A Triangulation Template Library (TTL):
Generic Design of Triangulation Software

Oyvind Hjelle
November 21, 2000

Abstract

Triangulations representing surfaces constructed from scattered mea-
surement data can be dealt with algebraically using principles of gener-
alized maps, or G-maps. High level abstraction of functions operating
on triangulations is achieved using G-maps, which are developed for gen-
eral boundary based topological models. Generic design of a Delaunay
triangulation algorithm and of functions operating on triangulations are
presented, and principles of implementation using function templates in
the C++ programming language are shown. Since the operations can be
algebraically defined and implemented generically, a triangulation library
based on this concept can operate on arbitrary data structures.

Contents
1 Introduction

2 Generalized Maps and Data Structures
2.1 G-maps Applied to Trianguations
2.2 The Half-Edge Data Structure

3 Triangulation Template Library (TTL)
3.1 Topological Queries
3.2 Geometric Queries
3.3 Geometric and Topological Modifiers

4 Generic Delaunay Triangulation
4.1 Theoretical Foundation
4.2 Incremental Delaunay Triangulation
4.3 Fixing the Boundary oL
4.4 Some Remarks

5 Conclusion

10
12
16
19

22
22
23
29
29

30

1 Introduction

Triangulations are used in many application domains for representing two-
manifold polygonal surface structures on computers. Flight simulators use
triangle-based surfaces for landscape visualization [21], digital terrain models
are represented as triangulations in cartography [4], and finite element meth-
ods (FEM) use them as a basis for numerical calculations [23, 5]. Triangulations
are otherwise widely used in visualization and computer graphics [9, 16].

A triangulation needs an underlying data structure for representing its topo-
logical entities: nodes, edges and triangles, their topological adjacency informa-
tion, and their associated geometric embedding information. Different appli-
cations need different data structures depending on the needs in the actual
application.

Applications based on triangulations need a number of topological and ge-
ometric operations using the topological and geometric entities represented by
the data structure of the triangulation. These operations can briefly be di-
vided into two groups: modifiers that change the topology or the geometry,
and queries that extract information from the triangulation. Examples of mod-
ifiers are edge-swapping operations and refinement operations based on point
insertion. Examples of queries are simple operations like examining neighbour
relationships between nodes, edges and triangles, and operations extracting tri-
angle strips for visualization.

It is customary to implement such functions in a static manner in the sence
that they are adapted to one specific data structure only. The consequences are
that the functions must be totally reimplemented if the underlying data struc-
ture is changed. Moreover, in many applications more than one data structure
is needed, for example to speed up certain topological operations, and thus,
different adaptions to the application data structures are needed.

The reason for this rigid approach has probably been the lack of an abstract
description of the topology structure and of functions operating on the topology.
Generalized maps, or G-maps, which are introduced later, provide a formal
algebraic approach to model general boundary based topological models (B-
reps). Its algebraic definition is generic in the sense that it is not dependent
on the underlying data structure. This suggests that algorithms based on G-
maps can be separated from the data structure and work only with the algebraic
concepts that G-maps are based on.

The aim of this report is first to show how G-maps can be used as robust
and rigorous algebraic tools to model the topology of triangulations. Having
defined the topology of triangulations and functions operating on them alge-
braically, the concept of function templates in the C++ programming language
is employed to implement a generic library for triangulations using the princi-
ples of G-maps. The generic library will hereafter be called TTL (Triangulation
Template Library). The TTL will comprise a set of queries and modifiers, and
moreover, a Delaunay triangulation algorithm that can operate on arbitrary
application data structures.

In the next section, the concepts of G-maps are introduced and applied to

triangulations. In Section 3, design of the TTL and its interplay with applica-
tions are outlined. Queries and modifiers implemented as function templates in
C++ are exemplified using the half-edge data structure which is a common data
structure for boundary based topological models. Finally, Section 4 is devoted
to a generic incremental Delaunay triangulation algorithm.

2 Generalized Maps and Data Structures

The Triangulation Template Library (TTL) to be introduced in Section 3 is
based on so-called Generalized maps, or G-maps [14, 2]. G-maps are general
tools for modelling the topology of boundary based geometric models and have
been applied in application areas such as geological modelling [7, 24]. It is al-
gebraically defined based on a few numbers of clear concepts. The topology is
described using a single topological element, the dart, and a set of functions
operating on the set of darts in the topology structure. In this section G-maps
are applied to obtain an algebraic description of the topology of triangulations,
and thus achieving an abstract level on which generic functions in the TTL can
operate. A common data structure for triangulations, the half-edge data struc-

ture, is also presented for later use when demonstrating generic functionality in
the TTL.

2.1 G-maps Applied to Trianguations

A dart in a triangulation structure can be considered as a unique triple d =
(Vi, E;,Tk), where V; is a node (or a vertex) of the edge E;, and V; and Ej is
a node and an edge of the triangle Tj. Thus, for each triangle there are six
possible combinations of the triple that can define a dart. In Figure 2.1(a) a
dart d is indicated both as an arrow and as a (node, edge, triangle)-triple.

Referring to Figure 2.1(b), we define three unique functions, ag, @1 and as
operating on the set of triples D in a triangulation as one-to-one mappings from
D onto itself,

a;:D— D, i=0,1,2.

In the theory of generalized maps these functions are called involutions as they
are bijections with the property o;(a;(d)) = d. We will simply call them «-
iterators and define them as follows when applied to triangulations:

e agp(d) maps d to a triple with a different node, but keeps the edge and the
triangle fixed,

e oy (d) maps d to a triple with a different edge, but keeps the node and the
triangle fixed,

e ao(d) maps d to a triple with a different triangle, but keeps the node and
the edge fixed.

@

Figure 2.1: (a): A dart considered as a unique triple d = (V;, E;,Tx). (b):
Shows how d is mapped under the functions «;, i =0,1,2.

That is, ag(d), a1(d) and as(d) change the node, edge and triangle of the triple
d = (V;, E;,Ty,) respectively, while the other topological elements are kept fixed.
If an edge Ej; in a triple d = (V;, E;,T},) is at the boundary of the triangulation,
then ag(d) = d, hence the node, the edge and the triangle are all kept fixed.
This is called a fized point of the ao-iterator. With the definitions above a
triangulation can be considered as a G-map,

G(Da Qp, O, CVQ),

which defines a combinatorial structure, or an algebra, on the set of darts D.

More informally, one can think of a dart d = (V;, E;,Tx) as a an element
positioned inside the triangle T}, at the node V; and at the edge E; as depicted
in Figure 2.1(a). The dart changes its content and position in the triangulation
structure according to the definition of oy, ¢ = 0,1, 2 operating on d. The «g
and «q iterators “reposition” the dart inside the same triangle while as “moves”
the dart over an edge to the neighbour triangle of T}.

We will also say that a dart has a clockwise or counterclockwise direction
with respect to a triangle as seen from one side of the triangulation. Thus, the
dart d in Figure 2.1(a) is oriented counterclockwise in the triangle as determined
by the direction of the arrow symbolizing the dart. Note that «;(d), ¢ =1,2,3
changes the direction of d from clockwise to counterclockwise, or vice versa,
except when «g is applied to a dart positioned at an edge at the boundary of
the triangulation. We also define the regions “left of d” and “right of d” in the
plane as seen from one side of the triangle and in the direction of the arrow.
Lastly, a dart d = (V;, Ej, Tx,) can also be interpreted as a vector with direction
from V; to the opposite node of V;, that is, to the node V associated with the
triple of the dart &’ = (V/, E;, Ti) = ag(d).

