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Abstract

The L-curve is a log-log plot of the norm of a regularized solution versus
the norm of the corresponding residual norm. It is a convenient graphical
tool for displaying the trade-off between the size of a regularized solution
and its fit to the given data, as the regularization parameter varies. The
L-curve thus gives insight into the regularizing properties of the underlying
regularization method, and it is an aid in choosing an appropriate regu-
larization parameter for the given data. In this chapter we summarize the
main properties of the L-curve, and demonstrate by examples its usefulness
and its limitations both as an analysis tool and as a method for choosing
the regularization parameter.

1 Introduction

Practically all regularization methods for computing stable solutions
to inverse problems involve a trade-off between the “size” of the reg-
ularized solution and the quality of the fit that it provides to the
given data. What distinguishes the various regularization methods
is how they measure these quantities, and how they decide on the
optimal trade-off between the two quantities. For example, given the
discrete linear least-squares problem min ‖Ax−b‖2 (which specializes
to Ax = b if A is square), the classical regularization method devel-
oped independently by Phillips [31] and Tikhonov [35] (but usually
referred to as Tikhonov regularization) amounts— in its most general
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form— to solving the minimization problem

xλ = arg min
{
‖Ax− b‖2

2 + λ2‖L (x− x0)‖2
2

}
, (1)

where λ is a real regularization parameter that must be chosen by
the user. Here, the “size” of the regularized solution is measured
by the norm ‖L (x − x0)‖2, while the fit is measured by the 2-norm
‖Ax−b‖2 of the residual vector. The vector x0 is an a priori estimate
of x which is set to zero when no a priori information is available.
The problem is in standard form if L = I, the identity matrix.

The Tikhonov solution xλ is formally given as the solution to the
“regularized normal equations”

(
AT A + λ2LT L

)
xλ = AT b + λ2LT Lx0. (2)

However, the best way to solve (1) numerically is to treat it as a least
squares problem

xλ = arg min
∥∥∥∥
(

A
λL

)
x−

(
b

λL x0

)∥∥∥∥
2

. (3)

Regularization is necessary when solving inverse problems be-
cause the “naive” least squares solution, formally given by xLS = A†b,
is completely dominated by contributions from data errors and round-
ing errors. By adding regularization we are able to damp these con-
tributions and keep the norm ‖L (x − x0)‖2 of reasonable size. This
philosophy underlies Tikhonov regularization and most other reg-
ularization methods. Various issues in choosing the matrix L are
discussed in [4], [30], and Section 4.3 in [21].

Note that if too much regularization, or damping, is imposed on
the solution, then it will not fit the given data b properly and the
residual ‖Axλ− b‖2 will be too large. On the other hand, if too little
regularization is imposed then the fit will be good but the solution
will be dominated by the contributions from the data errors, and
hence ‖L (xλ− x0)‖2 will be too large. Figure 1 illustrates this point
for Tikhonov regularization.

Having realized the important roles played by the norms of the
solution and the residual, it is quite natural to plot these two quan-
tities versus each other, i.e., as a curve

(
‖Axλ − b‖2 , ‖L (xλ − x0)‖2

)

parametrized by the regularization parameter. This is precisely the
L-curve; see Fig. 2 for an example with L = I and x0 = 0. Hence, the
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Figure 1: The exact solution (thin lines) and Tikhonov regularized
solutions xλ (thick lines) for three values of λ corresponding to over-
smoothing, appropriate smoothing, and under-smoothing.
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Figure 2: The generic L-curve for standard-form Tikhonov regular-
ization with x0 = 0; the points marked by the circles correspond to
the regularization parameters λ = 10−5, 10−4, 10−3, 10−2, 10−1 and 1.
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L-curve is really a tradeoff-curve between two quantities that both
should be controlled. Such trade-off curves are common in the applied
mathematics and engineering literature, and plots similar to the L-
curve have appeared over the years throughout the literature. Early
references that make use of L-curve plots are Lawson and Hanson [26]
and Miller [29].

Some interesting questions are related to the L-curve. What are
the properties of the L-curve? What information can be extracted
from the L-curve about the problem, the regularization algorithm, the
regularized solutions, and the choice of the regularization parameter?
In particular, we shall present a recent method for choosing the reg-
ularization parameter λ, known as the L-curve criterion, and discuss
its practical use. This method has been used successfully in a number
of applications, such as continuation problems [2], geoscience [3], and
tomography [25].

The purpose of this chapter is to provide insight that helps to
answer the above questions. Throughout the chapter we focus on
Tikhonov regularization (although the L-curve exists for other meth-
ods as well), and we start in Section 2 with a historical perspective
of Tikhonov’s method. In Section 3 we introduce our main analysis
tool, the singular value decomposition (SVD). In Sections 4, 5, and 6
we present various properties of the L-curve that explain its charac-
teristic L-shape. Next, in Section 7 we describe the L-curve criterion
for choosing the regularization parameter, which amounts to locating
the “corner” of the L-curve. Finally, in Section 8 we describe some
limitations of the L-curve criterion that must be considered when
using this parameter choice method.

