)

• Volume advection:

∂αg

∂t
+ v
∂αg

∂x
= J (pg − pℓ). (15)

• Momentum conservation:

.
∂

∂t
(ρv) +

∂

∂x
(ρv2 + αgpg + αℓpℓ) = 0. (16)

• Energy balance:

∂Eg

∂t
+
∂

∂x
(v(Eg + αgpg)) +

v

ρ

(

ρgαg
∂

∂x
(αℓpℓ)− ρℓαℓ

∂

∂x
(αgpg)

)

= H(Tℓ − Tg) + p∗J (pℓ − pg) + µ∗K(µℓ − µg), (17)

∂Eℓ

∂t
+
∂

∂x
(v(Eℓ + αℓpℓ)) +

v

ρ

(

ρℓαℓ
∂

∂x
(αgpg)− ρgαg

∂

∂x
(αℓpℓ)

)

= H(Tg − Tℓ) + p∗J (pg − pℓ) + µ∗K(µg − µℓ). (18)

Herein, we use the following nomenclature for phase k ∈ {g, ℓ}:



4 LUND AND FLÅTTEN

ρk - density of phase k,
p - pressure of phase k,
v - velocity common to both phases,
αk - volume fraction of phase k,
Ek - total energy density of phase k,
µk - chemical potential of phase k,
Tk - temperature of phase k,
p∗ - effective pressure at the gas-liquid interface,
µ∗ - effective chemical potential at the gas-liquid interface,
H - temperature relaxation coefficient,
J - pressure relaxation coefficient,
K - phase transfer relaxation coefficient.

We here assume that the relaxation coefficients satisfy

H ≥ 0, (19)

J ≥ 0, (20)

K ≥ 0. (21)

Furthermore, we have used the following abbreviations:

ρ = ρgαg + ρℓαℓ, (22)

Eg = ρgαg

(

eg +
1

2
v2
)

, (23)

Eℓ = ρℓαℓ

(

eℓ +
1

2
v2
)

(24)

(25)

where ek is the specific internal energy of phase k.

Proposition 1. The relaxation model (13)–(18) respects conservation of total mass,

momentum and energy.

Proof. Add (13) and (14) to obtain

∂ρ

∂t
+
∂

∂x
(ρv) = 0, (26)

giving conservation of total mass. Conservation of total momentum follows directly
from (16). Add (17) and (18) to obtain

∂

∂t
(Eg + Eℓ) +

∂

∂x
(v(Eg + Eℓ + αgpg + αℓpℓ)) = 0, (27)

giving conservation of total energy. �

Lemma 1. The internal energy evolution equations can be written as:

∂

∂t
(ρgαgeg) +

∂

∂x
(ρgαgegv) +αgpg

∂v

∂x
= H(Tℓ−Tg) + p∗J (pℓ− pg) +µ∗K(µℓ−µg)

(28)
and

∂

∂t
(ρℓαℓeℓ) +

∂

∂x
(ρℓαℓeℓv) +αℓpℓ

∂v

∂x
= H(Tg − Tℓ) + p∗J (pg − pℓ) + µ∗K(µg − µℓ).

(29)
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Proof. We may write (16) as

∂v

∂t
+ v
∂v

∂x
+

1

ρ

∂

∂x
(αgpg + αℓpℓ) = 0. (30)

This yields the kinetic energy evolution equations:

∂

∂t

(

1

2
ρgαgv

2

)

+
∂

∂x

(

1

2
ρgαgv

3

)

+ v
∂

∂x
(αgpg)

+
v

ρ

(

ρgαg
∂

∂x
(αℓpℓ)− ρℓαℓ

∂

∂x
(αgpg)

)

= 0 (31)

and

∂

∂t

(

1

2
ρℓαℓv

2

)

+
∂

∂x

(

1

2
ρℓαℓv

3

)

+ v
∂

∂x
(αℓpℓ)

+
v

ρ

(

ρℓαℓ
∂

∂x
(αgpg)− ρgαg

∂

∂x
(αℓpℓ)

)

= 0. (32)

Using (31)–(32) as well as (23)–(24) in (17)–(18), we recover (28)–(29). �

Proposition 2. Assume that the effective pressure and chemical potential can be

written as convex combinations of the gas and liquid states as follows:

p∗ = βppg + (1 − βp)pℓ, (33)

µ∗ = βµµg + (1− βµ)µℓ, (34)

where

βp ∈ [0, 1], (35)

βµ ∈ [0, 1]. (36)

Then the relaxation model (13)–(18) satisfies the second law of thermodynamics.

