

Mapping and estimating the potential for geological storage of CO₂ in the Nordic countries – a new project in NORDICCS

Karen L. Anthonsen

NORDICCS Conference contribution D 6.1.1205 (1)

November 2012

NORDICCS concept:

Summary

Previous European projects mapped and estimated the potential storage for hydrocarbon fields, notmineable coal beds and saline aquifers. The European projects only included two Nordic countries (Norway and Denmark) and a unified database covering all of the Nordic countries does not exist. In November 2011, the Nordic countries research program - the Nordic Top-level Research Initiative (Nordic Innovation Center), launched NORDICCS – Nordic Competence Centre for CCS. One of the Centers major tasks is the creation of a Nordic CO2 storage atlas. NORDICCS will build a database of geological information on potential storage sites, improve methods to quantify storage capacity and defining criteria to characterise a safe storage site. Further the option to store CO2 in basalts will be considered and potential areas mapped.

Keywords	CCS, Nordic, storage potential, saline aquifers, basalts
Authors	Karen Lyng Anthonsen, GEUS – Geological Survey of Denmark and Greenland, Denmark, <u>kla@geus.dk</u>
Date	November 2012

About NORDICCS

Nordic CCS Competence Centre, NORDICCS, is a networking platform for increased CCS deployment in the Nordic countries. NORDICCS has 10 research partners and six industry partners, is led by SINTEF Energy Research, and is supported by Nordic Innovation through the Top-level Research Initiative.

The views presented in this report solely represent those of the authors and do not necessarily reflect those of other members in the NORDICCS consortia, NORDEN, The Top Level Research Initiative or Nordic Innovation. For more information regarding NORDICCS and available reports, please visit <u>http://www.sintef.no/NORDICCS</u>.

ER 2: Mapping and Estimating the Potential for Geological Storage of CO_2 in the Nordic countries – a new project in NORDICCS

Karen Lyng Anthonsen, GEUS – Geological Survey of Denmark and Greenland, Copenhagen, Denmark. kla@geus.dk

Abstract: To reduce human impact on climate changes in the near future it is considered necessary to reduce CO_2 emissions from fossil fuel combustion. This fact has intensified research in methods capable of reducing emissions substantially and one of the methods being looked into is carbon capture and storage (CCS). CCS could relatively fast help to reduce CO_2 emissions form large point sources e.g. power stations, because the technology builds on already existing knowledge from oil and gas production. To be prepared for a possible future implementation of CCS it is, however, important to know where and how much CO_2 can be stored in the sub-surface.

Several EU co-funded projects has mapped the potential for geological storage of CO_2 in Europe, beginning with the Joule II project in 1993, estimating a total storage capacity of 800 giga tonne (Gt), to GeoCapacity estimating a total storage capacity of 360 Gt in 2009. The results from these projects concluded that EU has sufficient storage capacity to store the yearly emission of CO_2 of 1.9 Gt from large stationary point sources. The European projects mapped and estimated the potential storage for hydrocarbon fields, not-mineable coal beds and saline aquifers. The GeoCapacity project concluded that the aquifers have by far the largest storage capacities with a total capacity of 325 Gt. The European projects only included two Nordic countries (Norway and Denmark) and a unified database covering all of the Nordic countries does not exist.

It is clear, that the very different geology of the Nordic countries reflects the variation in CO₂ storage capacity, from the old basement rocks beneath Finland and most of Sweden, across the Caledonian mountains on-shore Norway, the large sedimentary basins in the sub-surface of Denmark and off-shore Norway to the active rift zone in Iceland. This was recently illustrated in a research study comprising an overview of the potential for applying CCS in the Nordic countries, where Finland and Sweden only had limited storage capacity; Denmark and especially Norway large CO₂ storage potential, and on Iceland the basaltic rocks offers the possibility to store CO₂ by mineral trapping, a method where the CO₂ is chemically attached to minerals in the basalts.

In November 2011, the Nordic countries research program - the Nordic Top-level Research Initiative (Nordic Innovation Center), launched NORDICCS – Nordic Competence Centre for CCS. One of the Centers major tasks is the creation of a Nordic CO_2 storage atlas. NORDICCS will build a database of geological information on potential storage sites, improve methods to quantify storage capacity and defining criteria to characterise a safe storage site. Further the option to store CO_2 in basalts will be considered and potential areas mapped.

www.geus.dk

Mapping and Estimating the Potential for Geological Storage of CO₂ in the Nordic countries – a new project in NORDICCS

Karen Lyng Anthonsen

Geological Survey of Denmark and Greenland Danish Ministry of Climate, Energy and Building

Nordic Geological Winter Meeting, Januar 9th 2012, Reykjavik

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

• What is CCS?