2 Tikhonov regularization

Perhaps the first author to describe a scheme that is equivalent to
Tikhonov regularization was James Riley who, in his paper [34] from
1955, considered ill-conditioned systems Ax = b with a symmetric
positive (semi)definite coefficient matrix, and proposed to solve in-
stead the system (A+α I) x = b, where α is a small positive constant.
In the same paper, Riley also suggested an iterative scheme which is
now known as iterated Tikhonov regularization, cf. §5.1.5 in [21].

The first paper devoted to more general problems was published
by D. L. Phillips [31] in 1962. In this paper A is a square matrix
obtained from a first-kind Fredholm integral equation by means of a
quadrature rule, and L is the tridiagonal matrix tridiag(1,−2, 1).
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Phillips arrives at the formulation in (1) but without matrix no-
tation, and then proposes to compute the regularized solution as
xλ = (A+λ2A−T LT L)−1b, using our notation. It is not clear whether
Phillips computed A−1 explicitly, but he did not recognize (1) as a
least squares problem.

In his 1963 paper [36], S. Twomey reformulated Phillips’ expres-
sion for xλ via the “regularized normal equations” (2) and obtained

the well-known expression xλ =
(
AT A + λ2LT L

)−1
AT b, still with

L = tridiag(1,−2, 1). He also proposed to include the a priori esti-
mate x0, but only in connection with the choice L = I (the identity

matrix), leading to the formula xλ =
(
AT A + λ2I

)−1 (
AT b + λ2x0

)
.

A. N. Tikhonov’s paper [35] from 1963 is formulated in a much
more general setting: he considered the problem K f = g where f and
g are functions and K is an integral operator. Tikhonov proposed the
formulation fλ = arg min

{‖K f − g‖2
2 + λ2 Ω(f)

}
with the particular

functional

Ω(f) =
∫ b

a

(
v(s) f(s)2 + w(s) f ′(s)2

)
ds,

where v and w are positive weight functions. Turning to computa-
tions, Tikhonov used the midpoint quadrature rule to arrive at the
problem min

{
‖Ax− b‖2

2 + λ2
(
‖D1/2

v x‖2
2 + ‖LD

1/2
w x‖2

2

)}
, in which

Dv and Dw are diagonal weight matrices corresponding to v and w,
and L = bidiag(−1, 1). Via the “regularized normal equations” he

then derived the expression xλ =
(
AT A + λ2(Dv + LT Dw L)

)−1
AT b.

In 1965 Gene H. Golub [9] was the first to propose a modern
approach to solving (1) via the least squares formulation (3) and QR
factorization of the associated coefficient matrix. Golub proposed this
approach in connection with Riley’s iterative scheme, which includes
the computation of xλ as the first step. G. Ribiere [33] also proposed
the QR-based approach to computing xλ in 1967.

In 1970, Joel Franklin [6] derived the “regularized normal equa-
tion” formulation of Tikhonov regularization in a stochastic setting.
Here, the residual vector is weighted by the Cholesky factor of the
covariance matrix for the perturbations in b, and the matrix λ2 LT L
represents the inverse of the covariance matrix for the solution, con-
sidered as a stochastic variable.

Finally, it should be mentioned that Franklin [7] in 1978, in
connection with symmetric positive (semi)definite matrices A and

5



B, proposed the variant xλ = (A + α B)−1b, where α is a positive
scalar— which nicely connects back to Riley’s 1955 paper.

In the statistical literature, Tikhonov regularization is known
as ridge regression and seems to date back to the papers [23], [24]
from 1970 by Hoerl and Kennard. Marquardt [27] used this setting
as the basis for an analysis of his iterative algorithm from 1963 for
solving nonlinear least squares problems [28], and which incorporates
standard-form Tikhonov regularization in each step.

The most efficient way to compute Tikhonov solutions xλ for
a range of regularization parameters λ (which is almost always the
case in practice) is by means of the bidiagonalization algorithm due
to Lars Eldén [5], combined with a transformation to standard form
if L 6= I. Several iterative algorithms have been developed recently
for large-scale problems, e.g., [8], [11], [14], but we shall not go into
any of the algorithmic details here.

3 The singular value decomposition

The purpose of this section is to derive and explain various expres-
sions that lead to an understanding of the features of the L-curve
for Tikhonov regularization. To simplify our analysis considerably,
we assume throughout the rest of this chapter that the matrix L is
the identity matrix. If this is not the case, a problem with a general
L 6= I can always be brought into standard form with L = I; see,
e.g., [5] and Section 2.3 in [21] for details and algorithms. Alterna-
tively, the analysis with a general matrix L can be cast in terms of
the generalized SVD, cf. Sections 2.1.2 and 4.6 in [21]. We will also
assume that the a priori estimate is zero, i.e., x0 = 0.

