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What is CUDA?

Compute Unified Device Architecture

C programming language on GPUs

Requires no knowledge of graphics APIs or GPU programming

Access to native instructions and memory

Easy to get started and to get real performance benefits!

Designed and developed by NVIDIA

Requires an NVIDIA GPU (GeForce 8xxx/Tesla/Quadro)

Stable, available (for free), documented and supported

For both Windows and Linux
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Why CUDA?

Why use an entire session for an API tied to specific hardware?

The most modern API available for stream computing

If a market leader exists, it is CUDA

40 million CUDA enabled devices in December 2007

Exposes the different types of memory available

Easier to get maximal performance out of the hardware

For high performance, you target a specific processor/API

Traditional GPGPU programming has targeted a specific chip
anyway (even with “standard” APIs)

Future proof

CUDA is guaranteed to be supported on future hardware

Applied Mathematics 3/53



Plan for the day

1 Programming Model

2 Application Programming Interface

3 Performance and Optimizations
Optimize memory access
Loop unrolling

4 Conclusion
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Programming Model

GPU is viewed as a compute device operating as a coprocessor to
the main CPU (host)

Data-parallel, compute intensive functions should be
off-loaded to the device

Functions that are executed many times, but independently on
different data, are prime candidates

I.e. body of for-loops

A function compiled for the device is called a kernel

The kernel is executed on the device as many different threads

Both host (CPU) and device (GPU) manage their own
memory, host memory and device memory

Data can be copied between them
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Grid of thread blocks

Computational Grid

Block
(0, 0)

Block
(0, 1)

Block
(1, 0)

Block
(1, 1)

Block
(2, 0)

Block
(2, 1)

Block (1, 0)

Thread
(0, 0)

Thread
(0, 1)

Thread
(0, 2)

Thread
(0, 3)

Thread
(1, 0)

Thread
(1, 1)

Thread
(1, 2)

Thread
(1, 3)

Thread
(2, 0)

Thread
(2, 1)

Thread
(2, 2)

Thread
(2, 3)

Thread
(3, 0)

Thread
(3, 1)

Thread
(3, 2)

Thread
(3, 3)

The computational grid consist of a
grid of thread blocks

Each thread executes the kernel

The application specifies the grid and
block dimensions

The grid layouts can be 1, 2, or
3-dimensional

The maximal sizes are determined by
GPU memory and kernel complexity

Each block has an unique block ID

Each thread has an unique thread ID
(within the block)
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Example – Elementwise Matrix Addition

CPU Program
void add_matrix

( float* a, float* b, float* c, int N ) {

int index;

for ( int i = 0; i < N; ++i )

for ( int j = 0; j < N; ++j ) {

index = i + j*N;

c[index] = a[index] + b[index];

}

}

int main() {

add_matrix( a, b, c, N );

}

CUDA Program
__global__ add_matrix

( float* a, float* b, float* c, int N ) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int index = i + j*N;

if ( i < N && j < N )

c[index] = a[index] + b[index];

}

int main() {

dim3 dimBlock( blocksize, blocksize );

dim3 dimGrid( N/dimBlock.x, N/dimBlock.y );

add_matrix<<<dimGrid, dimBlock>>>( a, b, c, N );

}

The nested for-loops are replaced with an implicit grid
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Memory model

CUDA exposes all the different types of memory on the GPU:

Global memory

Constant memory

Texture memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Local
Memory

Registers

Thread (1, 0)

Local
Memory

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Local
Memory

Registers

Thread (1, 0)

Local
Memory

Registers
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Memory model II

To summarize

Registers Per thread Read-Write
Local memory Per thread Read-Write
Shared memory Per block Read-Write For sharing data

within a block
Global memory Per grid Read-Write Not cached
Constant memory Per grid Read-only Cached
Texture memory Per grid Read-only Spatially cached

Don’t panic!

