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ZeolitesZeolites
--Highly porous, high surface area, 
crystalline aluminosilicates
--Framework based on SiO4 and AlO4 
tetrahedra
--Sharply defined channels/pores of
molecular dimensions
--Stable over a wide temperature range
--Regenerable
--Fast deactivation
--Widely used as catalysts
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InIn--situsitu FTIR studies FTIR studies ofof carbenium ions in zeolites carbenium ions in zeolites 
have led to a have led to a newnew definitiondefinition ofof zeolite zeolite acidityacidity

M. Bjørgen et al. J. Am. Chem. Soc. 2003, 125, 15863-15868.
M. Bjørgen et al. ChemPhysChem. In press 2004.

--Until the early 90’s, zeolites were believed to possess superacidity
--Carbocation stability is inherently linked to the acid strength of the
zeolites 
--Carbenium ions are likely reaction intermediates
--Recently, we provided the first evidence of proton transfer from a 
zeolite to a benzene ring (hexamethylbenzene)
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SpectroscopicSpectroscopic evidenceevidence for for thethe
tetramethylbenzeniumtetramethylbenzenium cation in zeolite Hcation in zeolite H--betabeta

+

H

Pure tetraMB

H-beta

TetraMB adsorbed on H-beta
Outgassing

Conclusive evidence for 
proton transfer and cation 
formation

Bjørgen et al. ChemPhysChem In press

Weakly acidic sites (defects)

Strongly acidic, 
active sites



--Complementary DRUV/VIS experiments gave support to the
FTIR results

--From being classified as superacids, it now appears clear that
zeolites have an acidic strength slightly lower than that of
concentrated sulfuric acid

π

π∗

M. Bjørgen et al. J. Am. Chem. Soc. 2003, 125, 15863-15868.



ConversionConversion ofof methanolmethanol to to 
hydrocarbonshydrocarbons/olefins/olefins

The methanol-to-hydrocarbons (MTH) technology represents a 
route for formation of olefins or gasoline from natural gas/coal
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MTH/MTO MTH/MTO chemistrychemistry

How can two or more C1-entities react so that C-C bonds are 
formed?
Which reactions lead to catalyst deactivation?
The main catalytic cycle for olefin formation from methanol
is based on a so-called hydrocarbon pool 
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HydrocarbonsHydrocarbons retainedretained withinwithin thethe zeolite poreszeolite pores

Analysis (GC-MS, 
HRMS, NMR)

Analyzed ex-situ by:
Quenching the reaction (at a predetermined time)
Dissolving the zeolite (15% HF)
Extracting the organic material from the water phase

Trapped organic species will be liberated and made available
for analysis



HydrocarbonsHydrocarbons retainedretained in the zeolite pores in the zeolite pores 
whenwhen methanolmethanol is is reactedreacted over the Hover the H--beta beta 
zeolite (GCzeolite (GC--MS)MS)
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Stability of the retained hydrocarbons was probed by stopping the 
feed and flushing the catalyst with carrier gas for 1 minute

Hexamethylbenzene is a dominant retained species

Among the trapped
hydrocarbons, hexaMB
shows the fastest 
decomposition

Are these compounds just inert spectator molecules?



Hexamethylbenzene is not an inert spectator molecule

When fed alone over the beta zeolite, hexametylbenzene
gives the same products as methanol

How can these observations be rationalized?

Bjørgen, M.; Olsbye, U.; Kolboe, S. J. Catal. 2003, 215, 30-44.
Bjørgen, M.; Olsbye, U.; Petersen, D.; Kolboe, S. J. Catal. 2004, 221, 1-10
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In-situ synthesis of isotopically labeled
hexamethylbenzene inside the zeolite pores



CoCo--reactionreaction of of 1212CC--benzene and benzene and 
1313CC--methanol: methanol: 

13CH3

H3
13C

H3
13C

13CH3

13CH3

13CH3

6H2O

H3
13C 13CH3

H3
13C

H3
13C

13CH3

13CH3

13CH3

+
13CH3OH

H2O

H-Zeolite

Zeolite
-

613CH3OH

H-Zeolite

Hexamethylbenzene:
Six labeled atoms

Heptamethylbenzenium:
Seven labeled atoms

M. Bjørgen, U. Olsbye, D. Petersen and S. Kolboe, J. Catal. (2004), 221, 1-10.



TheThe heptamethylbenzeniumheptamethylbenzenium cation cation waswas foundfound to to 
be be thethe reactionreaction intermediate (intermediate (i.e. the hydrocarbon i.e. the hydrocarbon 
poolpool)) ofof thethe MTH/MTO MTH/MTO reactionreaction
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The catalytic The catalytic 
cycle of the cycle of the 
MTO/MTH MTO/MTH 
reaction reaction 
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The hydrocarbon pool may also lead to deactivationThe hydrocarbon pool may also lead to deactivation