Our main analysis tool throughout the chapter is the singular
value decomposition (SVD) of the matrix A, which is a decomposition
of a general m× n matrix A with m ≥ n of the form

A =
n∑

i=1

ui σi v
T
i , (4)

where the left and right singular vectors ui and vi are orthonormal,
i.e., uT

i uj = vT
i vj = δij , and the singular values σi are nonnegative

quantities which appear in non-decreasing order,

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

For matrices A arising from the discretization of inverse problems,
the singular values decay gradually to zero, and the number of sign
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changes in the singular vectors tends to increase as i increases. Hence,
the smaller the singular value σi, the more oscillatory the correspond-
ing singular vectors ui and vi appear, cf. Section 2.1 in [21]

If we insert the SVD into the least squares formulation (3) then
it is straightforward to show that the Tikhonov solution is given by

xλ =
n∑

i=1

fi
uT

i b

σi
vi, (5)

where f1, . . . , fn are the Tikhonov filter factors, which depend on σi

and λ as

fi =
σ2

i

σ2
i + λ2

'
{

1, σi À λ
σ2

i /λ2, σi ¿ λ.
(6)

In particular, the “naive” least squares solution xLS is given by (5)
with λ = 0 and all filter factors equal to one. Hence, comparing
xλ with xLS we see that the filter factors practically filter out the
contributions to xλ corresponding to the small singular values, while
they leave the SVD components corresponding to large singular values
almost unaffected. Moreover, the damping sets in for σi ' λ.

The residual vector corresponding to xλ, which characterizes the
misfit, is given in terms of the SVD by

b−Axλ =
n∑

i=1

(1− fi) uT
i b ui + b0, (7)

in which the vector b0 = b −∑n
i=1 ui u

T
i b is the component of b that

lies outside the range of A (and therefore cannot be “reached” by any
linear combination of the columns of A), and 1− fi = λ2/(σ2

i + λ2).
Note that b0 = 0 when m = n. From (7) we see that filter factors close
to one diminish the corresponding SVD components of the residual
considerably, while small filter factors leave the corresponding resid-
ual components practically unaffected.

Equipped with the two expressions (5) and (7) we can now write
the solution and residual norms in terms of the SVD:

‖xλ‖2
2 =

n∑

i=1

(
fi

uT
i b

σi

)2

(8)

‖A xλ − b‖2
2 =

n∑

i=1

(
(1− fi) uT

i b
)2

. (9)

These expressions form the basis for our analysis of the L-curve.
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4 SVD analysis

Throughout this chapter we shall assume that the errors in the given
problem min ‖Ax − b‖2 are restricted to the right-hand side, such
that the given data b can be written as

b = b + e, b = A x,

where b represents the exact unperturbed data, x = A†b represents
the exact solution, and the vector e represents the errors in the data.
Then the Tikhonov solution can be written as xλ = xλ + xe

λ, where
xλ = (AT A + λ2I)−1AT b is the regularized version of the exact solu-
tion x, and xe

λ = (AT A+λ2I)−1AT e is the “solution vector” obtained
by applying Tikhonov regularization to the pure noise component e
of the right-hand side.

Consider first the L-curve corresponding to the exact data b. At
this stage, it is necessary to make the following assumption which is
called the Discrete Picard Condition:

The exact SVD coefficients |uT
i b| decay faster than the σi.

This condition ensures that the least squares solution x = A†b to the
unperturbed problem does not have a large norm, because the exact
solution coefficients |vT

i x| = |uT
i b/σi| also decay. This Discrete Pi-

card Condition thus ensures that there exists a physically meaningful
solution to the underlying inverse problem, and it also ensures that
the solution can be approximated by a regularized solution (provided
that a suitable regularization parameter can be found). Details about
the condition can be found in [17] and Section 4.5 in [21].

Assume now that the regularization parameter λ lies somewhere
between σ1 and σn, such that we have both some small filter factors
fi (6) and some filter factors close to one. Moreover, let k denote the
number of filter factors close to one. Then it is easy to see from (6)
that k and λ are related by the expression λ ' σk. A more thorough
analysis is given in [15]. It then follows from (8) that

‖xλ‖2
2 '

k∑

i=1

(
vT
i x

)2 '
n∑

i=1

(
vT
i x

)2
= ‖x‖2

2, (10)

where we have used the fact that the coefficients |vT
i x| decay such

that the last n − k terms contribute very little to the sum. The
expression in (10) holds as long as λ is not too large. As λ →∞ (and
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k → 0) we have xλ → 0 and thus ‖xλ‖2 → 0. On the other hand, as
λ → 0 we have xλ → x and thus ‖xλ‖2 → ‖x‖2.

