REDUCING EMISSIONS IN URBAN DELIVERY SYSTEMS

Green Activity Zones Workshop Kelly Pitera, University of Washington 21 November 2011

Within the United States

- No low emissions zones
- Minimal federal regulations
 - Engines
 - Fuel economy
- Programs which motivate supply chain fuel efficiency
- Idling restrictions state or county levels

Suggested strategies to reduce fuel consumption and emissions (EPA SmartWay Transport Partnership)

- Idle reduction
- Improved aerodynamics
- Improved freight logistics
- Automatic tire inflation systems
- Single wide-base tires
- Driver training
- Low-viscosity lubricants
- Intermodal shipping

- Longer combination vehicles
- Reducing highway speed
- Weight reduction
- Hybrid powertrain technology
- Renewable fuels

Motivations to reduce emissions

Often carrier driven

- Reduce fuel and maintenance costs
- Improve their sustainability profile
 - Company values
 - Customer demands
- Future regulations

Research at the University of Washington

- Several case studies using real-world partners
 - University mailing service
 - Grocery delivery service
- Examined various aspects of urban pickup and delivery systems
 - Emissions
 - Cost
 - Customer service
- Working with Anne Goodchild, Felipe Sandoval, and Erica Wygonik

Urban Pickup and Delivery Systems

University of Washington Mailing Service

- Pickup/delivery of internal campus mail, as well as U.S. Postal Service mail
- Fleet of 7 vehicles (heterogeneous)
- Serves 52 customers
- Travel on controlled access freeways, arterials, and residential streets

Model: Objective Function

Our Model

Cost per mile + Cost per hour + Emissions tax

The trade-offs between cost, service quality, and emissions

Scenarios Tested Within the Model

- Base
- Improved
- Morning Consolidation & Afternoon Consolidation
- Single Deliveries
- Fleet Upgrade

The trade-offs between cost, service quality, and emissions

Conclusions: CASE STUDY

- Simple rerouting *reduces emissions and cost*
 - emissions: average reduction of 6%
 - cost: average reduction of 9%
- UWMS fleet is underutilized: fleet could be reduced from 7 vehicles to 4 vehicles

Conclusions: URBAN PICKUP SYSTEMS

- Operational changes can reduce emissions while only increasing costs minimally, or not at all
- Cost and emissions savings can be found with service quality reductions
- Managers of small fleets of vehicles can on simple rules of thumb to improve emissions within vehicle routing

Grocery Delivery: Shared-use Transportation

- Any transportation service that combines multiple parallel trips into one
- Examples: vanpools, school buses, public and private transit, delivery services, airport shuttles

Research questions

1: Can CO₂ emissions be reduced if personal travel is replaced by delivery service for grocery shopping?

2: Can the type of service (provider-controlled or customer-controlled) affect the results?

Optimization Tools and Method

- Use ArcGIS Network Analyst tools to calculate cost, time, or emissions
- Depots: Grocery store locations
- Customers: 35-household samples (two types)
 - Provider-controlled (proximity-assigned)
 - Customer-controlled (randomly-selected)
 - Each represents 1 truck's worth of service

Two service types

Routing of the two service types

Influence on Distance Travelled

Influence on Distance Travelled

- Shared-use vehicle routing reduces VMT by 85-95 percent
- Personal vehicles travel the same distance regardless of regime
- Shared-use vehicles travel less when serving proximity-assigned customers

Influence on CO₂

- Shared-use vehicle routing reduces CO₂ by 80-90 percent when serving proximityassigned customers
- CO₂ emissions are reduced by 17-75 percent when customers are randomly assigned

Summary

- CO₂ emissions can be reduced if personal travel is replaced by delivery service for grocery delivery
- Larger CO₂ reductions are possible when delivery vehicles serve clustered customers (provider-controlled services)

In Closing

- Few government regulations concerning emissions
- Efforts to reduce emissions motivated by costs or company values
- Research shows emissions improvements
 - improved logistics
 - thinking beyond traditional goods movements