GEUS

- Key geological indicators for CO₂ storage sustainability
- Mapping of potential CO₂ storage options in Europe
- Results of European CO₂ storage capacity projects
- Calculation of CO₂ storage capacity aquifers
- Nordic geological CO₂ storage projects NORDICCS

SINTEF

Emission source with CO₂ capture facilities

TransportPipelineShip

StorageHydrocarbon fieldsAquifers (saline)Coal fields (unmineable)

Carbon, Capture and Storage - CCS

• Oil- and gas fields

Limited storage capacity, but well-known geology and proven capability to retain hydrocarbons Possibility to use CO₂ for enhanced oil/gas recovery (EOR/EGR)

• Aquifers (saline)

Large storage volumes, but relatively unknown geology and therefore uncertainties about reservoir integrity and properties

Coal fields

Very limited storage capacity and injection rates, but possible to use CO₂ for production of methane

Mineral trapping

Research area with large perspectives

GEUS

Stratigraphical trapping Porous layer bounded by tight seal

Structural trapping Porous layer topped by tight seal

Trapping mechanisms

Structural trapping Porous layer in fault contact with seal

Key geological indicators for storage site suitability

Reservoir Properties	Positive Indicators	Cautionary Indicators
Depth	>800 m, <2500 m	<800 m, >2500 m
Reservoir thickness	>50 m	<20 m
Porosity	>20%	<10%
Permeability	>500 mD	<200 mD
Salinity	>100 gl ⁻¹	<30 gl ⁻¹
Stratigraphy	Uniform	Complex lateral variation and complex connectivity of reservoir facies
Capacity	Estimated effective capacity much larger than total amount of CO ₂ to be injected	Estimated effective capacity similar to total amount of CO ₂ to be injected
Caprock Properties		
Lateral continuity	Stratigraphically uniform, small or no faults	Lateral variations, medium to large faults
Thickness	>100 m	<20 m

Chadwick et al., 2008

www.geus.dk

CO2 density changes with increasing depth

The relationship between porosity and permeability with depth, exemplified by a Danish reservoir sandstone

Porosity decreases with depth

Permeability decreases with decreasing porosity

The optimal depth window for CO₂ storage is 800 – 2500 meter

CO2 storage capacity projects

- Joule II finalised 1993
 The joule II project: The underground disposal of carbon dioxide All Europe
- GESTCO finalised 2003
 Geological Storage of CO2 from Combustion of Fossil Fuel Belgium, Denmark, France, Germany, Greece, Netherlands, Norway, UK
- Castor (WP 1.2) finalised 2006
 Bulgaria, Croatia, Czech Rep., Hungary, Poland, Romania, Slovakia, Slovenia
- GeoCapacity finalised 2008

Assessing European Capacity for Geological Storage of Carbon Dioxide Bulgaria, Croatia, Czech Rep., Denmark, Estonia, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Netherlands, Poland, Romania, Slovakia, Slovenia, Spain, UK (Albania, FYROM, Bosnia-Herzegovina, Luxembourg)

Mapping of emission sources and infrastructure

Stationary CO₂ emission sources exceeding 100 kt CO₂ / year

Data sources:

- annual reports for the EU ETS
- national allocation plans
- qualified estimations where data not available

Infrastructure mapping

pipelines

i Identify			<u>? ×</u>	4	Tog tog
Identify from: <a>Top-mo	ost layer>				1 × 5
E-CO2 Sources	Location:	-594,352.830 6,664,941.965 Meters	I		
	Field	Value			00
	OBJECTID	1907		1	hoor were
	Shape	Point			1 de la companya de la
	UNIT ID	55.855,555,555			
	SECTOR	Power			
	COMPANYNAM	Vattenfall A/S			Vel -
	PLANTNAME	VENDSYSSELVAERKET			
	CITY	Vodskov	-	_	
	STATEPROVI				
	COUNTRY	Denmark			
	COUNTRYCOD	DK			
	REGION	OECD Europe			
	LONGITUDE	10.041657			
		57 07408			
	STATUS	OPP			1 1 1 1 2 1 1
		1009			I WE AT any -
	CULITVEAD	2020			
	COREPORTE	2 020000			
	VEADDEDODT	2.039000			
	CODECTIMAT	2003		-	N B offer 22 / K
	VEADECTIMAT	snull>			
	CONCENTRAT	soulls.			
	CONCENTRAT	Shuitz 0451			A LOW M LOGO
	PRODUCTION	2031			
	UNITERODUC	GVVn			
	FULLLOADHO	3842			
	CAPACITY	690			
	UNITCAPACI	MVV			BUILT DI L'ANDRE THE
	EMISSIONFA	U.//			
	TECHNOLOGY	Power - Steam turbine		12	
	MAIN_FUEL	COAL			A P D (A R A R A R A R A R A R A R A R A R A
	OTHER_FUEL	F01		1	
	FUEL_USE	21508	N	4.5	
	INFOSOURCE	DEA		N Z	
	INFOSOUR_1	NERI, GESTCO		11	
	CO2Legend	2.039		11	
	REMARKS	"YEAR REPORTED" is average for 20	00-2005, 🔜 📘	12	Nella arian) 9 1 Longe 4
	Projection	WGS84		12	
	Х	10.041657		" M	Investigation No. 1
	Y	57.07408		1	the second the second the
	4		•		The contract of the