The residual corresponding to xλ satisfies

‖Axλ − b‖2
2 '

n∑

i=k

(
uT

i b
)2

, (11)

showing that this residual norm increases steadily from ‖b0‖2 = 0 to
‖b‖2 as λ increases (because an increasing number of terms k is in-
cluded in the sum). Hence, the L-curve for the unperturbed problem
is an overall flat curve at ‖xλ‖2 ' ‖x‖2, except for large values of the
residual norm ‖A xλ − b‖2 where the curve approaches the abscissa
axis.

Next we consider an L-curve corresponding to a right-hand side
consisting of pure noise e. We assume that the noise is “white”, i.e.,
the covariance matrix for e is a scalar times the identity matrix— if
this is not the case, one should preferably scale the problem such
that the scaled problem satisfies this requirement. This assumption
implies that the expected values of the SVD coefficients uT

i e are in-
dependent of i,

E
(
(uT

i b)2
)

= ε2, i = 1, . . . , m,

which means that the noise component e does not satisfy the discrete
Picard condition.

Consider now the vector xe
λ = (AT A + λ2I)−1AT e. Concerning

the norm of xe
λ we obtain

‖xe
λ‖2

2 '
n∑

i=1

(
σi ε

σ2
i + λ2

)2

'
k∑

i=1

(
ε

σi

)2

+
n∑

i=k+1

(
σi ε

λ2

)2

= ε2




k∑

i=1

σ−2
i + λ−4

n∑

i=k+1

σ2
i


 .

The first sum
∑k

i=1 σ−2
i in this expression is dominated by σ−2

k ' λ−2

while the second sum
∑n

i=k+1 σ2
i is dominated by σ2

k+1 ' λ2, and thus
we obtain the approximate expression

‖xe
λ‖2 ' cλ ε / λ,

where cλ is a quantity that varies slowly with λ. Hence, we see that
the norm of xe

λ increases monotonically from 0 as λ decreases, until
it reaches the value ‖A†e‖2 ' ε ‖A†‖F for λ = 0.
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The norm of the corresponding residual satisfies

‖Axe
λ − b‖2

2 '
m∑

i=k

ε2 = (m− k) ε2.

Hence, ‖Axe
λ − e‖2 '

√
m− k ε is a slowly varying function of λ

lying in the range from
√

m− n ε to ‖e‖2 ' √
mε. The L-curve

corresponding to e is therefore an overall very steep curve located
slightly left of ‖Axe

λ− e‖2 ' ‖e‖2, except for small values of λ where
it approaches the ordinate axis.

Finally we consider the L-curve corresponding to the noisy right-
hand side b = b+e. Depending on λ, it is either the noise-free compo-
nents uT

i b or the pure-noise components uT
i e that dominate, and the

resulting L-curve therefore essentially consists of one “leg” from the
unperturbed L-curve and one “leg” from the pure-noise L-curve. For
small values of λ it is the pure-noise L-curve that dominates because
xλ is dominated by xe

λ, and for large values of λ where xλ is dominated
by xλ it is the unperturbed L-curve that dominates. Somewhere in
between, there is a range of λ-values that correspond to a transition
between the two domination L-curves.

We emphasize that the above discussion is valid only when the L-
curve is plotted in log-log scale. In linear scale, the L-curve is always
convex, independently of the right-hand side (see, e.g., Theorem 4.6.1
in [21]). The logarithmic scale, on the other hand, emphasizes the
difference between the L-curves for an exact right-hand side b and
for pure noise e, and it also emphasizes the two different parts of
the L-curve for a noisy right-hand side b = b + e. These issues are
discussed in detail in [22].

5 The curvature of the L-curve

As we shall see in the next two sections, the curvature of the L-curve
plays an important role in the understanding and use of the L-curve.
In this section we shall therefore derive a convenient expression for
this curvature. Let

η = ‖xλ‖2
2, ρ = ‖Axλ − b‖2

2 (12)

and
η̂ = log η, ρ̂ = log ρ (13)

such that the L-curve is a plot of η̂/2 versus ρ̂/2, and recall that η̂
and ρ̂ are functions of λ. Moreover, let η̂′, ρ̂′, η̂′′, and ρ̂′′ denote the
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first and second derivatives of η̂ and ρ̂ with respect to λ. Then the
curvature κ of the L-curve, as a function of λ, is given by

κ = 2
ρ̂′ η̂′′ − ρ̂′′ η̂′

((ρ̂′)2 + (η̂′)2)3/2
. (14)

The goal is now to derive a more insightful expression for κ.
Our analysis is similar to that of Hanke [13] and Vogel [37], but
their details are omitted. Moreover, they differentiated η̂ and ρ̂ with
respect to λ2 instead of λ (as we do); hence their formulas are different
from ours, although they lead to the same value of κ.