You do not need to use all of these to get started

Start by using just global mem, then optimize

More about this later
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Memory Management

Explicit GPU memory allocation and deallocation

cudaMalloc() and cudaFree()

Pointers to GPU memory

Copy between CPU and GPU memory

A slow operation, aim to minimize this
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Recap

Grid of thread blocks

Thread Block

Thread

Multiple levels of parallelism

Thread block

Up to 512 threads per block
Communicate via shared memory
Threads guaranteed to be
resident
threadIdx, blockIdx
syncthreads()

Grid of thread blocks

f<<<N, T>>>( a, b, c)
Communicate via global memory
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Goals for this session

Describe how CUDA integrates with existing source code

Will only describe the most important functions

The rest are well documented in the programming guide

Enough information to understand the performance issues
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API Design

CUDA Programming Guide

“The goal of the CUDA programming interface is to
provide a relatively simple path for users familiar with the
C programming language to easily write programs for
execution on the device.”

Minimal C extensions

A runtime library

A host (CPU) component to control and access GPU(s)
A device component
A common component

Built-in vector types, C standard library subset
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Language extensions

Function type qualifiers

Specify where to call and execute a function
device , global and host

Variable type qualifiers

device , constant and shared

Kernel execution directive

foo<<<GridDim, BlockDim>>>(. . .)

Built-in variables for grid/block size and block/thread indices

Source files must be compiled with the CUDA compiler nvcc.
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CUDA Software Development Kit

GPU

CUDA
Driver

Debugger
Profiler

Machine independent
assembly (PTX)

CUDA C Compiler (nvcc)

Optimized libraries:
math.h, BLAS, FFT

CPU

Standard C compiler

CPU Host Code

Integrated CPU and
GPU source code
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The NVCC compiler

CUDA kernels are typically stored in files ending with .cu

NVCC uses the host compiler (CL/G++) to compile CPU code

NVCC automatically handles #include’s and linking

Very nice for toy projects

Does not support exceptions

Most STL headers (i.e. iostream) can not be included

Integrating CUDA into larger projects

Write kernels+CPU caller in .cu files

Compile with nvcc

Store signature of CPU caller in header file

#include header file in C(++) sources

Modify build system accordingly
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Device (GPU) Runtime Component

The following extensions are only available on the GPU:

Less accurate, faster math functions sin(x)
Detailed error bounds are available

syncthreads()
Wait until all threads in the block has reached this point

Type conversion functions, with rounding mode

Type casting functions

Texture functions

Atomic Functions

Guarantees that operation (like add) is performed on a variable
without interference from other threads
Only on newer GPUs (Compute capability 1.1)
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Host (CPU) Runtime Component

The following is only available from on the CPU:

Device Management

Get device properties, multi-GPU control etc.

Memory Management

cudaMalloc(), cudaMemcpy(), cudaFree() etc.

Texture management

OpenGL and DirectX interoperability

Map global memory to OpenGL buffers etc.

Asynchronous Concurrent Execution

Also a low-level (driver) API
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Common Runtime Component

Built-in Vector types

I.e. float1, float2, int3, ushort4 etc.
Constructor type creation: int2 i = make int2( i, j)

Mathematical functions

Standard math.h on CPU, dedicated HW on GPU

Time function for benchmarking

Texture references
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Compileable example

const int N = 1024;

const int blocksize = 16;

__global__

void add_matrix( float* a, float *b, float *c, int N )

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int index = i + j*N;

if ( i < N && j < N )

c[index] = a[index] + b[index];

}

Store in source file (i.e.
MatrixAdd.cu)

Compile with nvcc MatrixAdd.cu

Run

Enjoy the benefits of parallelism!

int main() {

float *a = new float[N*N];

float *b = new float[N*N];

float *c = new float[N*N];

for ( int i = 0; i < N*N; ++i ) {

a[i] = 1.0f; b[i] = 3.5f; }

float *ad, *bd, *cd;

const int size = N*N*sizeof(float);

cudaMalloc( (void**)&ad, size );

cudaMalloc( (void**)&bd, size );

cudaMalloc( (void**)&cd, size );

cudaMemcpy( ad, a, size, cudaMemcpyHostToDevice );

cudaMemcpy( bd, b, size, cudaMemcpyHostToDevice );

dim3 dimBlock( blocksize, blocksize );

dim3 dimGrid( N/dimBlock.x, N/dimBlock.y );

add_matrix<<<dimGrid, dimBlock>>>( ad, bd, cd, N );

cudaMemcpy( c, cd, size, cudaMemcpyDeviceToHost );

cudaFree( ad ); cudaFree( bd ); cudaFree( cd );

delete[] a; delete[] b; delete[] c;

return EXIT_SUCCESS;

