The CORAS Method

Process, Concepts and Notation

Ketil Stølen

Overview

- What is risk?
- What is risk management?
- Central terms
- What is CORAS?
- Main concepts
- The CORAS process
- Risk modeling
- Semantics
- Likelihood reasoning
- The CORAS tool
- Further reading

What is Risk?

CORAS

Many kinds of risk

- Contractual risk
- Economic risk
- Operational risk
- Environmental risk
- Health risk
- Political risk
- Legal risk
- Security risk

Definition of risk from ISO 31000

• **Risk:** Effect of uncertainty on objectives

- NOTE 1 An effect is a deviation from the expected positive and/or negative
- NOTE 2 Objectives can have different aspects (such as financial, health and safety, and environmental goals) and can apply at different levels (such as strategic, organization-wide, project, product and process)
- NOTE 3 Risk is often characterized by reference to potential events and consequences, or a combination of these
- NOTE 4 Risk is often expressed in terms of a combination of the consequences of an event (including changes in circumstances) and the associated likelihood of occurrence

CORAS

 NOTE 5 Uncertainty is the state, even partial, of deficiency of information related to, understanding or knowledge of an event, its consequence, or likelihood

What is Risk Management?

 Risk management: Coordinated activities to direct and control an organization with regard to risk
[ISO 31000:2009]

Risk Analysis Involves

- Determining what can happen, why and how
- Systematic use of available information to determine the level of risk
- Prioritization by comparing the level of risk against predetermined criteria
- Selection and implementation of appropriate options for dealing with risk

Terms

Risk Analysis Using CORAS

Overview

- What is CORAS?
- Main concepts
- Process of eight steps
- Risk modeling
- Semantics
- Calculus
- Tool support
- Further reading

What is CORAS?

- CORAS consists of
 - Method for risk analysis
 - Language for risk modeling
 - Tool for editing diagrams
- Stepwise, structured and systematic process

- Directed by assets
- Concrete tasks with practical guidelines
- Model-driven
 - Models as basis for analysis
 - Models as documentation of results
- Based on international standards

Main Concepts

CORAS

12

Definitions

- Asset: Something to which a party assigns value and hence for which the party requires protection
- Consequence: The impact of an unwanted incident on an asset in terms of harm or reduced asset value
- Likelihood: The frequency or probability of something to occur
- Party: An organization, company, person, group or other body on whose behalf a risk analysis is conducted
- Risk: The likelihood of an unwanted incident and its consequence for a specific asset
- Risk level: The level or value of a risk as derived from its likelihood and consequence
- **Threat:** A potential cause of an unwanted incident
- **Treatment:** An appropriate measure to reduce risk level
- Unwanted incident: An event that harms or reduces the value of an asset
- **Vulnerability:** A weakness, flaw or deficiency that opens for, or may be exploited by, a threat to cause harm to or reduce the value of an asset

Process of Eight Steps

1.	Preparations for the analysis	Establish
2.	Customer presentation of the target	context
3.	Refining the target description using asset diagrams	
4.	Approval of the target description	
5.	Risk identification using threat diagrams	Assess
6.	Risk estimation using threat diagrams	risk
7.	Risk evaluation using risk diagrams	
8.	Risk treatment using treatment diagrams	Treat risk

Risk Modeling

- The CORAS language consists of five kinds of diagrams
 - Asset diagrams
 - Threat diagrams
 - Risk diagrams
 - Treatment diagrams
 - Treatment overview diagrams
- Each kind supports concrete steps in the risk analysis process
- In addition there are three kinds of diagrams for specific needs
 - High-level CORAS diagrams
 - Dependent CORAS diagrams
 - Legal CORAS diagrams

Example: Threat Diagram

CORAS

16

Semantics

- How to interpret and understand a CORAS diagram?
- Users need a precise and unambiguous explanation of the meaning of a given diagram
- Natural language semantics
 - CORAS comes with rules for systematic translation of any diagram into sentences in English
- Formal semantics
 - Semantics in terms of a probability space on traces

- Computer virus is a non-human threat.
- Virus protection not up to date is a vulnerability.
- Threat scenario Server is infected by computer virus occurs with likelihood possible.
- Unwanted incident Server goes down occurs with likelihood unlikely.
- Availability of server is an asset.
- Relations
 - Computer virus exploits vulnerability Virus protection not up to date to initiate Server is infected by computer virus with undefined likelihood.
 - Server is infected by computer virus leads to Server goes down with conditional likelihood 0.2.
 - Server goes down impacts Availability of server with consequence high.

Calculus for Likelihood Reasoning

• Relation
$$\frac{v_1(P_1) \quad v_1 \xrightarrow{P_2} v_2}{(v_1 \sqcap v_2)(P_1 \cdot P_2)}$$

• Mutually exclusive
$$\frac{v_1(P_1) \quad v_2(P_2)}{(v_1 \sqcup v_2)(P_1 + P_2)}$$

• Statistically $v_1(P_1) v_2(P_2)$ independent vertices $(v_1 \sqcup v_2)(P_1 + P_2 - P_1 \cdot P_2)$

Guidelines for Consistency Checking

How to check consistency of likelihoods in CORAS diagrams

Exact values in complete diagrams Assigned value: v(p)Calculated value: v(p')Consistency check: p = p'Exact values in incomplete diagrams Assigned value: v(p)Calculated value: v(p')Consistency check: $p \ge p'$ Intervals in complete diagrams Assigned interval: $v([p_i, p_j])$ Calculated interval: $v([p'_i, p'_j])$ Consistency check: $[p'_i, p'_j] \subseteq [p_i, p_j]$ or, equivalently, $p_i \leq p'_i$ and $p_j \geq p'_j$ Intervals in incomplete diagrams Assigned interval: $v([p_i, p_j])$ Calculated interval: $v([p'_i, p'_i])$

Consistency check: $p_j \ge p'_j$

Tool Support

- The CORAS tool is a diagram editor
- Supports all kinds of CORAS diagrams
- Suited for on-the-fly modeling during workshops
- Ensures syntactic correctness
- May be used during all the steps of a risk analysis
 - Documents input to the various tasks
 - Selection and structuring of information during tasks

- Documentation of analysis results
- Download: <u>http://coras.sourceforge.net/</u>

Criticism from system developers

- The CORAS language is too simplistic
- It is too cumbersome to use graphical icons

Criticism from risk analysts

- What's new with the CORAS language?
- We have been using something similar for years, namely VISIO!

Exercise

Discuss the statements made by the critics?

Further Reading

- Book:
 - www.springer.com/computer/swe/book/978-3-642-12322-1
 - Some chapters may be downloaded for free, including Chapter 3 which gives a Guided Tour of CORAS
- Tool:
 - <u>http://coras.sourceforge.net/</u>
 - Open source
- Formal semantics:
 - Gyrd Brændeland, Atle Refsdal, Ketil Stølen. Modular analysis and modelling of risk scenarios with dependencies. Journal of Systems and Software, volume 83, pages 1995-2013, Elsevier, 2010.

Acknowledgments

 The research for the contents of this tutorial has partly been funded by the European Commission through the FP7 project SecureChange and the FP7 network of excellence NESSoS