The first step is to derive expressions for the derivatives of η̂
and ρ̂ with respect to λ. These derivates are called the logarithmic
derivatives of η and ρ, and they are given by

η̂′ =
η′

η
and ρ̂′ =

ρ′

ρ
.

The derivates of η and ρ, in turn, are given by

η′ = − 4
λ

n∑

i=1

(1− fi) f2
i

β2
i

σ2
i

, ρ′ =
4
λ

n∑

i=1

(1− fi)2 fi β
2
i (15)

where βi = uT
i b. These expressions follow from the relations

d f2
i

dλ
= − 4

λ
(1− fi) f2

i and
d (1− fi)2

dλ
=

4
λ

(1− fi)2 fi.

Now using the fact that

fi

σ2
i

=
1

σ2
i + λ2

=
1− fi

λ2

we arrive at the important relation

ρ′ = −λ2 η′. (16)

The next step involves the computation of the second derivatives
of η̂ and ρ̂ with respect to λ, given by

η̂′′ =
d

dλ

η′

η
=

η′′η − (η′)2

η2
and ρ̂′′ =

d

dλ

ρ′

ρ
=

ρ′′ρ− (ρ′)2

ρ2
.

It suffices to consider the quantity

ρ′′ =
d

dλ

(
−λ2 η′

)
= −2λ η′ − λ2η′′. (17)
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When we insert all the expressions for η̂′, η̂′′, ρ̂′, and ρ̂′′ into the
formula for κ and make use of (16) and (17), then both η′′ and ρ′′ as
well as ρ′ vanish, and we end up with the following expression

κ = 2
η ρ

η′
λ2 η′ ρ + 2 λ η ρ + λ4η η′

(λ2η2 + ρ2)3/2
, (18)

where the quantity η′ is given by (15).

6 When the L-curve is concave

In Section 4 we made some arguments that an exact right-hand side
b that satisfies the Discrete Picard Condition, or a right-hand side e
corresponding to pure white noise, leads to an L-curve that is concave
when plotted in log-log scale. In this section we present some new
theory that supports this.

We restrict our analysis to an investigation of the circumstances
in which the log-log L-curve is concave. Clearly, in any practical
setting with a noisy right-hand side the L-curve cannot be guaranteed
to be concave, and the key issue is in fact that the L-curve has an L-
shaped (convex) corner for these right-hand sides. However, in order
to understand the basic features of the L-curve it is still interesting to
investigate its properties in connection with the idealized right-hand
sides b = b and b = e.

Regińska made a first step towards such an analysis in [32] where
she proved that the log-log L-curve is always strictly concave for
λ ≤ σn (the smallest singular value) and for λ ≥ σ1 (the largest
singular value). Thus, the L-curve is always concave at its “ends”
near the axes.

Our analysis extends Regińska’s analysis. But instead of using
d2η̂/dρ̂2, we base our analysis on the above expression (18) for the
curvature κ. In particular, if κ is negative then the L-curve is concave.
Obviously, we can restrict our analysis to the factor λ2 η′ ρ+2λ η ρ+
λ4η η′, and if we define ζ such that

2λ ζ = λ2 η′ ρ + 2 λ η ρ + λ4η η′,

and if we insert the definitions of η, η′, and ρ into this expression,
then we obtain

ζ =
n∑

i=1

n∑

j=1

(1− fi)2 f2
j σ−2

j (2fj − 2fi − 1) β2
i β2

j , (19)
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where we have introduced βi = uT
i b.

Unfortunately we have not found a way to explicitly analyze Eq.
(19). Our approach is therefore to replace the discrete variables σi,
σj , βi, and fi with continuous variables σ, σ, β = β(σ), and f =
f(σ) = σ2/(σ2 + λ2), replace the double summation with a double
integral, and study the quantity

Ξ =
∫ 1

0

∫ 1

0

(
λ2

σ2 + λ2

)2 (
σ2

σ2 + λ2

)2

σ−2 ×
(

2σ2

σ2 + λ2
− 2σ2

σ2 + λ2
− 1

)
β(σ)2 β(σ)2 dσ dσ. (20)

The sign of Ξ approximately determines the curvature of the L-curve.
Without loss of generality, we assume that σ1 = 1 and 0 ≤ λ ≤ 1.

To simplify the analysis, we also make the assumption that β is
simply given by

β(σ) = σp+1, (21)

where p is a real number, and we denote the corresponding integral in
(20) by Ξp. The model (21) is not unrealistic and models a wide range
of applications. It is the basis of many studies of model problems in
both the continuous and the discrete setting, see Section 4.5 in [21]
for details. The quantity p controls the behavior of the right-hand
side. The case p > 0 corresponds to a right-hand side that satisfies
the Discrete Picard Condition (for example, an exact right-hand side
b), while p ≤ 0 corresponds to a right-hand side that does not satisfy
the Discrete Picard Condition. In particular, p = −1 corresponds to
a right-hand side e consisting of white noise. By means of Maple we
can easily derive the following results.