}
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cudaFree( ad ); cudaFree( bd ); cudaFree( cd );

delete[] a; delete[] b; delete[] c;

return EXIT_SUCCESS;

}

Set grid size
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Compileable example

const int N = 1024;

const int blocksize = 16;

__global__

void add_matrix( float* a, float *b, float *c, int N )
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cudaFree( ad ); cudaFree( bd ); cudaFree( cd );

delete[] a; delete[] b; delete[] c;

return EXIT_SUCCESS;

}

Compute kernel
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Compileable example

const int N = 1024;

const int blocksize = 16;

__global__

void add_matrix( float* a, float *b, float *c, int N )

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int index = i + j*N;

if ( i < N && j < N )

c[index] = a[index] + b[index];

}

Store in source file (i.e.
MatrixAdd.cu)

Compile with nvcc MatrixAdd.cu

Run

Enjoy the benefits of parallelism!

int main() {

float *a = new float[N*N];

float *b = new float[N*N];

float *c = new float[N*N];

for ( int i = 0; i < N*N; ++i ) {

a[i] = 1.0f; b[i] = 3.5f; }

float *ad, *bd, *cd;

const int size = N*N*sizeof(float);

cudaMalloc( (void**)&ad, size );

cudaMalloc( (void**)&bd, size );

cudaMalloc( (void**)&cd, size );

cudaMemcpy( ad, a, size, cudaMemcpyHostToDevice );

cudaMemcpy( bd, b, size, cudaMemcpyHostToDevice );

dim3 dimBlock( blocksize, blocksize );

dim3 dimGrid( N/dimBlock.x, N/dimBlock.y );

add_matrix<<<dimGrid, dimBlock>>>( ad, bd, cd, N );

cudaMemcpy( c, cd, size, cudaMemcpyDeviceToHost );

cudaFree( ad ); cudaFree( bd ); cudaFree( cd );

delete[] a; delete[] b; delete[] c;

return EXIT_SUCCESS;

}

CPU Mem Allocation
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Compileable example

const int N = 1024;

const int blocksize = 16;

__global__

void add_matrix( float* a, float *b, float *c, int N )

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int index = i + j*N;

if ( i < N && j < N )

c[index] = a[index] + b[index];

}

Store in source file (i.e.
MatrixAdd.cu)

Compile with nvcc MatrixAdd.cu

Run

Enjoy the benefits of parallelism!

int main() {

float *a = new float[N*N];

float *b = new float[N*N];

float *c = new float[N*N];

for ( int i = 0; i < N*N; ++i ) {

a[i] = 1.0f; b[i] = 3.5f; }

float *ad, *bd, *cd;

const int size = N*N*sizeof(float);

cudaMalloc( (void**)&ad, size );

cudaMalloc( (void**)&bd, size );

cudaMalloc( (void**)&cd, size );

cudaMemcpy( ad, a, size, cudaMemcpyHostToDevice );

cudaMemcpy( bd, b, size, cudaMemcpyHostToDevice );

dim3 dimBlock( blocksize, blocksize );

dim3 dimGrid( N/dimBlock.x, N/dimBlock.y );

add_matrix<<<dimGrid, dimBlock>>>( ad, bd, cd, N );

cudaMemcpy( c, cd, size, cudaMemcpyDeviceToHost );

cudaFree( ad ); cudaFree( bd ); cudaFree( cd );

delete[] a; delete[] b; delete[] c;

return EXIT_SUCCESS;

}

GPU Mem Allocation
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Compileable example

const int N = 1024;

const int blocksize = 16;

__global__

void add_matrix( float* a, float *b, float *c, int N )

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int index = i + j*N;

if ( i < N && j < N )

c[index] = a[index] + b[index];