A G-map, and thus a triangulation, has a corresponding labelled graph that
can be considered as the dual of the G-map [15]. The triangulation in Figure 2.2
consists of three triangles drawn with dashed edges, and the labelled graph is

drawn with bold edges. Each node of the graph corresponds to a dart drawn
as an arrow close to the node and pointing in the direction of the node. The
labelled edges incident with! each node correspond to the a-iterators applied
to the dart that correspond to that node. For example, an edge labelled “1”
links two nodes of the graph corresponding to two darts d; and d; that are
linked through the a-iterator; ai(d;) = d; and a1(d;) = d;. The dashed edges
labelled “2” correspond to fixed points of the ag-iterator at the boundary of the
triangulation. The graph is regular of degree three in the sense that every node
has exactly three edges incident with it.

Figure 2.2: A triangulation with three triangles, and its corresponding labelled
graph defined as the dual of the G-map.

(a.a,)(d) (ac.a,)(d) CALAIC)

O-orhit 1-orbit 2-orbit

Figure 2.3: The k-orbits, £k = 0,1,2, of a dart d in a G-map

1'We say that an edge with nodes V; and Vj; as endpoints is incident with V; and V.

In the following we denote a composition o;(a;(--- ag(d)---)) by o; oo

-0 ag(d). Note that a composition «; o «;(d), with ¢ # j, does not change

the orientation of d inside a triangle from clockwise to counterclockwise, or vice

versa, unless the composition involves aa(d) where d is at the boundary of the

triangulation. Note also the following interesting properties that we will use
later when composing iterators operating on triangulations.

e Applying the composition «g o ay repeatedly iterates through the nodes
and the edges of a triangle.

e Applying the composition ay o ag repeatedly iterates through all edges
and triangles sharing a common node.

e Applying the composition «q o ag repeatedly iterates around an edge by
visiting the two nodes of the edge and the two triangles sharing the edge.

o If the order of a composition a; o a; is swapped to «; o o, the iteration
goes in the opposite direction.

In addition we have,

~

d, 1=0,1,2, and

(awpoaa(d))® = agoagoagoas(d) =d.

a; o a;(d

V)

Definition 2.1 (Orbit and k-orbit, £ =0,1,2) Let {a;} be one, two or all
three a-iterators of a G-map G(D, g, a1, a2) and let d € D. An orbit ({a;}) (d)
of a dart d is the set of all darts in D that can be reached by successively applying
compositions of a-iterators in {a;} in any order starting from d. The k-orbit of
a dart d in a G-map is defined as the orbit (o, «j, i,5 # k, i #) (d).

Thus, the 0-orbit, (a1, as) (d), and the 1-orbit, {ag, a2) (d), is the set of all
darts around a node and around an edge respectively. The 2-orbit, (g,) (d),
is the set of all darts inside a triangle; see Figure 2.3. We observe that the orbit
(o, a1,) (d), d being any dart of D, is the set of all darts in D provided that
all triangles in the triangulation associated with G are connected edge by edge.
Thus, all the topological elements, nodes, edges and triangles, of a triangulation
can be reached by applying the orbit (ag, a1, as) (d) starting from an arbitrary
dart d = (Vi, B, Tk).

The concept of darts and a-iterators can be generalized to arbitrary dimen-
sions n such that for an n-G-map we have iterators oy, ¢ = 0,...,n. For
example, for n = 3 the topology of tetrahedrizations can be modelled by associ-
ating a dart with a quadruple, (node, edge, triangle, tetrahedron), and iterators
a;, 1 =0,1,2,3, and compositions of them can be used for navigating in the
topology structure as similarly described above for triangulations. Also, arbi-
trary boundary based (B-rep) models can be modelled by G-maps; that is, faces
need not be triangles and volumes need not be tetrahedra.

The a-iterators are basically the only traversal operators needed on a trian-
gulation. Thus they can be used as an interface to arbitrary data structures,
and generic algorithms for navigating in the topology can be based solely on
these iterators. By compositions c; o aj o - - - o ag(d) it is then possible to build
any traversal operator needed by an application. In Section 3 we specify in
detail how this can be implemented generically, using function templates in the
C++ programming language.

2.2 The Half-Edge Data Structure

There are many possible topological structures, or data structures, for repre-
senting triangulations on computers. A data structure must be chosen in view of
the needs and requirements in the actual application. When analyzing different
data structures one always faces a trade-off between storage requirements and
efficiency of carrying out topological and geometric operations. For example, for
visualization purposes one needs a data structure with fast access to data and
sufficient topological information for traversing the topology when extracting
sequences of triangles for the visualization system. This will normally require
more storage than a data structure used only for storing a triangulation in a
database. In a real application one might need more than one data structure
and tools for mapping one to the other. A detailed analysis of different data
structures for triangulations is given in [§].

The notion of half-edge as the basic topological entity for boundary based
topological representations was introduced by Weiler [27]. The principle is to
split each edge of a triangle into two directed half-edges, each of which are
oriented opposite to the other. Hence, we can think of a half-edge as belonging
to exactly one triangle, and the three half-edges of a triangle can be oriented
counterclockwise around the triangle as seen from one side of the triangulation.
A half-edge has its source node where it starts from, and its target node where it
points to. In Figure 2.4(a) is shown a half-edge representation associated with
a triangulation with six triangles. By graph terms this data structure reflects a
planar directed multigraph [17].

A minimal pointer structure, minimal in the sense of storage requirement
while maintaining “sufficient” information for topological operators, is shown in
Figure 2.4(b) for two of the triangles. Each half-edge has a pointer to the node
it starts from, a pointer to the next half-edge in the triangle, in counterclockwise
direction, and a pointer to its “twin-edge” belonging to a neighbour triangle.

When using object-oriented programming languages as C++ and Java for
implementing data structures for triangulations, it is natural to think of the
topological entities nodes, edges and triangles as classes. For example, the half-
edge data structure would be represented as a node class, a half-edge class and
possibly a triangle class. Figure 2.5 depicts a class diagram for a half-edge data
structure.

The triangle class consists of a pointer to one of its half-edges, a half-edge
class has a pointer to its source node, and pointers to the next half-edge in
the triangle and to its twin-edge in the adjacent triangle. The node class may

~~
&

(b)

i

Figure 2.4: Half-edge data structure

Node

1
(twin edge) (next edge in triangle)
1

1
g d)

1

Triangle

Triangulation

Figure 2.5: Class diagram for the half-edge data structure

carry its geometric positional information in the Euclidean space. In addition,
we may have a triangulation class which contains a list of pointers to triangles.
We also need member functions in the classes such that their information is
accessible from “outside” the classes. For the half-edge class this would typically
be getSourceNode, getNextHalfEdge, and getTwinEdge.

Note that a half-edge has its counterpart in a G-map as a dart, say d;. Thus,
the function GetNextHalfEdge has its counterpart in the G-map as the compo-
sition ay o ag(d;), and likewise, the function getTwinEdge has its counterpart in
the composition ag o ag(d;). We will elaborate further on this when designing
generic functions for triangulations in the sequel.

3 Triangulation Template Library (TTL)

The concept of G-maps introduced in the previous section provides a simple
but vigorous algebraic tool for modelling the topology of triangulations. It is
well founded on a few clear concepts: one single topological element, the dart,
and iterators ag, a1 and a9 operating on the set of darts for navigating in the
topology structure. G-maps’ algebraic definition enables generic implementa-
tion such that algorithms can be clearly separated from the underlying data
structure.