Theorem 1 Let Ξp and β be given by (20) and (21), respectively.
Then for p = −1, −1/2, 0, 1/2, and 1 we obtain:

Ξ−1 = −λ + π(1− λ2)/4
4λ2 (λ2 + 1)2

Ξ−1/2 = −1 + λ2
(
2 ln λ− ln

(
λ2 + 1

))

4λ2 (λ2 + 1)2

Ξ0 = −3π
4 λ2 − 3λ + π

4

4λ (λ2 + 1)2

Ξ1/2 = −
(
2λ2 + 1

)
ln

(
λ2 + 1

)− 2
(
2λ2 − 1

)
lnλ− 2

4 (λ2 + 1)2
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Ξ1 = −4− 15π
4 λ3 + 15λ2 − 9π

4 λ

12 (λ2 + 1)2
.

All these quantities are negative for 0 ≤ λ ≤ 1.

The conclusion of this analysis is that as long as the SVD coeffi-
cients |uT

i b| decrease monotonically or increase monotonically with i,
or are constant, then there is good reason to believe that the log-log
L-curve is concave.

7 The L-curve criterion for computing the reg-
ularization parameter

The fact that the L-curve for a noisy right-hand side b = b + e has
a more or less distinct corner prompted the author to propose a new
strategy for choosing the regularization parameter λ, namely, such
that the corresponding point on the L-curve

( ρ̂/2 , η̂/2 ) =
(

log ‖A xλ − b‖2 , log ‖xλ‖2

)

lies on this corner [18]. The rationale behind this choice is that the
corner separates the flat and vertical parts of the curve where the
solution is dominated by regularization errors and perturbation er-
rors, respectively. We note that this so-called L-curve criterion for
choosing the regularization parameter is one of the few current meth-
ods that involve both the residual norm ‖Axλ− b‖2 and the solution
norm ‖xλ‖2.

In order to provide a strict mathematical definition of the “cor-
ner” of the L-curve, Hansen and O’Leary [22] suggested using the
point on the L-curve (ρ̂/2, η̂/2) with maximum curvature κ given by
Eq. (18). It is easy to use a one-dimensional minimization procedure
to compute the maximum of κ. Various issues in locating the corner
of L-curves associated with other methods than Tikhonov regulariza-
tion are discussed in [22] and Section 7.5.2 in [21].

Figure 3 illustrates the L-curve criterion: the left part of the
figure shows the L-curve, where the corner is clearly visible, and the
right part shows the curvature κ of the L-curve as a function of λ.
The sharp peak in the κ-curve corresponds, of course, to the sharp
corner on the L-curve.

Experimental comparisons of the L-curve criterion with other
methods for computing λ, most notably the method of generalized
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Figure 3: A typical L-curve (left) and a plot (right) of the corre-
sponding curvature κ as a function of the regularization parameter.

cross validation (GCV) developed in [10] and [38], are presented in
[22] and in Section 7.7.1 of [21]. The test problem in [22] is the
problem shaw from the Regularization Tools package [19], [20],
and the test problem in [21] is helio which is available via the author’s
home page. Both tests are based on ensembles with the same exact
right-hand side b perturbed by randomly generated perturbations e
that represent white noise.

The conclusion from these experiments is that the L-curve cri-
terion for Tikhonov regularization gives a very robust estimation of
the regularization parameter, while the GCV method occasionally
fails to do so. On the other hand, when GCV works it usually gives
a very good estimate of the optimal regularization parameter, while
the L-curve criterion tends to produce a regularization parameter
that slightly over-smooths, i.e., it is slightly too large.

Further experiments with correlated noise in [22] show that the
L-curve criterion in this situation is superior to the GCV method
which consistently produces severe under-smoothing.

The actual computation of κ, as a function of λ, depends on the
size of the problem and, in turn, on the algorithm used to compute
the Tikhonov solution xλ. If the SVD of A can be computed then κ
can readily be computed by means of Eqs. (8)–(9) and (15)–(18).

For larger problems the use of the SVD may be prohibitive while
it is still feasible to compute xλ via the least squares formulation (3).
In this case we need an alternative way to compute the quantity η′
in (15), and it is straightforward to show (by insertion of the SVD)
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that η′ is given by

η′ =
4
λ

xT
λ zλ, zλ =

(
AT A + λ2I

)−1
AT (Axλ − b). (22)

Hence, to compute η′ we need the vector zλ which is the solution to
the problem

min
∥∥∥∥
(

A
λ I

)
z −

(
Axλ − b

0

)∥∥∥∥
2

and which can be computed by the same algorithm and the same
software as xλ. The vector zλ is identical to the correction vector
in the first step of iterated Tikhonov regularization, cf. Section 5.1.5
in [21].

