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Motivation

� Objective: 
� Provide short-term forecasts of physical and biogeochemical 

parameters targeted to users needs (as in weather forecasting)
� Public users (Met and environmental agencies)
� Industry (offshore oil & gas, ship routing)

� Strategy
� Focus on advanced data assimilation techniques
� Gradual increase of resolution (as affordable…)
� Nesting on regions of higher interest



Outline

� Set up of the TOPAZ system
� Examples of ensemble statistics
� Problem dimensions
� Results and Applications 
� Perspectives



System description

The TOPAZ system
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The TOPAZ model system

� Atlantic and Arctic domain
� Dynamic / thermodynamic 

ice model
� Weekly assimilation cycle
� Surface boundary 

conditions
� ECMWF weather forecast



The ingredients
� 3D numerical ocean model
� Hybrid Coordinate Ocean model, HYCOM (U. Miami)
� 18-35 km resolution
� 22 hybrid layers 

� Observations
� Altimetry, SST (CLS, F)
� Sea Ice (NSIDC, USA)
� In-situ (CORIOLIS, F)



Ensemble Kalman filtering
a stochastic process

Forecast Analysis

Observations
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2. Model uncertainty

3. Measurement uncertainty
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Our Priors

� Initial model error 
� Ocean stratification
� 10% of the depth of each 

isopycnal layer 
� Lognormal pdf

� Boundary conditions
� Random errors in 

� Wind speed and stress
� Radiative heat fluxes
� Air temperature

� Gaussian pdf
� Given standard deviation
� Horizontal radius 250 km 

� Measurement errors
� Gaussian pdf

� Sea surface heights
� Sea surface temperatures

� Truncated Gaussian
� Ice concentrations

� Given standard 
deviations

� Horizontal radius 250 km 



The Ensemble Kalman filter
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Observations

� Assuming 
� Gaussian model state variables
� Gaussian observation variables
� Unbiased model and observations

� The EnKF applies the least square estimation



A parenthesis on 
geostatistics

� Kriging (linear least square estimation) depends 
heavily on the error covariance:
� Its spatial scale (decorrelation)
� The Spatial Structure of the covariance 
� In particular its behavior at the origin

� Let us see a simple static example
� (Both under Gaussian distributions)



Exponential covariance

� Horizontal scale 50
� Continuous at origin
� Slope at origin
� Field is “rough”.

RandomFields library in R 

by M. Schlather, U. Goettingen



Gaussian covariance

� Horizontal scale 50 
� Continuous at origin
� Zero slope at origin 
� All derivatives are zero!
� Field is “smooth”



Kriging maps

� Exponential � Gaussian

The Gaussian covariance makes overshoots!



Ensemble Statistics

From the TOPAZ system



Ocean dynamics

� Statistical properties such as
� Spatial range
� Variance
� Multivariate Cross-covariance

� .. evolve according to the ocean dynamics
� in space 
� in time

� Monte-Carlo methods provide an “ensemble 
approximation” to all instantaneous statistics



Ensemble Covariance 
Spatially varying structures

SLA innovations: horizontal variograms km

m2



Ensemble Variances
Temporal evolution 

(variance of ice concentrations)

� 1st March 2006 � 13th Sept 2006

http://topaz.nersc.no



Ensemble Covariances
Temporal evolution

� 3rd January 2006 � 11th August 2006



Ensemble Covariance
Multivariate structures

Sea surface height & temperature, mix layer depth

SSH,SSH SSH,SSTSSH,MLD

SST,SSH SST,SSTSST,MLD

[ Haugen and Evensen 2002 ]



Problem dimensions

High dimensionality



The State Space

� 2D variables (400 x 600 grid cells)
� Barotropic pressure, u/v velocity, ice concentration, ice 

thickness
� 3D variables (400 x 600 x 22 grid cells)
� Temperature, salinity, u/v current, layer thickness

� TOTAL: n = 27.600.000 state variables
� 100 members in double precision = 21 Gb
� Next prototype (Due April 2007): 
� 81 million variables, 60 Gb!

� Ecosystem variables: 2 to 3 times more variable 
depending on ecosystem model formulation



The observations

� Sea level anomalies – SLA (satellite, radar altimeters)
� Non linear function of state variables
� 100.000 observations every week

� Sea-surface temperature – SST (satellite, optical)
� 8.000 observations every week

� Sea-ice concentrations (satellite, microwave)
� 40.000 observations every week

� TOTAL: m=148.000 obs
� Coming up: in-situ profiles (~500.000 obs.), HR SST 

(120.000 obs.), HR ice conc. (160.000 obs.) ice drift …



Local analysis

� For each water column (x, y), update with local 
observations only
� Local state space n = 115 variables (5x22+5)

� Local observations m = 49 nearest (within 700km max)

� Ensemble size N = 100 (as usual)

☺N, m, n are reasonably similar, small matrices
☺The local analysis loop is embarrassingly parallel
/The analysis is not necessarily continuous
/X5 is varying with location (x, y).