An object-oriented design based on G-maps was presented in [7] for topo-
logical kernels in 3D geological modelling. The dart was implemented as an
abstract base class in C++ with a-iterators as pure virtual member functions.
The topological kernel was adapted to the application data structure by deriving
a class from the abstract dart class and implementing the a-iterators with ac-
cess to the actual data structure. The drawbacks with this solution are that the
application must rely on a fixed limited interface of the abstract base class, and
that dynamic type checking when using class inheritance slows down topological
operations [25].

Another approach, without class inheritance, was discussed by Arge [1] with
the aim of making a clear distinction between topology and geometric embed-
ding information of triangulations. A scheme was provided for the application
programmer to adapt algorithms based on G-maps to arbitrary data structures
for triangulations.

In the following, we extend these ideas and suggest a generic library for
triangulations implemented using the concept of function templates in C++ [25].
The generic library, which we denote TTL (Triangulation Template Library),
communicates with the application data structure by means of the dart algebra
of G-maps outlined in Section 2.1 through an interface which is provided by the
application programmer; see Figure 3.1. Thus, the TTL is totally independent of
the underlying data structure. This is in contrast to the traditional rigid design
of triangulation software with algorithms working directly on a specific data
structure as depicted in Figure 3.2. Implementation of the interface between
the TTL and the application data structure is exemplified using the half-edge
data structure described in Section 2.2.

10

Application

v

Triangulation

TemplateLibrary (TTL)
(Generic algorithms based on G-maps)

Topological elements: Darts D = {d}
lteratorsa,:D - D, i=0,12

v v

Interface to application data structure

Implements Dart and a-iterators

v

Application Data Structure

Figure 3.1: Generic design of triangulation software using G-maps

Application

v

Algorithms on triangul ations

v

Fixed Application Data Structure
(e.g. half-edge data structure)

Figure 3.2: Traditional rigid design of triangulation software

11

3.1 Topological Queries

One class of topological operations on a triangulation consists of functions that
are pure queries on the topology structure. A number of such functions are
needed in commercial triangulation software, such as accessing edges incident
with a given node, finding triangles adjacent to a given triangle, traversing the
boundary of the triangulation, etc. These queries can easily be implemented
generically in the TTL using the concepts of darts and a-iterators in G-maps.

We start with a very simple function, that of deciding if an edge of a triangle
is at the boundary of the triangulation. Recall from the algebraic description of
G-maps in Section 2.1 that we allowed for fixed points for the as-iterator. Thus,
if an edge F; of a dart d = (V;, E;,T},) is at the boundary of the triangulation,
then aa(d) = d. A pseudo code for a function isBoundaryEdge that finds if Ej
is a boundary edge can be written simply as:

if as(d) ==
return TRUE
else
return FALSE

Note that the behaviour of this function is not affected by how the incoming
dart is implemented, that is, how nodes, edges and triangles of the triangulation
are represented in the actual data structure. This suggests that a C++ function
template defines isBoundaryEdge [18]. If, for a certain data structure, the dart
is defined as a class in C++ and the ag-iterator is implemented as a member
function alpha? of the dart class, then the algorithm above can be implemented
generically using a function template parametrized on a dart type.

template <class DartType>
bool isBoundaryEdge(const DartType& dart) {
DartType dart_iter = dart;
if (dart_iter.alpha2() == dart)
return true;
else
return false;

This generic function can be used by applications based on any data structure
for triangulations if a proper implementation of a dart class is provided by the
application as an interface to the actual data structure. The function template
expects that a member function alpha?2 is present in the dart class and should
return a dart as defined by the ag-iterator. In addition, the function template
expects a copy constructor and a boolean operator== for comparing dart ob-
jects. According to the definition of a fixed point, alpha2 should leave the
dart unchanged if the edge associated with the dart is at the boundary of the
triangulation.

12

Similarly, a family of other topological queries can be implemented as func-
tion templates. Different queries will require that different member functions
are implemented in the dart class. But in general, for topological queries where
the topology of the triangulation structure is not changed, only the a-iterators
need to be present, in addition to standard class member functions such as
constructors, assignment operators and the like. The code listing in Figure 3.3
shows an example of a dart class that can serve as an interface between the TTL
and the half-edge data structure. The member functions alphaO, alphal and
alpha?2 correspond to the iterators ag, oy and ag respectively. It is assumed
that a class HalfEdge is implemented with member functions getNextHalfEdge
and getTwinEdge as explained in Section 2.2.

The data members of the dart class consist of a pointer to a half-edge and
a boolean variable indicating whether the dart is positioned at the source node
of the half-edge or at the target node of the half-edge. The a-iterators change
the content of the dart and return a reference to the dart itself. This is for
convenience, as the function templates become more compact and are easier to
write; see isBoundaryEdge above. Thus, the dart is implemented as a dynamic
element which changes its content and position in the triangulation through the
a-iterators. The member function alphaO, which corresponds to the ag-iterator,
just switches the boolean variable dir_ such that the dart is repositioned to the
other node of the edge. The member functions alphal and alpha2 need some
more operations to carry out the a; and oo operations. Note that alpha2 as-
sumes that HalfEdge: : getTwinEdge returns NULL if the edge is at the boundary
of the triangulation. This corresponds to a fixed point of the as-iterator.

The simple exercise outlined above also applies for other boundary based
models where faces are not necessarily triangles. The only assumption above
about faces being triangles is the member function alphal of the dart class
in Figure 3.3, which must be modified slightly to handle faces with arbitrary
number of edges.

In addition to isBoundaryEdge a number of other topological queries are
needed in an application. The following simple functions are parametrized on
a dart type and will work properly if the dart is implemented as shown in
Figure 3.3.

® bool isBoundaryTriangle(const DartType& d);
The given dart d = (V;, E;j,Ty) is an arbitrary one positioned in the tri-
angle Ty, to be examined. Edges are checked as in isBoundaryEdge above
and the composition aj o ag(d) is used to reposition the dart in the 2-orbit
to the next edge in the triangle.

e bool isBoundaryNode(const DartType& d);
The composition a; o aa(d) repositions the dart in the 0-orbit to an edge
of the next triangle that has the node of the given dart as a member. The
node is at the boundary of the triangulation if one of the edges is. Each
edge is checked as explained previously.

13

class Dpart {
private:
HalfEdge* edge_;
bool dir_;

public:
// Constructors and destructors
Dart& operator= (const Dart& dart) {. . .} // assignment
bool operator==(const Dart& dart) const {
if (dart.edge_ == edge_ && dart.dir_ == dir_)
return true;

return false;

}

bool operator!=(const Dart& dart) const {
return !(dart==*this);

}

Dart& alphaO0() {dir_ = !dir_; return *this;}

Dart& alphal() {

if (dir_ == true) {
edge_ = edge_->getNextEdgeInFace()->getNextEdgeInFace();

else
edge_ = edge_->getNextEdgeInFace();
dir_ = !'dir_;

return *this;

}

Dart& alpha2() {
// Check if the dart is on the boundary. If yes, the dart
// will not be changed.
if (edge_->getTwinEdge()) { // Check if on boundary
edge_ = edge_->getTwindEdge();
dir_ = !'dir_;
}

return *this;

Figure 3.3: Example of a dart class for the half-edge data structure.

14

e int getDegree0fNode(const DartType& d);
The degree (or valency) of a node V; in a triangulation, is defined as the
number of edges incident with V;, that is, the number of edges joining
V; with another node. The edges are counted by counting the number of
a9 o a7 compositions that can be done in the 0-orbit until the given dart
is reached again.