}

Store in source file (i.e.
MatrixAdd.cu)

Compile with nvcc MatrixAdd.cu

Run

Enjoy the benefits of parallelism!

int main() {

float *a = new float[N*N];

float *b = new float[N*N];

float *c = new float[N*N];

for ( int i = 0; i < N*N; ++i ) {

a[i] = 1.0f; b[i] = 3.5f; }

float *ad, *bd, *cd;

const int size = N*N*sizeof(float);

cudaMalloc( (void**)&ad, size );

cudaMalloc( (void**)&bd, size );

cudaMalloc( (void**)&cd, size );

cudaMemcpy( ad, a, size, cudaMemcpyHostToDevice );

cudaMemcpy( bd, b, size, cudaMemcpyHostToDevice );

dim3 dimBlock( blocksize, blocksize );

dim3 dimGrid( N/dimBlock.x, N/dimBlock.y );

add_matrix<<<dimGrid, dimBlock>>>( ad, bd, cd, N );

cudaMemcpy( c, cd, size, cudaMemcpyDeviceToHost );

cudaFree( ad ); cudaFree( bd ); cudaFree( cd );

delete[] a; delete[] b; delete[] c;

return EXIT_SUCCESS;

}

Copy data to GPU
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Compileable example

const int N = 1024;

const int blocksize = 16;

__global__

void add_matrix( float* a, float *b, float *c, int N )

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int index = i + j*N;

if ( i < N && j < N )

c[index] = a[index] + b[index];

}

Store in source file (i.e.
MatrixAdd.cu)

Compile with nvcc MatrixAdd.cu

Run

Enjoy the benefits of parallelism!

int main() {

float *a = new float[N*N];

float *b = new float[N*N];

float *c = new float[N*N];

for ( int i = 0; i < N*N; ++i ) {

a[i] = 1.0f; b[i] = 3.5f; }

float *ad, *bd, *cd;

const int size = N*N*sizeof(float);

cudaMalloc( (void**)&ad, size );

cudaMalloc( (void**)&bd, size );

cudaMalloc( (void**)&cd, size );

cudaMemcpy( ad, a, size, cudaMemcpyHostToDevice );

cudaMemcpy( bd, b, size, cudaMemcpyHostToDevice );

dim3 dimBlock( blocksize, blocksize );

dim3 dimGrid( N/dimBlock.x, N/dimBlock.y );

add_matrix<<<dimGrid, dimBlock>>>( ad, bd, cd, N );

cudaMemcpy( c, cd, size, cudaMemcpyDeviceToHost );

cudaFree( ad ); cudaFree( bd ); cudaFree( cd );

delete[] a; delete[] b; delete[] c;

return EXIT_SUCCESS;

}

Execute kernel
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Compileable example

const int N = 1024;

const int blocksize = 16;

__global__

void add_matrix( float* a, float *b, float *c, int N )

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int index = i + j*N;

if ( i < N && j < N )

c[index] = a[index] + b[index];

}

Store in source file (i.e.
MatrixAdd.cu)

Compile with nvcc MatrixAdd.cu

Run

Enjoy the benefits of parallelism!

int main() {

float *a = new float[N*N];

float *b = new float[N*N];

float *c = new float[N*N];

for ( int i = 0; i < N*N; ++i ) {

a[i] = 1.0f; b[i] = 3.5f; }

float *ad, *bd, *cd;

const int size = N*N*sizeof(float);

cudaMalloc( (void**)&ad, size );

cudaMalloc( (void**)&bd, size );

cudaMalloc( (void**)&cd, size );

cudaMemcpy( ad, a, size, cudaMemcpyHostToDevice );

cudaMemcpy( bd, b, size, cudaMemcpyHostToDevice );

dim3 dimBlock( blocksize, blocksize );

dim3 dimGrid( N/dimBlock.x, N/dimBlock.y );

add_matrix<<<dimGrid, dimBlock>>>( ad, bd, cd, N );

cudaMemcpy( c, cd, size, cudaMemcpyDeviceToHost );

cudaFree( ad ); cudaFree( bd ); cudaFree( cd );

delete[] a; delete[] b; delete[] c;

return EXIT_SUCCESS;