Proof. We introduce the material derivative:

Dt =
∂

∂t
+ v
∂

∂x
, (37)

and we can write the fundamental thermodynamic differential as

Dtek = TkDtsk +
pk

ρ2k
Dtρk, (38)

where sk is the specific entropy of phase k. By (38), as well as (13)–(15), we can
rewrite (28)–(29) as entropy evolution equations:

Dtsg =
H

ρgαg

Tℓ − Tg

Tg
+
p∗ − pg
ρgαgTg

J (pℓ − pg) +

(

µ∗ − µg

Tg
− sg

)

K

ρgαg
(µℓ − µg),

(39)

Dtsℓ =
H

ρℓαℓ

Tg − Tℓ
Tℓ

+
p∗ − pℓ
ρℓαℓTℓ

J (pg − pℓ) +

(

µ∗ − µℓ
Tℓ

− sℓ

)

K

ρℓαℓ
(µg − µℓ), (40)
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through expansion of derivatives. Using the mass equations (13)–(14), we can write
these as
∂

∂t
(ρgαgsg) +

∂

∂x
(ρgαgsgv) = H

Tℓ − Tg

Tg
+
p∗ − pg
Tg
J (pℓ − pg) +

µ∗ − µg

Tg
K(µℓ − µg),

(41)

∂

∂t
(ρℓαℓsℓ) +

∂

∂x
(ρℓαℓsℓv) = H

Tg − Tℓ
Tℓ

+
p∗ − pℓ
Tℓ
J (pg − pℓ) +

µ∗ − µℓ
Tℓ
K(µg − µℓ),

(42)

By summing (41)–(42), we obtain an equation for the total entropy S = ρgαgsg +
ρℓαℓsℓ:

∂S

∂t
+
∂

∂x
(Sv) = H

(Tℓ − Tg)2

TgTℓ
+

(

p1 − p
∗

T1
+
p∗ − p2
T2

)

J (p1 − p2)

+

(

µ1 − µ
∗

T1
+
µ∗ − µ2

T2

)

K(µ1 − µ2), (43)

or from (33)–(34):

∂S

∂t
+
∂

∂x
(Sv) = H

(Tℓ − Tg)2

TgTℓ
+

(

1− βp
T1

+
βp

T2

)

J (p1 − p2)2

+

(

1− βµ
T1

+
βµ

T2

)

K(µ1 − µ2)2. (44)

It now follows from (35)–(36) that

∂S

∂t
+
∂

∂x
(Sv) ≥ 0. (45)

�

Throughout this paper, we will assume that (33)–(36) are satisfied.

2.1. Wave Velocities. We now derive the wave velocities of of the above basic
model. We will first find it convenient to express the model in an equivalent form.

Lemma 2. The relaxation model (13)–(18) can be equivalently expressed as:

∂ρ

∂t
+
∂

∂x
(ρv) = 0, (46)

DtY =
K

ρ
(µℓ − µg), (47)

Dtαg = J (pg − pℓ), (48)

∂

∂t
(ρv) +

∂

∂x

(

ρv2 + αgpg + αℓpℓ
)

= 0, (49)

Dtsg =
H

ρgαg

Tℓ − Tg

Tg
+
p∗ − pg
ρgαgTg

J (pℓ − pg) +

(

µ∗ − µg

Tg
− sg

)

K

ρgαg
(µℓ − µg),

(50)

Dtsℓ =
H

ρℓαℓ

Tg − Tℓ
Tℓ

+
p∗ − pℓ
ρℓαℓTℓ

J (pg − pℓ) +

(

µ∗ − µℓ
Tℓ

− sℓ

)