The last function is slightly more involved since the node may be at the
boundary of the triangulation, in which case a fixed point for the as-iteration
is reached. Assuming that the actual node is not at the boundary, the function
can be implemented as:

template <class DartType>
int getDegreeOfNode(const DartType& dart) {
DartType dart_iter = dart;
int degree = 0;
do {
dart_iter.alphal().alpha2();
++degree;
} while (dart_iter !'= dart);
return degree;

Other queries commonly present in triangulation software are functions that
return topological elements from the triangulation structure. If a fixed number
of topological elements should be returned, for example three triangles T4, T5
and T3 adjacent to a given triangle, then the triangles can be returned by a
function template as three darts dy1, dio and dyg that have Ty, T, and T3 as
members of their respective dart triples. The declaration may read as follows:

e void getAdjacentTriangles(constDartType&d,
DartType&dtl, DartType& dt2, DartType& dt3);
If the given triangle is at the boundary of the triangulation, one or more of
the returned darts will indicate a “NULL object”. A default constructor
may prepare such an object, and a boolean function Dart: : isNull() may
indicate if the dart is a NULL object.

The class template 1ist in STL, The Standard Template Library which is
part of the C++ standard, can be used if an unknown number of topological el-
ements should be given or returned from a function. Still, the function template
can be parametrized on a dart type only. A function for finding the boundary
of a triangulation may be declared thus:

e void getBoundary(const DartType& d,
list<DartType>& boundary) ;
This function assumes that a dart at the boundary of the triangulation is
given as input. The 0-orbit at each boundary node is iterated with ag oy

15

compositions and the function returns an STL list of darts representing
all the edges at the boundary. (Alternatively, the list type can also be
parametrized by the function template.)

We have parametrized the function templates on a dart type only to keep the
interfaces clean and to limit the functionality needed on the application side.
It may well turn out that other solutions are more efficient. An alternative
to returning topological elements from the functions as darts is to parametrize
the function templates on NodeType, EdgeType and TriangleType. The actual
data structure needs not contain these types, but there must be a mechanism,
for example in the dart class, for retrieving a reference (or a pointer) to a node,
an edge or a triangle from the triple represented by a dart. Thus, getBoundary
above may return list<EdgeType*> representing the boundary as a list of
pointers to edges. This would save memory and avoid copying of dart objects,
but it would require some more implementation by the application programmer.

The k-orbits in Definition 2.1 represent circular sequences in the sense that
when traversing the darts of an orbit in one direction the same dart is reached
again (though this is not the case for a 0-orbit at a boundary node). Thus, they
are different from linear sequences supported by iterators and container classes
in STL. The simple concept of circulators [10] can be used to integrate such
circular sequences in the framework of STL. Traversal of darts in a k-orbit can
then be done using the same syntax as when traversing a list or a vector in STL,
and moreover, generic algorithms in STL can operate on the k-orbits.

3.2 Geometric Queries

In the previous section, only topological information was used by the function
templates, and the topological operations required in the dart class was limited
to the a-iterators only. In this section the TTL is extended to handle geometric
positional embedding information of nodes in the triangulation structure. The
geometric operations will still be at a query level in the sense that no changes of
the triangulation take place through the operations. Topological and geometric
operations that modify the triangulation will be discussed in Section 3.3.

A simple example involving geometric calculations is that of finding if a
given point p is located inside a given triangle. This operation is needed in
many contexts, for example when evaluating surface triangulations, and when
inserting a new point into an existing triangulation. The latter is dealt with in
Section 4 in connection with an incremental Delaunay triangulation algorithm.
Assume that a dart d = (V;, Ej, Ty,) is oriented counterclockwise in the triangle
T. Let H(d) denote the half-plane to the left of d, and containing V; and the
opposite node to V;, that is, the node V; associated with the dart d’ = ao(d).
The region defined by the intersection

H(d) N H (a1 0 ap(d)) N H (g 0 a1 (d)) (3.1)

is the triangle T; where the dart d is positioned. Thus, p is located in T; if and
only if p lies in the three half-planes of expression (3.1). The query p € H(d)

16

can be implemented by evaluating the sign of a determinant. Let (x1,y1) and
(z2,y2) be the positions in the plane of V; and V/, and let p = (x3,y3). The
determinant,

1 y1 1
T2 Y2 1 | =wm1ys — 21y3 — T2y1 + 22y3 + T3Y1 — T3Ye2,
3 y3 1

evaluates to zero if p is on the line between V; and V/, and it is greater than
zero if p is to the left of the line between V; and V/. There are many pos-
sible ways of solving the point location problem, and similar problems, using
function templates. In principle there are two roads ahead. One leads to im-
plementing functionality like the query p € H(d) inside the TTL. Using the
same approach as for topological query operations in Section 3.1, the geomet-
ric operations required in the dart class could simply be the access functions,
double Dart::z(), and likewise for y and z, which return the position in space
of a node associated with a dart. The TTL would then implement standard
computational geometry functionality necessary for executing the library func-
tions. The problem with this approach is that the application programmer must
rely on a fixed computational geometry library hidden inside the TTL.

The other approach leads to a higher level of abstraction by requiring that
(low level) computational geometry functionality be provided from outside the
TTL. It is then the application’s task to implement this functionality. This ap-
proach suggests that the query p € H(d) be implemented as a boolean function
inLeftHalfPlane (Point2d&) in the dart class®>. Although some more imple-
mentation work is required by the application programmer, the latter approach
might be preferable for several reasons. The most important is that the ap-
plication programmer can choose the level of accuracy. Tests like p € H(d)
can be implemented simply as above by evaluating the sign of a determinant.
But the test involves floating point arithmetic which may lead to an incorrect
result due to round-off errors when the determinant is near zero. The problem
can be solved using exact arithmetic, but then the speed would probably be
reduced by orders of magnitude. Shewchuk [22] describes different techniques
for solving the problem above and related problems involving point and vector
algebra, with different levels of accuracy. A function inTriangle can now be
implemented in C++ thus:

template <class Point2dType, class DartType>
bool inTriangle(const Point2dType& point, DartType& dart) {
for (int 1 = 0; i < 3; i++) {
if (!dart.inLeftHalfPlane(point))
return false;
dart.alphaO().alphal();

2The function inLeftHalfPlane(...) could also be a free function, a function in a name
space, or in a traits class

17

return true;

}

The function template is parametrized on a point type in addition to a dart type.
The triangle in question is given as a dart that has the triangle as a member
of its triple. A boolean function inlLeftHalfPlane must be implemented in
the dart class and should return false if the given point is not positioned to
the left of the dart. The function also assumes that the given dart is oriented
counterclockwise in the triangle.

A function common in triangulation software is that of locating the triangle
in a triangulation containing a given point. It can be implemented based on
the same functionality in the dart class as required by inTriangle above. Note
first how fixed points for the ag-iterator at the boundary of the triangulation
can be handled. If for some dart d;, we have as(dp) = dp, then dp, is positioned
at a boundary edge. If d is oriented counterclockwise in the triangle and the
boundary of the triangulation is convex, then p lies outside the triangulation if
p ¢ H(dp). The following takes as input a point p in the plane and an arbitrary
dart d; = (V;, E;,T)) oriented counterclockwise in Tp. It is assumed that a
half-plane H(d;) is defined as above.