For large-scale problems where any direct method for computing
the Tikhonov solution is prohibitive, iterative algorithms based on
Lanczos bidiagonalization are often used. For these algorithms the
techniques presented in [1] and [12] can be used to compute envelopes
in the (ρ, η)-plane that include the L-curve.

8 Limitations of the L-curve criterion

Every practical method has its advantages and disadvantages. The
advantages of the L-curve criterion are robustness and ability to treat
perturbations consisting of correlated noise. In this section we de-
scribe two disadvantages or limitations of the L-curve criterion; un-
derstanding these limitations is a key to the proper use of the L-curve
criterion and, hopefully, also to future improvements of the method.

8.1 Smooth solutions

The first limitation to be discussed is concerned with the reconstruc-
tion of very smooth exact solutions, i.e., solutions x for which the
corresponding SVD coefficients |vT

i x| decay fast to zero, such that
the solution x is dominated by the first few SVD components. For
such solutions, Hanke [13] showed that the L-curve criterion will fail,
and the smoother the solution (i.e., the faster the decay) the worse
the λ computed by the L-curve criterion.

It is easy to illustrate and explain this limitation of the L-curve
criterion by means of a numerical example. We shall use the test prob-
lem shaw from [19], [20] (see also Section 1.4.3 in [21]) with dimen-
sions m = n = 64, and we consider two exact solutions: the solution x
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Figure 4: SVD coefficients and L-curves for a mildly smooth solution
x (left) and a very smooth solution x (right).

generated by shaw, which is mildly smooth, and a much smoother so-
lution x = σ−2

1 AT A x whose SVD coefficients are vT
i x = (σi/σ1)2vT

i x.
The corresponding right-hand sides are A x+e and A x+e, where the
elements of e are normally distributed with zero mean and standard
deviation 10−5. The two top plots in Fig. 4 show corresponding sin-
gular values and SVD coefficients for the two cases; note how much
faster the SVD coefficients decay in the rightmost plot, before they
hit the noise level.

The two bottom plots in Fig. 4 show the L-curves for the two
cases. Located on the L-curves are two points: the corner as com-
puted by means of the L-curve criterion (indicated by a × and cor-
responding to the regularization parameter λL) and the point cor-
responding to the optimal regularization parameter λopt (indicated
by a ◦). Here, λopt is defined as the regularization parameter that
minimizes the error ‖x−xλ‖2 or ‖x−xλ‖2. For the problem with the
mildly smooth solution x the L-curve criterion works well in the sense
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that λL ' λopt, while for the problem with the smooth solution x the
regularization parameter λL is several orders of magnitude smaller
than λopt.

This behavior of the L-curve criterion is due to the fact that the
optimal regularized solution xλopt will only lie at the L-curve’s corner
if the norm ‖xλ‖2 starts to increase as soon as λ becomes smaller than
λopt. Recall that λ controls roughly how many SVD components are
included in the regularized solution xλ via the filter factors fi (6).
If the exact solution is only mildly smooth, such as x, and if the
optimal regularized solution includes k SVD components, then only
a few additional SVD components are required before ‖xλ‖2 starts
to increase. In Fig. 4 we see that λL ' 1.2 · 10−5 corresponds to
including k = 10 SVD components in xλ, and decreasing λ by a
factor of about 10 corresponds to including two additional large SVD
components and thus increasing ‖xλ‖2 dramatically. In addition we
see that λopt also corresponds to including 10 SVD components in the
optimal regularized solution, so λopt produces a solution xλopt that
lies at the corner of the L-curve.

If the exact solution is very smooth, such as x, and if the opti-
mal regularized solution xλopt includes k SVD coefficients, then many
additional coefficients may be required in order to increase the norm
‖xλ‖2 significantly. The number of additional coefficients depends on
the decay of the singular values. Returning to Fig. 4 we see that the
optimal regularization parameter λopt ' 2.1 · 10−2 for x corresponds
to including k = 4 SVD components in xλ (the right-hand side’s
SVD components uT

i b are dominated by noise for i > 4). On the
other hand, the regularization parameter λL ' 1.7 · 10−5 computed
by the L-curve criterion corresponds to including 10 SVD components
in xλ, because at least 11 SVD components must be included before
the norm ‖xλ‖2 starts to increase significantly. Thus, the solution
xλopt does not correspond to a point on the L-curve’s corner.

We note that for very smooth exact solutions the regularized
solution xλopt may not yield a residual whose norm ‖Axλ − b‖2 is
as small as O(‖e‖2). This can be seen from the bottom right plot
in Fig. 4 where ‖Axλopt − b‖2 ' 6.9 · 10−4 while ‖e‖2 ' 6.2 · 10−5,
i.e., ten times smaller. The two solutions xλL

and xλopt and their
residuals are shown in Fig 5. Only xλL

produces a residual whose
components are reasonably uncorrelated.