Computations

� Propagation
� 1000 CPU hours / week
� Embarrassingly parallel
� 100x 4 CPU 3hours jobs
� Each job requires 3 Gb
� Interactive submitting
� Completed within 3 days

� Analysis
� 6 CPU hours / week
� Sequential, 3 datasets
� 3x 4 CPU 40 min jobs
� Each job requires 25 Gb
� MPI parallelization 

required for clusters



Results



Ensemble Kalman filtering
a stochastic process

Forecast Analysis

Observations

1. Initial uncertainty
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Errors depend on observations density
December 2003 SST before analysis

Mean SST Variance



Errors depend on observations density
Decmber 2003 SST after analysis

Mean SST Variance



Surface temperature update

Multivariate Assimilation 
update - Summer

Ice concentration update
Surface salinity update

[ Lisæter et al. 2003 ]



EnKF setup: Effect of localization  
Assimilation of ice concentrations

Forecast errors Analysis errors

Local analysis

Analysis errors

Global analysis



Ice Concentrations assimilation
on19th Sept. 2006

Assimilation

Increments

Non-deterministic issue

(re-run EnKF)



Structure of the measurement 
errors

Exponential minus 
Gaussian covariance

Increments



Ensemble size

100 members EnKF
minus 50 members

EnKF

Increments



System Applications

Nested systems in
1. North Sea (N. Winther/C. Hansen)
2. Gulf of Mexico (F. Counillon)
3. Barents Sea (I. Keghouche)



Ensemble Forecasting
in the Gulf of Mexico

� What is the probability that 
an eddy will shed next 
week?

� Lines (“spaghetti plot”)
� Model fronts 
� 7 days forecast

� Background
� Satellite data 
� Ocean color (MODIS)
� Not assimilated

[ F. Counillon ]



Perspectives

Non-Gaussian estimation
(case of ecosystem variables)



Coupled HYCOM  
– bio. models

� A physical ocean model can 
drive an ecosystem model
� Re-suspension of nutrients 

from the sea bottom
� Blooming of phytoplankton
� Grazing of phytoplankton by 

zooplankton
� Ecosystem variables are 

particularly non-Gaussian

[ A. Samuelsen

C. Hansen ]



Theoretical problems

� Non-linear models
� No guarantee of Gaussian distributions

� We can apply the Gaussian assumption, but
� Is a linear analysis still optimal?
� Is a linear analysis still unbiased?

� The Gaussian Anamorphosis from geostatistics 
offers a possible extension



Characteristics
• Sensitive to initial 

conditions
• Non-linear dynamics

Nutrients

Phytoplankton Herbivores
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Illustration 
Idealised case: 1-D ecological model

� Spring bloom model, yearly cycles in the ocean 
� Evans & Parslow (1985), Eknes & Evensen (2002)

time-depths plots

[ Bertino et al. 
2003 ]



Anamorphosis 
(logarithmic transform)

Original

histograms

asymmetric

Histograms 
of logarithms

less 
asymmetric
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Arbitrary choice, possible refinements (polynomial fit) 



Anamorphosis
A classical tool from geostatistics

Physical
variable

Cumulative 
density 
function

Statistical 
variable

Example: phytoplankton 
in-situ concentrations



Anamorphosis in 
sequential DA

separate the physics from statistics
Physical 

operations: Anamorphosis
function

Statistical 
operation: A and Y 

transformedForecast

Af
n = f (Aa

n-1)

Forecast

Af
n+1 = f (Aa

n)

Analysis

Aa
n = Af

n + Kn(Yn-HAf
n)

•Polynomial fit, distribution tails by hand



EnKF assimilation results

� Gaussian 
assumption
� Truncated H < 0

� Low H values 
overestimated

� “False starts”

� Lognormal 
assumption
� Only positive 

values

� Errors dependent 
on values

RMS errors
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Conclusions

� Monte-Carlo methods for operational forecasting
� Large state and observations dimensions
� Non-linear and evolutive system 
� Justifies the use of dynamical data assimilation

� Ensemble statistics make sense
� Prior Initial/Model errors are critical

� EnKF developments needed 
� Non-Gaussian estimation
� Bias reduction
� Improved sampling 
� Parameter estimation …