Algorithm 3.1 (Dart locateTriangle(Point p, Dart d;, bool found))

1. dstart = d;
2. if p € H(d;) // is p in the half-plane H(d;)?
3. d; = aq o ap(d;) // next edge counterclockwise (ccw.)
4 if d; == dstart
5. found = TRUE, RETURN d; // inside triangle of d;
6. else // try to move to the adjacent triangle
7. if ao(d;) ==d; // check if on boundary
8. found = FALSE, RETURN d; // outside triangulation
9. dstart = ap © az(d;)
10. d; = ay o a(d;) // next edge ccw. in adjacent triangle

11. GOTO Step 2

Figure 3.4 shows how the given dart d; is successively repositioned until it
reaches the triangle where p is located. The composition a; o ag(d;) (Step 3)
moves the dart inside a triangle, and with the composition a0 as(d;) (Step 10),
the dart is moved across an edge of two adjacent triangles and positioned at the
next edge. Since a composition of two a-iterators is used to move the dart, it is

18

Figure 3.4: Localizing a point p starting from a dart d;.

always kept in counterclockwise direction inside a triangle. The dashed darts in
the figure represent dsq,¢ in Step 9. No triangle or half-plane associated with an
edge is ever considered twice. The algorithm terminates with d; in the located
triangle, or it terminates at Step 8 with d; at the boundary if p is outside the
triangulation. In the latter case of Step 8, we have a fixed point, aa(d;) = d;,
and p ¢ H(d;). It is assumed that the boundary of the triangulation is convex
and that there are no holes in the triangulation. A triangle is also located if
p is on an edge or on a node. The algorithm is fast, but it is not robust with
respect to triangles that are degenerate or almost degenerate.

Similarly, a range of methods commonly present in triangulation software can
be implemented generically as function templates based on a limited number of
(primitive) geometric operations required in the interface to the actual data
structure. In addition to inLeftHalfPlane, scalar product and cross product
between vectors (as defined by darts) will suffice to cover a variety of geometric
functions.

3.3 Geometric and Topological Modifiers

The scope so far has been on generic function templates that are queries, in the
sense that the topology and the geometry of the triangulation is not changed
through the operations. Below we discuss how the TTL can be extended to
include operations that modify the topology and the geometric embedding in-
formation of triangulations.

In many applications, for example terrain modelling, the only geometric
embedding information in a tringulation is the 3D positions of nodes. Thus,
a natural extension of the concepts above is to require elementary geometric
modifiers in the dart class, for example, Dart: :setNodeX(realType x), and
likewise for y and z, that modify the position in space of a node associated with
a dart. Together with corresponding access functions and topological query

19

functions based on a-iterators, this would suffice for functions that modify the
geometry of a triangulation.

Topological modifiers are more complex than geometric modifiers. They can
briefly be subdivided into three main categories.

1. Modifiers that preserve all nodes and the number of edges and triangles.
This can be done by swapping edges that are diagonals of strictly convex
quadrilaterals. It is well known that all possible triangulations of a set of
points can be reached by a sequence of edge-swaps starting from an initial
triangulation of the points [11].

2. Modifiers that remove nodes edges and triangles. Removing one of these
elements may also imply removing some of the others. For example, re-
moving an internal edge also implies removing two triangles.

3. Modifiers that add nodes, edges and triangles in a triangulation.

Several extensions of the TTL described previously are necessary to incor-
porate topological modifiers as generic functions, and more effort will be put on
the application programmer to implement counterparts interfacing the actual
data structure.

Topological modifiers can be described algebraically using topological op-
erators based on the concept of sewing in G-maps. These operators establish
the involutions in a G-map, that is, the relationships between darts as defined
through a-iterators. Two darts d; and d; are said to be k-sewed, or ay-sewed,
in a G-map if ax(d;) = d; (and ag(d;) = d;). This may suggest that topo-
logical modifiers in the TTL can be based on sewing-operators if it is possible
to implement associated counterparts in the interface to the application data
structure.

Let us analyze the edge-swapping operation mentioned above algebraically
through sewing-operators. Figure 3.5 shows two triangles forming a convex
quadrilateral in a triangulation. The edge E; with nodes V; and V2 can be
swapped to become a new edge E; with nodes V3 and V4. Apart from assigning
new nodes to E, a total of six sewing-operations are required to perform the
edge-swapping: each unprimed dart d; in the figure must be aj-sewed with the
primed dart df, i« = 1,...,6 for establishing a correct topology. This involves
all darts of the two triangles. Only aq-sewings are involved in the swapping,
ap-sewings and as-sewings are all maintained.

If we try to implement these lower level sewing-operators in an interface
to the half-edge data structure, we may face severe problems. An attempt
to implement a function like sewl(d;, ds), that establishes the relationship
aq(dy) = dg and ay(d2) = dy, would destroy the pointer structure and create
an intermediate topological representation that is not legal for a triangulation.

Another approach is to require that a higher level function swapEdge (Dart d),
that swaps an edge associated with a dart, be implemented in the interface to
the data structure (and not as part of the TTL). The responsibility for lower
level operations carrying out the edge-swap on the actual data structure would

20

Figure 3.5: Swapping an edge in a triangulation

then be left to the application programmer. Accompanied by a boolean func-
tion swappableEdge(Dart d) that checks if the edge is a diagonal in a strictly
convex quadrilateral, this would be sufficient for algorithms in the TTL based
on edge-swapping. We will use this approach for the incremental Delaunay
triangulation algorithm in the next section.

Modifiers that remove nodes, edges and triangles from a triangulation can
also be handled the TTL, as well as modifiers that create and add topological
elements. But there are many possible ways of defining proper syntax and se-
mantics for the interplay between the TTL on the one side, and the application
with the actual data structure on the other. Existing nodes, edges and trian-
gles can be passed as dart objects when remove-operations are required on the
application side, and function templates in the TTL can be parametrized on
NodeType, EdgeType, and TriangleType when create-operations are required
(though these topological elements need not be part of the actual data struc-
ture). Thus, the application programmer will control the content of these topo-
logical types, as well as creating and deleting them. A new interface channel
between the TTL and the application would also be needed in addition to the
dart class for creating and deleting nodes, edges and triangles, and to carry
out basic operations based on these types that can be used by higher level op-
erations in the TTL. This can, for example, be supported by a traits class in
C-++ which is passed as a template argument to the generic functions [19]. The
traits class would contain type definitions and static functions like createNode
and deleteNode, and likewise for edge and triangle. Another function would
be splitTriangle(DartType& d, NodeType& n) for inserting a new node by

21

splitting a given triangle associated with a dart into three new triangles. The
latter will be used by the generic Delaunay triangulation algorithm that follows.

4 Generic Delaunay Triangulation

Delaunay triangulations are the most frequently used constructions for making
triangulations from a set of points in the plane. They have a nice equiangular
property in the sense that they aim at avoiding long and thin triangles, which
may cause numerical unstability in many algorithms. In this section we briefly
summarize some of the classical theory of Delaunay triangulations and use these
results directly to obtain a generic algorithm for their construction.

4.1 Theoretical Foundation

A Delaunay triangulation A of a set of points P in the plane maximizes the
minimum interior angle of the triangles which have their nodes in P. Moreover,
it is the triangulation of P that maximizes the lexicographical measure of an
indicator vector I(A), sorted non-decreasing, where each entry a; of the vector
represents the smallest interior angle of each triangle in the triangulation,

I(A) :(alaa@a'-' ,04|T|); Q; <aj7 Z.<ja

where |T'| is the number of triangles in A. We say that a vector I is lexico-
graphically larger than a vector I’ if for some integer m, we have «; = o for
i=1,...,m— 1 while a,,, > «,,. So, among all possible triangulations of a
point set P a Delaunay triangulation is one that has the largest indicator vector
measured lexicographically. It is assumed that the boundary edges of the tri-
angulations form the convex hull® of P. The edges and triangles of a Delaunay
triangulation are called Delaunay edges and Delaunay triangles.