}

Copy result back to CPU
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Compileable example

const int N = 1024;

const int blocksize = 16;

__global__

void add_matrix( float* a, float *b, float *c, int N )

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int index = i + j*N;

if ( i < N && j < N )

c[index] = a[index] + b[index];

}

Store in source file (i.e.
MatrixAdd.cu)

Compile with nvcc MatrixAdd.cu

Run

Enjoy the benefits of parallelism!

int main() {

float *a = new float[N*N];

float *b = new float[N*N];

float *c = new float[N*N];

for ( int i = 0; i < N*N; ++i ) {

a[i] = 1.0f; b[i] = 3.5f; }

float *ad, *bd, *cd;

const int size = N*N*sizeof(float);

cudaMalloc( (void**)&ad, size );

cudaMalloc( (void**)&bd, size );

cudaMalloc( (void**)&cd, size );

cudaMemcpy( ad, a, size, cudaMemcpyHostToDevice );

cudaMemcpy( bd, b, size, cudaMemcpyHostToDevice );

dim3 dimBlock( blocksize, blocksize );

dim3 dimGrid( N/dimBlock.x, N/dimBlock.y );

add_matrix<<<dimGrid, dimBlock>>>( ad, bd, cd, N );

cudaMemcpy( c, cd, size, cudaMemcpyDeviceToHost );

cudaFree( ad ); cudaFree( bd ); cudaFree( cd );

delete[] a; delete[] b; delete[] c;

return EXIT_SUCCESS;

}

Clean up and return

Applied Mathematics 21/53



1 Programming Model

2 Application Programming Interface

3 Performance and Optimizations
Optimize memory access
Loop unrolling

4 Conclusion

Applied Mathematics 22/53



To optimize or not to optimize

Hoare said (and Knuth restated)

“We should forget about small efficiencies, say about
97% of the time:

“Premature optimization is the root of all evil.”

⇓
3% of the time we really should worry about small efficiencies

(Every 33rd codeline)
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In this sections

We will go through the following:

The CUDA execution model

The cost of arithmetic operations

A large section (with examples) on accessing global memory

Using templates to unroll loops
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Optimization goals

We should strive to reach GPU performance

We must know the GPU performance

Vendor specifications
Syntetic benchmarks

Choose a performance metric

Memory bandwidth or GFLOPS?

Use clock() to measure

Experiment and profile!
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How threads are executed

Multiprocessor N

Multiprocessor 3
Multiprocessor 2

Multiprocessor 1

SP 1

...

SP M

A GPU consist of N multiprocessors (MP)

Each MP has M scalar processors (SP)

Each MP processes batches of blocks

A block is processed by only one MP

Each block is split into SIMD groups of
threads called warps

A warp is executed physically in parallel

A scheduler switches between warps

A warp contains threads of consecutive,
increasing thread ID

The warp size is 32 threads today
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Consequences of execution model

# of blocks / # of MPs > 1

Ensure that all MPs always have something to do

# of blocks / # of MPs > 2

So multiple blocks can run concurrently on a MP

# of blocks > 100 to scale to future devices

Per block resources ≤ total available resources

Shared memory and registers
Multiple blocks can run concurrently on a MP

Avoid divergent branching within one warp

Different execution paths should be serialized
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Know the arithmetic cost of operations

4 clock cycles:

Floating point: add, multiply, fused multiply-add
Integer add, bitwise operations, compare, min, max

16 clock cycles:

reciprocal, reciprocal square root, log(x), 32-bit integer
multiplication

32 clock cycles:

sin(x), cos(x) and exp(x)

36 clock cycles:

Floating point division (24-bit version in 20 cycles)

Particularly costly:

Integer division, modulo
Remedy: Replace with shifting whenever possible

Double precision (when available) will perform at half the
speed
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Memory model

CUDA exposes all the different types of memory on the GPU:

Global memory

Constant memory

Texture memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Local
Memory

Registers

Thread (1, 0)

Local
Memory

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Local
Memory

Registers

Thread (1, 0)

Local
Memory

Registers
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Use the right kind of memory