K

ρℓαℓ
(µg − µℓ), (51)

where

Y =
ρgαg

ρ
. (52)
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Proof. The equations (46) and (48)–(51) are simply restatements of (26), (15)–(16)
and (39)–(40). To obtain (47), write (13) as

∂

∂t
(ρY ) +

∂

∂x
(ρY v) = K(µℓ − µg) (53)

and use (46). �

Proposition 3. The vector of eigenvalues of the basic relaxation model (13)–(18)
is given by

Λ0 =

















v − ĉ0
v

v

v

v

v + ĉ0

















, (54)

where

ĉ20 = αgc
2
g + αℓc

2
ℓ , (55)

ck =

(

∂p

∂ρk

)

sk

∀k ∈ {g, ℓ}. (56)

Proof. From (47)–(48) and (39)–(40), we see directly that (Y, αg, sg, sℓ) are charac-
teristic variables corresponding to an eigenvalue with magnitude v. Now if we set
dY = dαg = dsg = dsℓ = 0, we obtain the following reduced model:

∂ρ

∂t
+
∂

∂x
(ρv) = 0, (57)

∂

∂t
(ρv) +

∂

∂x

(

ρv2 + αgpg + αℓpℓ
)

= 0. (58)

(59)

This can be written in quasilinear form:

∂

∂t

[

ρ

ρv

]

+

[

0 1
ĉ20 − v

2 2v

]

∂

∂x

[

ρ

ρv

]

= 0, (60)

where

ĉ20 =

(

∂

∂ρ
(αgpg + αℓpℓ)

)

Y,αg,sgsℓ

. (61)

Hence the two missing waves of the full model are sound waves with velocities v± ĉ0.
It now remains to determine ĉ0. The assumption of constant entropies gives us

dpg = c2g dρg, (62)

dpℓ = c2ℓ dρℓ. (63)

Furthermore, the assumption of constant volume and mass fractions gives us

dY =
αg

ρ
(dρg − dρ) =

αℓ

ρ
(dρ− dρℓ) = 0, (64)

Hence

dρ = dρg = dρℓ. (65)

We now recover (55) by using (62)–(63) and (65) in (61). �
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3. Pressure Relaxation

We are now interested in the limit of instantaneous pressure relaxation in the
model (13)–(18). We consider the the limit

J → ∞ (66)

and replace (15) with the assumption

pg = pℓ = p. (67)

Furthermore, following (33) we write:

p∗ = p. (68)

In this limit, the energy equations (17)–(18) can be rewritten as

∂Eg

∂t
+
∂

∂x
(vEg) +

ρgαg

ρ
v
∂p

∂x
+ p

(

∂αg

∂t
+
∂

∂x
(αgv)

)

= H(Tℓ − Tg) + µ∗K(µℓ − µg), (69)

∂Eℓ

∂t
+
∂

∂x
(vEℓ) +

ρℓαℓ

ρ
v
∂p

∂x
+ p

(

∂αℓ

∂t
+
∂

∂x
(αℓv)

)

= H(Tg − Tℓ) + µ∗K(µg − µℓ). (70)

Furthermore, following the approach detailed in [6], we can derive volume fraction
evolution equations:

∂αg

∂t
+
∂

∂x
(αgv)− αg

ρĉ21
ρgc2g

∂v

∂x
=

ρĉ21
ρgc2gρℓc

2
ℓ

(αgΓℓ + αℓΓg)H(Tℓ − Tg)

+
ρĉ21
ρgc2gρℓc

2
ℓ

(

αg(Γℓµ
∗ − Γℓhℓ − c

2
ℓ) + αℓ(Γgµ

∗ − Γghg − c
2
g)
)

K(µℓ − µg) (71)

and

∂αℓ

∂t
+
∂

∂x
(αℓv)− αℓ

ρĉ21
ρℓc

2
ℓ

∂v

∂x
=

ρĉ21
ρgc2gρℓc

2
ℓ

(αgΓℓ + αℓΓg)H(Tg − Tℓ)