An equivalent characterization is that the Delaunay triangulation of a point
set P is the straight line dual of the Voronoi diagram of P; see for example Law-
son [12] or Preparata & Shamos [20]. Yet another equivalent characterization
of a Delaunay triangulation is that the circumcircle of each triangle does not
contain any points from P in its interior.

Figure 4.1(a) shows two triangles of a triangulation that is not Delaunay
since the point p; is interior to the circumcircle of one of the triangles. This is
called the circumcircle test when applied to two triangles forming a quadrilateral
as in the figure. It is easy to show that if the edge E; is swapped to become a
new edge E! with nodes p; and po, the circumcircle test would hold for the two
triangles; see Figure 4.1(b). An edge is called locally optimal if the decision is
not to swap it according to the circumcircle test. An edge is also called locally
optimal if it cannot be swapped, that is, if the edge is at the boundary of the
triangulation or if it is a diagonal in a quadrilateral that is not strictly convex.

An algorithmic approach to determine if and edge E; is locally optimal is
to examine the interior angles o and 3 opposite to E; in the quadrilateral. If

3In this context the convex hull of P is the boundary of the smallest convex set of P.

22

Figure 4.1: Circumcircle test. The edge E; in (a) is swapped to E in (b) and
becomes locally optimal.

o+ (B > w then E; is not locally optimal if it is a diagonal in a strictly convex
quadrilateral. If the four points forming the quadrilateral lie on a common
circle, then a4+ 3 = 7 and the choice of diagonal is arbitrary. This is called a
neutral case for the circumcircle test.

The following theorem establishes the theoretical foundation for the Delau-
nay triangulation algorithm, which will be outlined in the sequel. The proof can
be found in [12].

Theorem 4.1 A triangulation A of a set of points P is a Delaunay triangula-
tion if and only if all edges of A are locally optimal.

It can be shown that when swapping the edge E; in Figure 4.1, the minimum
interior angle of the two triangles in the quadrilateral becomes larger. Thus,
the lexicographical measure of the indicator vector of a triangulation also be-
comes larger each time an edge-swap occurs. Suppose now that edge-swapping
is applied repeatedly to edges that are not locally optimal in an arbitrary tri-
angulation. Since the number of possible triangulations of a finite point set
is finite, this process converges to a final triangulation A* whose edges are all
locally optimal. Then, by Theorem 4.1, A* must be a Delaunay triangulation.
Moreover, if there are no neutral cases in a Delaunay triangulation of a point
set P, one can also show that a Delaunay triangulation is unique and that its
indicator vector is lexicographically maximum.

4.2 Incremental Delaunay Triangulation

The generic triangulation algorithm, which will be outlined below, is an incre-
mental Delaunay triangulation algorithm [6, 13, 26]. These algorithms start
with an initial triangulation and insert all points from a point set P one by one
into the triangulation. After each point insertion the triangulation is updated

23

to be Delaunay, such that all triangles satisfy the circumcircle test. The initial
triangulation can, for example, be two (large) triangles enclosing all points of
P.

We will use the following scheme to insert a point p into an existing Delaunay
triangulation Ay with N nodes to obtain a new Delaunay triangulation A1
with N + 1 nodes (consult Figure 4.5):

1. Locate the triangle T; in Ay that contains p.

2. Split T; into three triangles by making three new edges between p and the
nodes of T; and thus obtain a new triangulation A’y ;.

3. Apply a swapping procedure based on the circumcircle test to swap edges
that are not locally optimal in A’y ; until all edges are locally optimal.
Then by Theorem 4.1 the final triangulation Apy41 is Delaunay.

Fortunately, the swapping procedure in Step 3 appears to be a local process
such that only edges in a local neighbourhood around p need to be examined.
The following results lead to a swapping procedure which produces the new
Delaunay triangulation Apy1. (See for example [6] or [8] for proofs).

Theorem 4.2 Let Ani1 be a Delaunay triangulation obtained by inserting a
point p into a Delaunay triangulation An. Then all new edges of Any1 will
have p as a common node.

This implies that the region of Ay that needs to be modified by the insertion
of p is connected and star-shaped as seen from p. Moreover, the following
theorem state that the three new edges created in Step 2 are already Delaunay
edges.

Theorem 4.3 Assume p is inserted interior to a triangle T; in a Delaunay
triangulation An. Then the three edges obtained by connecting p to the nodes
of T; are Delaunay edges of An41.

Finally, following from Theorem 4.2 is a theorem which implies that the
swapping procedure in Step 3 can be done in linear time.

Theorem 4.4 An edge will never be swapped more than once as the result of
applying the circumcircle test after insertion of a point into a Delaunay trian-
gulation.

We are now in a position to give the algorithmic details of Step 1, 2 and 3
above. Figure 4.2(b) shows the situation after point p has been inserted into
an existing Delaunay triangulation Ay (Figure 4.2(a)) in Step 2 above, but
before the proceeding step of swapping edges. Note first that the three new
edges created in Step 2 are locally optimal since they are diagonals of non-
convex quadrilaterals. Also, those three edges are Delaunay edges in Ayy1 by
Theorem 4.3, and it follows from the proceeding theorem that they will never

24

@ (b) y

8

L, 7o

Figure 4.2: Illustration for Algorithm 4.2 when starting the swapping procedure.

be swapped. The only edges that are candidates for swapping when starting
the swapping procedure, i.e., edges that might not be locally optimal, are those
associated with the darts dy, do and ds in the figure. All the other edges in
the triangulation are diagonals of the same quadrilaterals as they were before
inserting p into Ay, and since Ay is a Delaunay triangulation those edges are
locally optimal.

Assume that one of the edges associated with dy, da or d3 in Figure 4.2(b),
say F; associated with d;, is swapped as a result of the circumcircle test. Then
the two edges opposite to d; associated with d; ;1 and d; 2 also become candidates
for swapping since they become diagonals of new quadrilaterals. The other two
edges of the new quadrilateral have already one of their nodes in the insertion
point p, and it follows from the theorems above that they are Delaunay edges
with respect to Any1 and need not be examined again. Thus, when FE; is
swapped it generates exactly two new candidate edges, F; 1 and E; o for swap-
ping. This argument can be repeated for E;; and E; 2, and so forth, such that
the swapping procedure fits into a binary tree structure where each swapped
edge generates exactly two new candidates for swapping.

The pseudocodes that follow make use of the dart algebra of G-maps outlined
in Section 2.1. Implementation in C++ is a straightforward exercise that can
be done similarly to the examples in Section 3.1 and 3.2. It is assumed that a
dart d given as input or output from the generic algorithms is always kept in a
counterclockwise direction inside a triangle. Note that some details, for example
handling fixed points at the boundary, are omitted. The first algorithm, which
is given as input an insertion point p and an arbitrary dart d in the existing
Delaunay triangulation Ay, implements Step 1, 2 and 3 above.

