MATMED Mathematical and computational methods for co-registering multi-modal medical images

Knut Mørken Department of Informatics and Centre of Mathmatics for Applications

Contents

- Project trivia
- What is image registration?
- What are we going to do?

Partners

- The Interventional Centre, Rikshospitalet University Hospital in Oslo
- Centre of Mathematics for Applications (CMA), University of Oslo
- Image processing group (BBG), Depart of Mathematics, University of Bergen,

Principal investigators

- Eigil Samset, Interventional Centre (project leader) • Xue-Cheng Tai, Department of Mathematics,
- University of Bergen
- Knut Mørken, Department of Informatics and CMA, University of Oslo
- In addition there are 9 named national and international collaborators

Collaborators

- University of Oslo and Simula Research Lab (Albregtsen, Hjelle, Reimers)
- University of Bergen (Lundervold, Zanna Munthe Kaas) Harvard Medical School (Kikinis)
- University of California, Los Angeles (Chan, Osher)
- University of Saarland (Weickert)

Resources

- Approximately 2 000 000 NOK pr. year
- Will support 3 PhD-students
- 2 PhD-students hired already
- 3rd will be hired before the summer

Motivation for image registration

- Information about a patient is often obtained via several imaging techniques
- Different techniques reveal different features
- Some techniques are useful for pre-operative imaging, others can be used during surgery

Motivation for image registration

- Information about a patient is often obtained via several imaging techniques
- Different techniques reveal different features
- Some techniques are useful for pre-operative imaging, others can be used during surgery
- Challenge: To combine different imaging techniques

Motivation for image registration

- Information about a patient is often obtained via several imaging techniques
- Different techniques reveal different features
- Some techniques are useful for pre-operative imaging, others can be used during surgery
- Challenge: To combine different imaging techniques
- Example: Removal of tumour from a liver with Minimally Invasive Surgery (MIS)

Medical imaging techniques Magnetic Resonance (MR) – 3D Computed Tomography (CT) – 3D Positron Emmision Techiques (PET) – 3D

- Ultrasound 2D and 3D
- X-ray 2D
- Photo and video 2D
- Etc.

Research topic

Registration (alignment) of medical images (of the same objects) from different sources

Research topic

Registration (alignment) of medical images (of the same objects) from different sources

What is registration?

What is registration?

What is registration?

MR-scan

MR-scan

MR-scan, sliced

CT-scan

CT-scan

MR + CT

MR + CT

Registering MR and CT

 Registration: find a mapping that aligns the two data sets in the same coordinate system

Registering MR and CT

- Registration: find a mapping that aligns the two data sets in the same coordinate system
- Challenges
 - MR measures concentration of hydrogen
 - CT measures ability to absorb x-rays
 - Scans may be taken at different times deformation possible

Photo

X-ray

Photo (video) and MR

- Challenges for registration
 - May need to compensate for optical deformation caused by camera
 - Scan and photo recorded at different times deformation

• Find information that is common in the two images

- Find information that is common in the two images • Choose a space of transformations (rigid, affine etc.)

- Find information that is common in the two images • Choose a space of transformations (rigid, affine etc.)
- Choose a similarity measure

- Find information that is common in the two images • Choose a space of transformations (rigid, affine etc.)
- Choose a similarity measure
- Determine the tranformation from one image to the other by minimizing the similarity measure

- Find information that is common in the two images • Choose a space of transformations (rigid, affine etc.)
- Choose a similarity measure
- Determine the tranformation from one image to the other by minimizing the similarity measure
- Many variations

Research in this project

- Non-rigid registration
 - When images recorded before, during and after surgery are to be registered, non-rigid transformations are necessary
 - Certain pde-based methods are promising
 - CPU-intensive

Research in this project

- Registration of MR and video stream, e.g., removal of tumour from the liver
 - MR taken before surgery, video during surgery • The liver will have moved and changed shape

 - Need close to real-time registration

Homer Simpson (labelled atlas)

Homer Simpson (MRI)