+
ρĉ21
ρgc2gρℓc

2
ℓ

(

αg(Γℓµ
∗ − Γℓhℓ − c

2
ℓ) + αℓ(Γgµ

∗ − Γghg − c
2
g)
)

K(µg − µℓ), (72)

where

hk = ek +
p

ρk
∀k ∈ {g, ℓ}, (73)

Γk is the Grüneisen coefficient:

Γk =
1

ρk

(

∂p

∂ek

)

ρk

, (74)

and

ĉ−2
1 = ρ

(

αg

ρgc2g
+
αℓ

ρℓc
2
ℓ

)

. (75)

Proposition 4. The pressure relaxed model corresponding to the limit J → ∞ in

(13)–(18) can be written as:
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• Mass conservation:

∂

∂t
(ρgαg) +

∂

∂x
(ρgαgv) = K(µℓ − µg), (76)

∂

∂t
(ρℓαℓ) +

∂

∂x
(ρℓαℓv) = K(µg − µℓ). (77)

• Momentum conservation:

∂

∂t
(ρv) +

∂

∂x
(ρv2 + p) = 0. (78)

• Energy balance:

∂Eg

∂t
+
∂

∂x
(vEg) +

ρgαg

ρ
v
∂p

∂x
+ pαg

ρĉ21
ρgc2g

∂v

∂x

=

(

1− p
αgΓℓ + αℓΓg

ρgαℓc2g + ρℓαgc
2
ℓ

)

H(Tℓ − Tg)

+

(

1−
p

µ∗

αg(Γℓµ
∗ − Γℓhℓ − c

2
ℓ) + αℓ(Γgµ

∗ − Γghg − c
2
g)

ρgαℓc2g + ρℓαgc
2
ℓ

)

µ∗K(µℓ − µg), (79)

∂Eℓ

∂t
+
∂

∂x
(vEℓ) +

ρℓαℓ

ρ
v
∂p

∂x
+ pαℓ

ρĉ21
ρℓc

2
ℓ

∂v

∂x

=

(

1− p
αgΓℓ + αℓΓg

ρgαℓc2g + ρℓαgc
2
ℓ

)

H(Tg − Tℓ)

+

(

1−
p

µ∗

αg(Γℓµ
∗ − Γℓhℓ − c

2
ℓ) + αℓ(Γgµ

∗ − Γghg − c
2
g)

ρgαℓc2g + ρℓαgc
2
ℓ

)

µ∗K(µg − µℓ). (80)

Proof. The equations (76)–(78) are simply restatements of (13)–(14) and (16). Sub-
stituting (71)–(72) into (69)–(70), we recover (79) and (80). �

3.1. Wave Velocities. The wave structure of this model has been extensively
analyzed in [6]. In particular, the vector of eigenvalues was found to be

Λ1 =













v − ĉ1
v

v

v

v + ĉ1













, (81)

where the waves corresponding to the eigenvalue v represent one mass fraction wave
and one entropy wave for each phase.

Proposition 5. The relaxed model (76)–(80) satisfies the subcharacteristic con-

dition with respect to the relaxation model (13)–(18), subject only to the natural

conditions

ρk > 0, (82)

ck > 0 (83)

for k ∈ {g, ℓ}. In particular, we have

ĉ−2
1 = ĉ−2

0 (1 + αgαℓZ) , (84)
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where

Z = αg





(

cℓ

cg
−

√

ρℓ

ρg

)2

+

(

2

√

ρℓc
2
ℓ

ρgc2g
+ 1

)(

√

ρgc2g

ρℓc
2
ℓ

− 1

)2



+ αℓ





(

cg

cℓ
−

√

ρg

ρℓ

)2

+

(

2

√

ρgc2g

ρℓc
2
ℓ

+ 1

)(
√

ρℓc
2
ℓ

ρgc2g
− 1

)2


 , (85)

and it follows that ĉ1 ≤ ĉ0.