Constant memory:

Quite small, ≈ 20K
As fast as register access if all threads in a warp access the
same location

Texture memory:

Spatially cached
Optimized for 2D locality
Neighboring threads should read neighboring addresses
No need to think about coalescing

Constraint:

These memories can only be updated from the CPU

Applied Mathematics 31/53



Accessing global memory

4 cycles to issue on memory fetch

but 400-600 cycles of latency

The equivalent of 100 MADs

Likely to be a performance bottleneck

Order of magnitude speedups possible

Coalesce memory access

Use shared memory to re-order non-coalesced addressing
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How to achieve coalesced global memory access

For best performance, global memory accesses should be coalesced:

A memory access coordinated within a warp

A contiguous, aligned, region of global memory

128 bytes – each thread reads a float or int
256 bytes – each thread reads a float2 or int2
512 bytes – each thread reads a float4 or int4
float3s are not aligned!

Warp base address (WBA) must be a multiple of
16*sizeof(type)

The kth thread should access the element at WBA + k

Not all threads need to participate

These restrictions apply to both reading and writing

Use shared memory to achieve this
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Examples: Coalesced memory access

Thread
1

Address
128

Thread
2

Address
132

Thread
3

Address
136

Thread
4

Address
140

Thread
5

Address
144

Thread
6

Address
148

Thread
7

Address
152

Thread
8

Address
156

Thread
9

Address
160

Thread
10

Address
164

Coalesced memory access:
Thread k accesses WBA + k

Not all threads need to participate
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1

Address
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Thread
2

Address
132

Thread
3

Address
136

Thread
4

Address
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Thread
5

Address
144

Thread
6

Address
148

Thread
7

Address
152

Thread
8

Address
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Thread
9

Address
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Examples: Coalesced memory access

Thread
1

Address
128

Thread
2

Address
140

Thread
3

Address
152

Thread
4

Address
164

Thread
5

Address
188

Thread
6

Address
200

Thread
7

Address
212

Thread
8

Address
224

Thread
9

Address
236

Thread
10

Address
288

Not all threads need to participate

Non-Coalesced memory access:
Wrong size of type
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Example: Matrix Transpose

Example from the SDK

Illustrates transpose using shared memory

c1,1 c1,2 c1,3 c1,4

c2,1 c2,2 c2,3 c2,4

c3,1 c3,2 c3,3 c3,4

c4,1 c4,2 c4,3 c4,4

c1,1

c1,2

c1,3

c1,4

c2,1

c2,2

c2,3

c2,4

c3,1

c3,2

c3,3

c3,4

c4,1

c4,2

c4,3

c4,4
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Uncoalesced transpose

__global__ void
transpose_naive( float *out, float *in, int w, int h ) {
unsigned int xIdx = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int yIdx = blockDim.y * blockIdx.y + threadIdx.y;

if ( xIdx < w && yIdx < h ) {
unsigned int idx_in = xIdx + w * yIdx;
unsigned int idx_out = yIdx + h * xIdx;

out[idx_out] = in[idx_in];
}

}

Reading from global mem:

. . .
stride=1, coalesced

Writing to global mem:

. . .
stride=16, uncoalesced
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Coalesced transpose

Assumption: Matrix is partitioned into square tiles

Threadblock (bx, by):

Read the (bx, by) input tile, store into shared memory
Write the shared memory to (by, bx) output tile

Transpose the indexing into shared memory

Thread (tx, ty):

Reads element (tx, ty) from input tile
Writes element (tx, ty) into output tile

Coalescing is achieved if:

Block/tile dimensions are multiplies of 16
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Coalesced transpose II

Read from global mem

0,0

1,0

0,1

1,1

0,2

1,2

15, 0 15, 1 15, 2

0,15

1,15

15,15

Write to shared mem

0,0

1,0

0,1

1,1

0,2

1,2

15, 0 15, 1 15, 2

0,15

1,15

15,15

Read “transposed” address from SMEM

0,0

0,1

1,0

1,1

2,0

2,1

0, 15 1, 15 2, 15

15,0

15,1

15,15

Write to global mem

0,0

0,1

1,0

1,1

2,0

2,1

0, 15 1, 15 2, 15

15,0

15,1

15,15
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Coalesced transpose: Source code