25

Algorithm 4.1 (insertNodeAndSwapDelaunay(Point p, Dart d))

—_

. dy = ttl::locateTriangle(p, d, found)
dg = app::splitTriangle(d;, p)

di =ag 01000007 0az o ai(dy)

- W

da = g 0 a1 0 ag o ay(dp)

o

ds = ag 0 a1 o ag o ap(dp)
ttl::recSwapDelaunay(d;)

ttl::recSwapDelaunay(d2)

© N o

ttl::recSwapDelaunay(ds3)

The prefix “ttl::” at a function call indicates that the function is part
of the generic TTL library, and “app::” indicates that the function must be
present on the application side as an interface to the actual data structure;
see Figure 3.1. In Step 1, Algorithm 3.1 in Section 3.2 is called to locate the
triangle that contains p. The located triangle is represented by the dart d;.
Then the located triangle is split into three new triangles by splitTriangle,
which also delivers a new dart dgy oriented counterclockwise and located at the
insertion point p; see Figure 4.2. The latter function is required in the interface
to the application data structure and is not part of the TTL. Next, the darts
dy, do and dz shown in Figure 4.2 are found by compositions of a-iterators.
The binary tree structure of the swapping process explained above suggests a
recursive scheme for a swapping procedure starting with each of dy, de and ds.
The function recSwapDelaunay takes the darts di, do and ds as input, one at
a time, and swaps recursively edges that are not locally optimal.

Algorithm 4.2 (recSwapDelaunay (Dart d;))
1. if (ttl::circumcircleTest(d;) == OK)
2 RETURN

3. di1 =agoaq(d;)

4

. diyg = (2 0 (g 01 © ag(di)

ot

app: :swapEdge (d;)
6. ttl::recSwapDelaunay (d; 1) // Call this procedure recursively

7. ttl::recSwapDelaunay(d;2) // Call this procedure recursively

26

In Step 1 the circumcircle test is applied to the current edge E; associated
with the dart d;. As indicated by the prefix, it is assumed that the test is
part of the TTL; see Algorithm 4.3 below. The recursion is stopped if E; is
locally optimal. Otherwise, candidate edges for swapping in the next recursion,
represented by the darts d; ;1 and d; 2 opposite to d;, are found by compositions
of a-iterators. After F; is swapped in Step 5, the same procedure is called
again recursively with d;; and d;2. The result is that all edges of the new
triangulation Apxy1 are locally optimal and it follows from Theorem 4.1 that
Apn.1 is a Delaunay triangulation.

Figure 4.4 shows the whole swapping process of Algorithm 4.1 when inserting
p. From (b) to the final triangulation in (e), each picture shows the triangulation
after one new edge has been swapped. As can be seen in (e), the affected region
is connected and all new edges radiate from the insertion point p.

Figure 4.3: Circumcircle test and darts interpreted as vectors.

The circumcircle test in Algorithm 4.2 involves floating point arithmetic
and could have been required on the application side to force the application
programmer to control the level of accuracy of the numerical calculations. We
include the algorithm in the TTL now to show the principle of how darts can
be interpreted as vectors in generic algorithms.

Recall that the edge F; should be swapped if a 4+ 3 > 7. Since o 4 3 < 2,
this is equivalent to sin(a +) < 0 which expands to

sinacos B + cos asin § < 0. (4.1)

This also applies for quadrilaterals that are not convex such that testing for
convexity is not necessary. Suppose that the darts d;, i = 1,2, 3,4 in Figure 4.3
are interpreted as unit vectors. For common notation we assume that the vectors
are defined in 3D space such that the z-components are zero. Let e3 be the unit
vector (0,0,1). Then, sine and cosine of o and @ can be computed by cross
products and scalar products,

27

sina = (dy xd2)-e3

sin,@ = (d3 X d4) - es

cosae = dj-dg

cos@ = ds-ds.
Assume that cross product and scalar product between vectors, represented as
darts, are present on the application side. Let a function crossProduct(d;,d;)
deliver the scalar (d; x dj) - es, that is, the sine of the angle between d; and d;

in accordance with the equations above. The circumcircle test takes a dart d
representing a diagonal edge in a quadrilateral as input:

Algorithm 4.3 (bool circumcircleTest(d))
1. dy = a3 0agoay oas(d)
ds = ag o g 0 azx(d)

ds = agoay(d)

- W

dy =ajoapoai(d)

sin o« =app: : crossProduct (dy, d2)
sin 3 =app: : crossProduct (dg, d4)
cos o =app: :scalarProduct (d;,ds)

cos =app: :scalarProduct (ds, d4)

© ® T o o

if (sinacos B+ cosasinf) <0
10. return OK

11. else

12. return FALSE

Great care should be taken to ensure numerical stability of the swap test.
When there are almost neutral cases, or when points of a quadrilateral are
almost coincident or almost collinear, round-off errors may lead to incorrect
results. For example, cycling may occur and lead to infinite loops in the algo-
rithms. The test can be improved by using multiple and more robust tests [3],
or using exact or “almost exact” arithmetic [22]. Thus, there are some motives
for directing the circumcircle test and other functionality involving numerical
calculations to the application programmer. A solution may be to direct the
tests to the application, but also implement them in the TTL. Then the appli-
cation programmer can choose whether to implement the functions at desired
level of accuracy or call the functions present in the TTL.

28

4.3 Fixing the Boundary

The algorithms outlined above comprise the necessary functionality for an incre-
mental Delaunay triangulation algorithm. Starting with an initial triangulation
created on the application side, Algorithm 4.1 is called repeatedly for all points
in a point set P. The initial triangulation can, for example, be two triangles
forming a rectangle enclosing all points of P as in Figure 4.5(a). Figure 4.5(b)
shows an example of a Delaunay triangulation A(P U B) after all points of P
have been inserted, where B denotes the four points at the boundary.

In most cases one wants the final result to be the Delaunay triangulation
A(P) without nodes at the boundary of the initial triangulation. This implies
that some of the edges near the boundary must be swapped such that the convex
hull of P, conv(P), is formed by triangle edges in A(P). In addition, triangles
with one or two nodes in B must be removed. The triangulation A(P U B) in
Figure 4.5(b) has three regions with different topological cases where edges must
be swapped to form conv(P). The edge E; at the left boundary can be swapped
immediately to become a line segment of Conv(P). At the right boundary both
E; and Es must be swapped (in any order) such that one of them is contained
in conv(P). These are the only topological cases that can occur at the boundary
where conv(P) is not formed by triangle edges in A(P U B), but they can be
“nested” as shown at the lower boundary of A(P U B) in Figure 4.5(b). The
different topological cases can be identified by a generic algorithm in the TTL
based on dart algebra and requires no additional functionality on the application
side than required by the algorithms above. A recursive swapping procedure
must be called each time an edge is swapped. The swapping procedure is similar
to that of Algorithm 4.2, but is somewhat more involved. Swapping an edge
now generates four new candidate edges for swapping, as opposed to two only
in Algorithm 4.2. In addition, some tests are required to avoid infinite loops by
swapping edges to and from the boundary.

Figure 4.5(c) shows the result after the swapping procedure has been run,
and in (d) the final result is shown after triangles at the boundary have been re-
moved. The latter procedure requires a function removeBoundaryTriangle (d)
on the application side, which removes a triangle T} associated with a dart
d = (V;, E;,T),) at the boundary of the triangulation.

4.4 Some Remarks

It can be shown that incremental Delaunay triangulation is of order O(N?) in
the worst case, where N is the number of input points. This is contrary to
O(N log N) which is the theoretical optimal running time for Delaunay trian-
gulation which can be achieved with divide-and-conquer algorithms [6, 13]. But
O(N?) for the incremental approach only occurs for point configurations that
are very rare, and in practical applications, average performance of O(N log N)
or even better is achieved.

