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The Ensemble Kalman Filter (EnKF)

Represents error statistics using an ensemble of model states.

Evolves error statistics by ensemble integrations.

“Variance minimizing” analysis scheme operating on the
ensemble.

⇓

Monte Carlo, low rank, error subspace method.

Converges to the Kalman Filter with increasing ensemble size.

Fully nonlinear error evolution, contrary to EKF.

Assumption of Gaussian statistics in analysis scheme.



The error covariance matrix

Define ensemble covariances around the ensemble mean

C f

ψψ ' (Cf

ψψ)e = (ψf −ψf)(ψf −ψf)T

Ca

ψψ ' (Ca

ψψ)e = (ψa −ψa)(ψa −ψa)T

The ensemble mean ψ is the best-guess.

The ensemble spread defines the error variance.

The covariance is determined by the smoothness of
the ensemble members.

A covariance matrix can be represented by an
ensemble of model states (not unique).



Dynamical evolution of error statistics

Each ensemble member evolves according to the
model dynamics which is expressed by a stochastic
differential equation

dψ = g(ψ)dt+ h(ψ)dq.

The probability density f then evolve according to
Kolmogorov’s equation

∂f

∂t
+

∑

i

∂(gif)

∂ψi
=

1

2

∑

i,j

∂2f(hCqqh
T )ij

∂ψi∂ψj
.

This is the fundamental equation for evolution of error
statistics and can be solved using Monte Carlo
methods.



Analysis scheme (1)

Given an ensemble of model forcasts, ψf

j , defining
forecast error covariance

Cf

ψψ ' (Cf

ψψ)e = (ψf −ψf)(ψf −ψf)T.

Create an ensemble of observations

dj = d+ εj ,

with
d, the real observations,
εj, a vector of observation noise,

εεT = (Cεε)
e ' Cεε.



Analysis scheme (2)

Update each ensemble member according to

ψa

j = ψf

j+(C f

ψψ)eMT

(

M(Cf

ψψ)eMT+Cεε

)

−1(

dj−Mψf

j

)

.

Thus, the update of the mean becomes

ψa = ψf+(Cf

ψψ)eMT

(

M(Cf

ψψ)eMT+Cεε

)

−1(

d−Mψf

)

.

The posterior error covariance becomes

(Ca

ψψ)e = (Cf

ψψ)e

− (Cf

ψψ)eMT

(

M(Cf

ψψ)eMT +Cεε

)

−1

M(Cf

ψψ)e.



Example: Lorenz model

Application with the chaotic Lorenz model

Illustrates properties with higly nonlinear dynamical
models.

From Evensen (1997), MWR.



EnKF solution
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EnKF error variance
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Summary: Lorenz model

The EnKF works well with highly nonlinear dynamical
models.

There is no linearization in the evolution of error
statistics.

Methods using tangent linear or adjoint operators have
problems with the Lorenz equations:

limited by the predictability time,
limited by the validity time of tangent linear
operator.

Can we expect the same to be true for more complex
models with large state spaces?



Analysis equation (1)

Define the ensemble matrix

A = (ψ1,ψ2, . . . ,ψN ) ∈ <n×N .

The ensemble mean is (defining 1N ∈ <N×N ≡ 1/N )

A = A1N .

The ensemble perturbations become

A′ = A−A = A(I − 1N ).

The ensemble covariance matrix (Cψψ)e ∈ <n×n

becomes

(Cψψ)e =
A′(A′)T

N − 1
.



Analysis equation (2)

Given a vector of measurements d ∈ <m, define

dj = d+ εj , j = 1, . . . , N,

stored in

D = (d1,d2, . . . ,dN ) ∈ <m×N .

The ensemble perturbations are stored in

E = (ε1, ε2, . . . , εN ) ∈ <m×N ,

thus, the measurement error covariance matrix
becomes

Ce
εε =

EET

N − 1
.



Analysis equation (3)

The analysis equation can now be written

Aa = A+(Cψψ)eMT

(

M(Cψψ)eMT+Cεε

)

−1(

D−MA
)

.

Defining the innovations D′ = D − MA and using
previous definitions:

Aa = A+A′(MA′)T
(

(MA′)(MA′)T +Cεε

)

−1

D′.

i.e., analysis expressed entirely in terms of the
ensemble



Analysis equation (4)

Define S = MA′ and C = SST +Cεε.

Use A′ = A(I − 1N ).

Use 1NS
T ≡ 0.

Aa = A+A′ST

(

SST +Cεε

)

−1

D′

= A+A(I − 1N )STC−1D′

= A
(

I + STC−1D′

)

= AX



Remarks

(Cψψ)e never computed but indirectly used to
determine M(Cψψ)eMT = SST.

Covariances only needed between observed variables
at measurement locations.

Analysis may be interpreted as:
combination of forecast ensemble members, or,
forecast plus combination of covariance functions.

Accuracy of analysis is determined by:
the accuracy of X,
the properties of the ensemble error space.



Remarks

For a linear model, any choice of X will result in an
analysis which is also a solution of the model.



Examples of ensemble statistics

Taken from Haugen and Evensen (2002), Ocean
Dynamics.

OGCM (MICOM) for the Indian Ocean.

Assimilation of SST and SLA data.



Spatial correlations
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SSH-DP(1)
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Correlation functions
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Time–Depth: Temperature
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