Proof. By (54) and (81), it follows from Definition 1 that the subcharacteristic
condition reduces to

ĉ1 ≤ ĉ0. (86)

Now note that

ĉ20ĉ
−2
1 =

(

αgc
2
g + αℓc

2
ℓ

)

(αgρg + αℓρℓ)

(

αg

ρgc2g
+
αℓ

ρℓc
2
ℓ

)

. (87)

Expanding and using αg + αℓ = 1, we can write this as

ĉ20ĉ
−2
1 − 1 = α2

gαℓ

(

ρgc
2
g

ρℓc
2
ℓ

+
c2ℓ
c2g

+
ρℓ

ρg
− 3

)

+α2
ℓαg

(

ρℓc
2
ℓ

ρgc2g
+
c2g

c2ℓ
+
ρg

ρℓ
− 3

)

= αgαℓZ,

(88)
and (84) follows. �

4. Temperature Relaxation

We now focus on the limit of instantaneous relaxation of both the pressure and
temperature in the model (13)–(18). We tale as our starting point the model (76)–
(80) and consider the limit

H →∞. (89)

In this limit, we replace (79)–(80) with their sum

∂

∂t
(Eg + Eℓ) +

∂

∂x
(v(Eg + Eℓ + p)) = 0 (90)

and make the assumption

Tg = Tℓ = T. (91)

4.1. Wave Velocities. This model was analyzed in [6]. In particular, the vector
of eigenvalues was found to be

Λ2 =









v − ĉ2
v

v

v + ĉ2









, (92)

where the waves corresponding to the eigenvalue v represent one mass fraction wave
and one mixture entropy wave. Furthermore, the mixture sound velocity was found
as

ĉ−2
2 = ĉ−2

1 +
ρ

T

Cp,gCp,ℓ (ζℓ − ζg)
2

Cp,g + Cp,ℓ
, (93)
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where for k ∈ {g, ℓ}, ζk is defined as

ζk =

(

∂T

∂p

)

sk

(94)

and Cp,k are the extensive heat capacities

Cp,k = ρkαkcp,k, (95)

where

cp,k = T

(

∂sk

∂T

)

p

. (96)

Proposition 6. The temperature relaxed model (76)–(78) augmented with (90)–
(91) satisfies the subcharacteristic condition with respect to the relaxation model

(76)–(80), subject only to the natural constraints

ρ ≥ 0, (97)

T > 0, (98)

Cp,k > 0. (99)

Proof. By (81) and (92), it follows from Definition 1 that the subcharacteristic
condition reduces to

ĉ2 ≤ ĉ1, (100)

which follows directly from (93) and (97)–(99). �

5. Phase Transfer Relaxation

We now consider the case of simultaneous instantaneous relaxation of both the
pressure, temperature and chemical potential. In the context of the model of Sec-
tion 4, this corresponds to the limit

K →∞. (101)

In this limit, we may replace (76)–(77) with their sum, and make the additional
assumption

µg = µℓ = µ. (102)

Assuming (34), we may also write

µ∗ = µ. (103)

The model thus obtained may be restated as follows:

• Mass conservation:
∂ρ

∂t
+
∂

∂x
(ρv) = 0 (104)

• Momentum conservation:

∂

∂t
(ρv) +

∂

∂x
(ρv2 + p) = 0. (105)

• Energy conservation:

∂

∂t
(Eg + Eℓ) +

∂

∂x
(v(Eg + Eℓ + p)) = 0, (106)

which we recognize as the homogeneous equilibrium model.
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5.1. Wave Velocities. The wave structure of the homogeneous equilibrium model
is well known, and the vector of eigenvalues can be written as

Λ3 =





v − ĉ3
v

v + ĉ3



 , (107)

where

ĉ3 =

(

∂p

∂ρ

)

s

(108)

and s is the mixture entropy. Saurel et al. [14] state the following expression for ĉ3:

ĉ−2
3 = ĉ−2

1 + ρT

[

ρgαg

cp,g

(

∂sg

∂p

)2

sat

+
ρℓαℓ

cp,l

(

∂sℓ

∂p

)2

sat

]

, (109)

where (·)sat denotes differentiation along the boiling point curve, where

µg = µℓ. (110)

Proposition 7. The relaxed model (104)–(106) satisfies the subcharacteristic con-

dition with respect to the relaxation model of Section 4, subject only to the natural

conditions

ρk > 0, (111)

T > 0, (112)

Ck > 0 (113)

for k ∈ {g, ℓ}. In particular, we have

ĉ−2
3 = ĉ−2

2 + ρT (Cp,g + Cp,ℓ)

(

ρℓ − ρg
ρgρℓ(hℓ − hg)

+
ζgCp,g + ζℓCp,ℓ
T (Cp,g + Cp,ℓ)

)2

, (114)

and it follows that ĉ3 ≤ ĉ2.