- H+

+

MeOH

Coke

+
+

⇒Deactivation

A less steric demanding hydrocarbon pool is formed in 
zeolites with smaller channel dimensions (e.g. ZSM-5) 



We have obtained a detailed insight into
the mechanism of the MTH/MTO 
reaction

A deeper insight into the catalyst itself is 
also crucial for understanding product
selectivities and catalyst deactivation



MTO catalysts based on the CHA topologyMTO catalysts based on the CHA topology



2) Active sites, acidic 
protons in this example

Four different positions for 
the acidic sites

1) The cage



HH22 for for probingprobing thethe locallocal acidityacidity in zeolitesin zeolites

H2 is a very sensitive probe molecule (single 
bond perturbation)
The weak basic character requires low
temperatures when studying interactions with
zeolites
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FTIR: HFTIR: H22 onon lowlow Al chabazite (HAl chabazite (H--
SSZSSZ--13) at 20 K13) at 20 K

S. Bordiga, J. G. Vitillo, G. Ricchiardi, C. Lamberti, G. Spoto, A. Zecchina, 
M. Bjørgen, K. P. Lillerud, Submitted to Science (2004) 

ν(O-H) region ν(H-H) region

H-SSZ-13

Defects

Strongly
acidic sites

Increasing H2 pressures
H2 in liquid phase

The strongest 
interaction ever 
observed between H2
and a zeolite



…and where does this knowledge lead us?
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Isotopic labelling studies indicate that the
heptamethylbenzenium ion is the main intermediate
for olefins AND coke formation over H-Beta zeolite.

*

ZSM-5: Little deactivation. 
gem-pentamethylbenzenium ion probably main

reaction intermediate. 

Would a smaller SAPO-34 cage lead to less coking, 
at similar olefin formation rates? 
And would the olefin selectivity change?



Could the acid strength be key to the MTH 
selectivity?

An obstacle is the difficulty of preparing the exact
same pore structure and acid site density with
different elements

A low-Al Si/Al chabazite was recently prepared and will be 
tested for the MTH reaction.
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0.3 nm
OSO the only 3-ring only topology



Crystallization of SAPO-34

We are slowly moving towards understanding the crystallization

Ø.B. Vistad, D.E. Akporiaye, F. Taulelle, and K.P. Lillerud  Chem. Mater. 2003, 15, 1639-1649



FTIR FTIR ofof interactionsinteractions betweenbetween CO and CO and thethe BrBröönsted nsted sitessites ofof HH--SSZSSZ--1313
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O-H stretching vibrations of
Brönsted sitesIncreasing coverage of

CO consumes the
Brönsted sites

Two families of Brönsted sites

showing different accessibillity



ProductProduct distributiondistribution (400(400°°C) C) whenwhen
methanolmethanol is is reactedreacted over over thethe HH--beta beta 
zeolite (GCzeolite (GC--FID)FID)

4 5 6 7 8 26 28

H
ex

am
et

hy
l b

en
ze

ne

Pe
nt

am
et

hy
l b

en
ze

ne

Retention time (minutes)
2-

m
et

hy
l-2

-b
ut

an
e

1/
i-b

ut
en

e

cis
-2

-b
ut

en
e

n-
bu

ta
ne

tra
ns

-2
-b

ut
en

e

M
et

ha
no

l
Is

ob
ut

an
e

D
im

et
hy

le
th

er

Pr
op

an
e/

pr
op

en
e

Et
ha

ne
/e

th
en

e
M

et
ha

ne

Aliphatics Aromatics

Hexamethylbenzene is a dominant gas phase product



Questions about the mechanism still remain unanswered:
Can two methanol molecules combine and form ethene?
How are the light olefins formed?

More than 20 proposed mechanisms (Involving intermediates as radicals, carbenes, 
oxonium ions, carbocations)



ConversionConversion ofof methanolmethanol to to 
hydrocarbonshydrocarbons. Zeolite H. Zeolite H--beta as a beta as a 
modelmodel systemsystem

The beta zeolite is a wide pore 
zeolite (12-MR) allowing direct
introduction of rather large
molecules

Zeolite beta: 
7.7x6.6 Å
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