__global__ void

transpose( float *out, float *in, int w, int h ) {

__shared__ float block[BLOCK_DIM*BLOCK_DIM];

unsigned int xBlock = blockDim.x * blockIdx.x;

unsigned int yBlock = blockDim.y * blockIdx.y;

unsigned int xIndex = xBlock + threadIdx.x;

unsigned int yIndex = yBlock + threadIdx.y;

unsigned int index_out, index_transpose;

if ( xIndex < width && yIndex < height ) {

unsigned int index_in = width * yIndex + xIndex;

unsigned int index_block = threadIdx.y * BLOCK_DIM + threadIdx.x;

block[index_block] = in[index_in];

index_transpose = threadIdx.x * BLOCK_DIM + threadIdx.y;

index_out = height * (xBlock + threadIdx.y) + yBlock + threadIdx.x;

}

__synchthreads();

if ( xIndex < width && yIndex < height ) {

out[index_out] = block[index_transpose];

}

}

Applied Mathematics 39/53



Coalesced transpose: Source code

__global__ void

transpose( float *out, float *in, int w, int h ) {

__shared__ float block[BLOCK_DIM*BLOCK_DIM];

unsigned int xBlock = blockDim.x * blockIdx.x;

unsigned int yBlock = blockDim.y * blockIdx.y;

unsigned int xIndex = xBlock + threadIdx.x;

unsigned int yIndex = yBlock + threadIdx.y;

unsigned int index_out, index_transpose;

if ( xIndex < width && yIndex < height ) {

unsigned int index_in = width * yIndex + xIndex;

unsigned int index_block = threadIdx.y * BLOCK_DIM + threadIdx.x;

block[index_block] = in[index_in];

index_transpose = threadIdx.x * BLOCK_DIM + threadIdx.y;

index_out = height * (xBlock + threadIdx.y) + yBlock + threadIdx.x;

}

__synchthreads();

if ( xIndex < width && yIndex < height ) {

out[index_out] = block[index_transpose];

}

}

Allocate shared memory.
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Set up indexing
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Check that we are within
domain, calculate more
indices

Write to shared memory.

Calculate output indices.
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NB:outside if-clause
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Coalesced transpose: Source code

__global__ void

transpose( float *out, float *in, int w, int h ) {

__shared__ float block[BLOCK_DIM*BLOCK_DIM];

unsigned int xBlock = blockDim.x * blockIdx.x;

unsigned int yBlock = blockDim.y * blockIdx.y;

unsigned int xIndex = xBlock + threadIdx.x;

unsigned int yIndex = yBlock + threadIdx.y;

unsigned int index_out, index_transpose;

if ( xIndex < width && yIndex < height ) {

unsigned int index_in = width * yIndex + xIndex;

unsigned int index_block = threadIdx.y * BLOCK_DIM + threadIdx.x;

block[index_block] = in[index_in];

index_transpose = threadIdx.x * BLOCK_DIM + threadIdx.y;

index_out = height * (xBlock + threadIdx.y) + yBlock + threadIdx.x;

}

__synchthreads();

if ( xIndex < width && yIndex < height ) {

out[index_out] = block[index_transpose];

}

}

Allocate shared memory.

Set up indexing

Check that we are within
domain, calculate more
indices

Write to shared memory.

Calculate output indices.

Synchronize.
NB:outside if-clause

Write to global mem.
Different index
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Transpose timings

Was it worth the trouble?

Grid Size Coalesced Non-coalesced Speedup
128× 128 0.011 ms 0.022 ms 2.0×
512× 512 0.07 ms 0.33 ms 4.5×

1024× 1024 0.30 ms 1.92 ms 6.4×
1024× 2048 0.79 ms 6.6 ms 8.4×

For me, this is a clear yes.
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Memory optimizations roundup

CUDA memory handling is complex

And I have not covered all topics...