Proof. By (92) and (107), it follows from Definition 1 that the subcharacteristic
condition reduces to

ĉ3 ≤ ĉ2. (115)

From the Clausius-Clapeyron relation we obtain
(

∂sk

∂p

)

sat

= −cp,k

(

ζk

T
+

ρℓ − ρg
ρgρℓ(hℓ − hg)

)

. (116)

Substituting in (109) and using (93) we recover (114). �

6. Application to CO2 Transport

In this section, we wish to illustrate the relevance of these results for simulating
the transport of CO2 in pipelines. For pipeline integrity simulations, a correct
modelling of the propagation velocity of pressure waves is important in order to
capture the dynamics of a rapid depressurization. For CO2 at the boiling point at
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T = 273 K, the following physical parameters apply:

cg = 205 m/s, (117)

cℓ = 441 m/s, (118)

ρg = 135 kg/m3
, (119)

ρℓ = 861 kg/m3
, (120)

cp,g = 2556 J/(kg ·K), (121)

cp,ℓ = 2996 J/(kg ·K). (122)

The sound velocities ĉ1, ĉ2 and ĉ3 are plotted in Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0�
g

0
50

100
150
200
250
300
350
400
450

c 
(m

/s
)

p equil.
p,T equil.
p,T,� equil.

Figure 1. Mixture sound velocity of two-phase CO2 as a function of gas fraction.

We note that ĉ1 and ĉ2 are virtually indistinguishable to plotting accuracy. How-
ever, the phase transfer equilibrium velocity ĉ3 is significantly lower; note also that
we do not recover the one-phase sound velocities (117) and (118) in the limits
αk → 1.

The low values of ĉ3 predicted by the homogeneous equilibrium model are un-
physical, a fact that has been previously noted by several authors [7, 12, 15]. On
the other hand, the values ĉ1 and ĉ2 predicted by the models of Sections 3 and 4
agree well with experiments [4, 5].

This indicates that the pressure and temperature relaxed models described in
Sections 3–4 should be used for numerical simulations of CO2 pipeline transport.
The full equilibrium model of Section 5 would yield an unphysically slow propaga-
tion of pressure pulses.

7. Summary

We have investigated a hierarchy of relaxation models for two-phase flow. In
particular, we have studied models with equilibrium assumptions imposed in the
following order:
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(1) pressure equilibrium (p equil.)
(2) temperature equilibrium (p, T equil.)
(3) phase transfer equilibrium (p, T, µ equil.)

We have shown that the mixture sound velocities of these models satisfy the in-
equalities

ĉ3 ≤ ĉ2 ≤ ĉ1 ≤ ĉ0. (123)

In particular, we may write ĉ as

ĉ−2
n+1 = ĉ−2

n + Sn (124)

where the parameters Sn ≥ 0 are given by

S0 = ĉ−2
0 αgαℓZ, (125)

S1 =
ρ

T

Cp,gCp,ℓ (ζℓ − ζg)
2

Cp,g + Cp,ℓ
, (126)

S2 = ρT (Cp,g + Cp,ℓ)

(

ρℓ − ρg
ρgρℓ(hℓ − hg)

+
ζgCp,g + ζℓCp,ℓ
T (Cp,g + Cp,ℓ)

)2

, (127)

and Z is given by (85).
We have argued that these observations are highly relevant for simulations of

pipeline integrity for CO2 transport. In particular, the assumption of instantaneous
phase equilibrium leads to a severe underestimation of the propagation velocity of
pressure pulses.
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