For optimal performance the points in P can be sorted in lexicographically
ascending order such that p; = (x;,¥;) < (xj,y;) = p; if and only if z; < z;,

29

or r; = x; and y; < y;. Then the next point to be inserted will be close to
the previous one. By returning a dart from Algorithm 4.1 close to the insertion
point, this dart can be used as input when the algorithm is called again for
the next insertion point. Thus, the average performance of locateTriangle
in Step 1 would be much faster than O(N), which is the time complexity in
general.

In the actual implementation in C++ it was adopted as a general rule that
a dart outside a quadrilateral should not be changed as the result of swapping
the diagonal of the quadrilateral, while darts inside the quadrilateral could be
changed. This was necessary for some of the data structures that were adapted
to the generic Delaunay triangulation algorithm during testing. Figure 4.2(b) is
in agreement with this rule as the darts dy,; and dy 2 are “hidden” outside the
quadrilateral where the edge associated with d; is swapped.

5 Conclusion

Generic algorithms for triangulations can be founded on sound algebraic con-
cepts as defined by generalized maps, or G-maps. G-maps provide an algebra
with all the necessary functions for navigating in the topology of a triangulation
at an abstract level independent of a specific underlying data structure. The few
and clear basic concepts that G-maps are based on are intuitive and easy to deal
with for application programmers. Implementation by means of function tem-
plates in C++ separates algorithms from data structures such that applications
can adapt arbitrary data structures for triangulations to a generic library, which
we have called TTL. Among many useful tools that have been implemented in
the TTL is an incremental Dealaunay triangulation algorithm. Algorithms in
the TTL are compact and easy to read, and thus, easy to maintain and extend
with new functionality. Interfaces between the TTL and application data struc-
tures are clean and narrow with only a few parameters in the argument lists. In
fact, many algorithms in the TTL pass only one single object in their interfaces:
a dart, which represents a (node, edge, triangle)-triple.

The solutions we suggest run without significant loss of efficiency compared
to algorithms that work directly on a specific data structure. In particular, the
basic topological traversal operators, ag, ay and ag of G-maps that dominate the
running time of many algorithms, can be implemented as C++ inline functions
in a dart class. Compared to abstraction through class inheritance and dynamic
binding the algorithms in the TTL are much more efficient.

Acknowledgments This work was supported by the Research Council of Nor-
way under the research program 117644/223, "DYNAMAP II, Management
and Use of Geodata”. The author thanks Yvon Halbwachs, Rune Aasgaard
and Thomas Engh Sevaldrud for fruitful discussions on generic programming in
C++ and for providing many useful hints when implementing the TTL.

30

Figure 4.4: Swapping procedure when inserting a point p into a Delaunay tri-
angulation. From (b) to the final triangulation in (e), each picture shows the
triangulation after one new edge has been swapped.

31

(@) (b)

X X X
X X
E,
X X X
X
X
X E E,
X x Xy >
(©
(d)

Figure 4.5: Ilustration of the incremental Delaunay triangulation algorithm.
(a): two triangles enclosing the point set P; (b): all points in P are inserted;
(c): forming the convex hull of P by swapping edges away from the boundary;

(d): the final Delaunay triangulation. The bullets indicate vertices of the convex
hull of P.

32

References

1]

2]

[7]

E. Arge. Siscat triangulation, ideas for new design. Technical report, Nu-
merical Objects AS, 1997.

Y. Bertrand and J.-F. Dufourd. Algebraic specification of a 3d-modeller
based on hypermaps. Graphical Models and Image Processing, 56(1):29-60,
January 1994.

A. K. Cline and R. J. Renka. A storage-efficient method for construction
of a Thiessen triangulation. Rocky Mountain J. Math., 14:119-140, 1984.

M. Dehlen and M. Fimland. Constructing hierarchical terrain models by
edge ordering over triangulations. In Proceeding from the 7th Scandinavian
Research Conference on Geographical Information Science (ScanGIS’99),
pages 25-38, Aalborg, Denmark, June 1999.

P. L. George and H. Borouchaki. Delaunay Triangulation and Meshing:
Application to Finite Elements. Hermes, Paris, 1998.

L. Guibas and J. Stolfi. Primitives for the manipulation of general subdi-
visions and the computation of Voronoi diagrams. ACM Transaction on
Graphics, 4(2):74-123, 1985.

Y. Halbwachs and . Hjelle. Generalized maps in geological modeling:
Object-oriented design of topological kernels. In H. P. Langtangen, A. M.
Bruaset, and E. Quak, editors, Advances in Software Tools for Scientific
Computing, pages 339-356. Springer Verlag, December 1999.

@. Hjelle. Triangulations and triangle-based surfaces. Lecture notes, Uni-
versity of Oslo, 2000. (In preparation).

H. Hoppe. Smooth view-dependent level-of-detail control and its applica-
tions to terrain rendering. In IEEFE Visualization’98, pages 35—42, 1998.

L. Kettner. Designing a data structure for polyhedral surfaces. In The 14th
ACM Symp. On Computational Geometry, pages 146-154, Minneapolis,
Minnesota, June 1998.

C. L. Lawson. Transforming triangulations. Discrete Mathematics, 3:365—
372, 1972.

C. L. Lawson. Software for C' surface interpolation. In J. Rice, editor,
Mathematical Software III, New York, 1977. Academic Press.

D. T. Lee and B. J. Schachter. Two algorithms for constructing a De-
launay triangulation. International Journal of Computer and Information

Sciences, 9(3):219-242, 1980.

33

[14]

[15]

[16]

P. Lienhardt. Subdivision of n-dimensional spaces and n-dimensional gen-
eralized maps. In 5th ACM Symposium on Computational Geometry, pages
228-236, Saarbrucken, Germany, 1989.

P. Lienhardt. Topological models for boundary representation: A survey.
Technical report, University of Luis Pasteur, Strasbourg, February 1990.

P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A.
Turner. Real-time, continuous level of detail rendering of height fields. In
ACM SIGGRAPH 96, pages 109-118, August 1996.

J. A. Mchugh. Algorithmic Graph Theory. Prentice-Hall Inc., 1990.

S. Meyers. Effective C++, 50 Specific Ways to Improve Your Programs
and Designs. Addison-Wesley, Reading, MA, 1992.

N. Myers. A new and useful template technique: Traits. C++ Report,
7(5):32-35, June 1995.

F. P. Preparata and M. I. Shamos. Computational Geometry, an Introduc-
tion. Springer-Verlag, New York, 1985.

T. E. Sevaldrud. Hierarchical terrain models with applications in flight
simulation. Master’s thesis, University of Oslo, Department of Informatics,
May 1999.

J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast ro-
bust geometric predicates. Discrete €6 Computational Geometry, 18(3):305—
363, October 1997.

J. R. Shewchuk. Delaunay Refinement Mesh Generation. PhD thesis,
School of Computer Science, Carnegie Mellon University, Pittsburgh, Penn-
sylvania, 1997. Available as Technical Report CMU-CS-97-137.

B. L. Stephane Contreaux and J.-L. Mallet. A celluar topological model
based on generalized maps: The GOCAD approach. In GOCAD ENSG
Conference. 3D Modelling of Natural Objects: A Challenge for the 2000’s,
Nancy, June 1998.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, Read-
ing, MA, third edition, 1997.

D. F. Watson. Computing the n-dimensional Delaunay tessellation with
application to Voronoi polytopes. The Computer Journal, 24(2):167-172,
1981.

K. Weiler. Edge based data structures for solid modeling in curved-surface
environments. IEEE Computer Graphics and Applications, 5(1):21-40, Jan-
uary 1985.

34