Using memory correctly can lead to huge speedups

At least CUDA expose the memory hierarchy, unlike CPUs

Get your algorithm up an running first, then optimize

Use shared memory to let threads cooperate

Be wary of “data ownership”

A thread does not have to read/write the data it calculate
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Loop unrolling

Sometimes we know some kernel parameters at compile time:

# of loop iterations
Degrees of polynomials
Number of data elements

If we could “tell” this to the compiler, it can unroll loops and
optimize register usage

We need to be generic

Avoid code duplication, sizes unknown at compile time

Templates to rescue

The same trick can be used for regular C++ sources
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Example: de Casteljau algorithm

A standard algorithm for evaluating polynomials in Bernstein form

Recursively defined:

f (x) = bd
00

bk
i ,j = xbk−1

i+1,j + (1− x)bk−1
i ,j+1

b0
i ,jare coefficients

f (x) = bd
00

bd−1
10 bd−1

01

bd−2
20 bd−2

11 bd−2
02

1− x

1− x x 1− x2

x

x
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Implementation

The de Casteljau algorithm is usually implemented as nested
for-loops

Coefficients are overwritten for each iteration

f l o a t d eCa s t e l j a u ( f l o a t ∗ c , f l o a t x , i n t d )
{

f o r ( u i n t i = 1 ; i <= d ; ++i ) {
f o r ( u i n t j = 0 ; j <= d− i ; ++j )

c [ j ] = ( 1 . 0 f−x )∗ c [ j ] + x∗ c [ j +1] ;
}

r e t u r n c [ 0 ] ;
}

f (x) = cd
00

cd−1
10 cd−1

01

cd−2
20 cd−2

11 cd−2
02

1− x

1− x x 1− x2

x

x
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Template loop unrolling

We make d a template parameter

template<int d>

f l o a t d eCa s t e l j a u ( f l o a t ∗ c , f l o a t x, int d ) {
f o r ( u i n t i = 1 ; i <= d ; ++i ) {

f o r ( u i n t j = 0 ; j <= d− i ; ++j )
c [ j ] = ( 1 . 0 f−x )∗ c [ j ] + x∗ c [ j +1] ;

}
r e t u r n c [ 0 ] ;

}

Kernel is called as

sw i t c h ( d ) {
case 1 :

d eCa s t e l j a u <1><<<dimGrid , dimBlock>>>( c , x ) ; b reak ;
ca se 2 :

d eCa s t e l j a u <2><<<dimGrid , dimBlock>>>( c , x ) ; b reak ;
.
.
ca se MAXD:

deCa s t e l j a u <MAXD><<<dimGrid , dimBlock>>>( c , x ) ; b reak ;
}
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Results

For the de Castelaju algorithm we see a relatively small
speedup

≈ 1.2× (20%...)

Very easy to implement

Can lead to long compile times

Conclusion:

Probably worth it near end of development cycle
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Topics not covered

The CUDA libraries

BLAS library - uses Fortran ordering
FFT library
CUDPP - library for parallel sum, sort and reduction

The CUDA profiler

Debugging CUDA applications (compile kernels for CPU)

Self-tuning CUDA applications

Bank conflicts when accessing shared memory
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Why CUDA and not OpenGL/DirectX?

Advantages:

No need to learn graphics API

Better memory handling

Better documentation

Scattered write

Disadvantages:

Tied to one vendor

Not all transistors on GPU used through CUDA

Fancy tricks has been demonstrated using the rasterizer
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Available resources

NVIDIA CUDA Homepage

Contains downloads, documentation, examples and links
http://www.nvidia.com/cuda

Programming Guide

Print and keep under your pillow

CUDA Forums

http://forums.nvidia.com
The CUDA designers actually read and respond on the forum

Supercomputing 2007 CUDA Tutorials

http://www.gpgpu.org/sc2007/
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Conclusion

CUDA is here today (40M++ devices worldwide)

“Easy” to get started

Difficult to reach peak performance

Peak performance requires redesigned algorithm, not just
“ports”

Single vs Double precision issues
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The End!

Thank you for listening

Please contact johan.seland@sintef.no with questions

Remember the quiz tonight:

The price is an Nvidia Tesla C870
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