The importance of the quality of the fit, i.e., the size and the
statistical behavior of the residual norm, depends on the application;
but the dilemma between fit and reconstruction remains valid for very
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puted by the L-curve criterion and λopt that minimizes ‖x− xλ‖2.

smooth solutions. At the time of writing, it is not clear how often
very smooth solutions arise in applications.

8.2 Asymptotic properties

The second limitation of the L-curve criterion is related to its asymp-
totic behavior as the problem size n increases. As pointed out by
Vogel [37], the regularization parameter λL computed by the L-curve
criterion may not behave consistently with the optimal parameter
λopt as n increases.

The analysis of this situation is complicated by the fact that the
linear system (Ax = b or min ‖Ax− b‖2) depends on the discretiza-
tion method as well as the way the noise enters the problem. In our
discussion below, we assume that the underlying, continuous problem
is a first-kind Fredholm integral equation of the generic form

∫ 1

0
K(s, t) f(t) dt = g(s), 0 ≤ s ≤ 1.

Here, the kernel K is a known function, the right-hand side g rep-
resents the measured signal, and f is the solution. We assume that
g = g + ε, where g is the exact right-hand side and ε represents the
errors. We also assume that the errors are white noise, i.e., uncorre-
lated and with the same standard deviation.

If the problem is discretized by a quadrature method then the
elements xi and bi are essentially samples of the underlying functions
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f and g, and the noise components ei are samples of the noise ε. Then,
as n increases, the quadrature weights included in A ensure that the
singular values of A converge, while the SVD components uT

i b and
vT
i x increase with n, and their magnitude is proportional to n1/2.

The sampled noise e consists of realizations of the same stochastic
process and can be modeled by uT

i e = ε, where ε is a constant that
is independent of n.

If the problem is discretized by means of a Galerkin method with
orthonormal basis functions, then xi and bi are inner products of the
chosen basis functions and the functions f and g, respectively. Then
it is proved in [16] (see also Section 2.4 in [21]) that all the quantities
σi, uT

i b, and vT
i x converge as n increases. The noise components ei

can also be considered as inner products of basis functions and the
noise component ε. If the noise is considered white, then we obtain
the noise model ei = ε, where ε is a constant. If we assume that the
norm of the errors ε is bounded (and then ε cannot be white noise)
then we can use the noise model ei = ε n−1/2, where again ε is a
constant.

Vogel [37] considered a third scenario based on “moment dis-
cretization” in which σi increases as n1/2 while uT

i b and vT
i x converge,

and ei = ε. This is equivalent to the case ei = ε n−1/2 immediately
above.

To study these various scenarios in a common framework, we use
the following simple model:

σi = αi−1

vT
i x = βi−1

ei = ε nγ





i = 1, . . . , n

with α = 0.69, 0.83, 0.91, β = 0.95, ε = 10−3, and γ = 0, −1/2.
For n = 100 the three values of α yield a condition number of A
equal to 1016, 108, and 104, respectively, and β produces a mildly
smooth solution. With γ = 0 the model represents white noise and
discretization by means of a Galerkin method, and with γ = −1/2
the model represents the other scenarios introduced above.

For all six combinations of α and γ and for n = 102, 103, 104, and
105 we computed the optimal regularization parameter λopt as well
as the parameter λL chosen by the L-curve criterion. The results are
shown in Fig. 6, where the solid, dotted, and dashed lines correspond
to α = 0.69, 0.83, and 0.91, respectively. Recall that the smaller the
α the faster the decay of the singular values.
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First of all note that the behavior of both λL and λopt depends
on the noise model and the discretization method. For γ = 0 the
parameter λopt is almost constant, while λopt decreases with n for
γ = −1/2. The regularization parameter λL computed by the L-
curve criterion increases with n for γ = 0, and for γ = −1/2 it is
almost constant. Vogel [37] came to the same conclusion for the case
γ = −1/2.

For all scenarios we see that the L-curve criterion eventually leads
to some over-regularization (i.e., a too large regularization parame-
ter) as n increases. However, the amount of over-smoothing depends
on the decay of the singular values: the faster they decay the less
severe the over-smoothing. Moreover, for γ = −1/2 and n ≤ 105 the
computed λL is never off the optimal value λopt by more than a factor
1.5 (while this factor is about two for γ = 0).

In conclusion, the over-smoothing that seems to be inherent in
the L-curve criterion may not be too severe, although in the end this
depends on the particular problem being solved. Another matter is
that the ideal situation studied above, as well as in Vogel’s paper [37],
in which the same problem is discretized for increasing n, may not
arise so often in practice. Often the problem size n is fixed by the
particular measurement setup, and if a larger n is required then a
new experiment must be made.
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