www.geus.dk

Results from the EU projects

Joule II estimated a total storage capacity for Europe of 800 Gt

GeoCapacity

Emissions from large point sources in the GeoCapacity database is 1.9 Gt CO_2 /year (1,900,000,000 tones)

Total European storage capacity in GeoCapacity database is 360 Gt CO₂ 326 Gt in aquifers

- 32 Gt in hydrocarbon fields
 - 2 Gt in unmineable coal beds

Offshore storage capacity is 244 Gt, onshore capacity is 116 Gt CO₂

Almost 200 Gt is located offshore Norway

Total conservative European storage capacity is 117 Gt CO₂ 96 Gt in aquifers 20 Gt in hydrocarbon fields 1 Gt in unmineable coal beds

www.geocapacity.eu

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

Theoretical vs. effective capacity

Theoretical capacity: $M_{CO_{2t}} = A \times h \times \phi \times \rho_{CO_{2r}}$

Effective capacity: $M_{CO_{2e}} = A \times h \times \phi \times \rho_{CO_{2r}} \times S_{eff}$

- M_{CO2}: Storage capacity
- A: Area of aquifer
- h: Height × net to gross ratio
- φ: Average reservoir porosity
- ρ_{CO_2r} : CO₂ density at reservoir conditions
- S_{eff}: Storage efficiency factor depends on connectivity to surrounding aquifer

Aquifer	Volume (10 ⁹ m ³)	Net/gross ratio	Porosity	CO ₂ density (t/ m ³)	Theoretical regional CO ₂ storage capacity (Gt)	Storage efficiency factor	Effective regional CO ₂ storage capacity (Gt)
Bunter and Sk.	25729	0.25	0.20	0.625	804	0.02	16.1
Gassum	8557	0.25	0.20	0.625	267	0.02	5.3
Haldager	1311	0.25	0.20	0.625	41	0.02	0.8
Frederikshavn	5207	0.25	0.20	0.625	163	0.02	3.3
Total estimated r	2 storage cap	1275		25.5			

Based US DOE methodology S_{eff} for regional aquifers is 2%

G E U S

Open and semi-closed structures

*Volume of bulk reservoir shall be 5-10 times the volume of the reservoir

- - - Fault

Structure	Volume (10 ⁹ m ³)	Net/gross ratio	Porosity	CO ₂ density (t/ m ³)	Theoretical CO ₂ storage capacity	Storage efficiency factor	Effective CO ₂ storage capacity
				. ,	(Gt)		(Gt)
Hanstholm	138.8	0.40	0.20	0.620	6.9	0.4	2.8
Gassum	31.4	0.32	0.25	0.627	1.6	0.4	0.6
Havnsoe	25.0	0.67	0.22	0.629	2.3	0.4	0.9
Horsens	29.9	0.26	0.25	0.630	1.2	0.4	0.5
Paarup	15.8	0.23	0.10	0.625	0.2	0.4	0.1
Roedby	14.2	0.18	0.24	0.620	0.4	0.4	0.2
Stenlille	1.1	0.76	0.25	0.631	0.1	0.4	0.1
Thisted	490.6	0.60	0.15	0.625	27.6	0.4	11.0
Toender	10.7	0.17	0.20	0.626	0.2	0.4	0.1
Vedsted	4.3	0.74	0.20	0.633	0.4	0.4	0.2
Voldum	30.1	0.38	0.10	0.630	0.7	0.4	0.3
Total estimated regional CO ₂ storage capacity (Gt)					41.7		16.7

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

General considerations for saline aquifers

Distinguish between estimates for bulk volume of regional aquifers and estimates for individual stratigraphic/structural traps

For estimates based on the bulk volume of regional aquifers a storage efficiency factor of 2% based on work by US DOE is suggested

For trap estimates the choice of storage efficiency factor depends on whether the aquifer system is open, semi-closed or closed

For traps in open or semi-closed aquifer systems we suggest a rule-of-thumb approach with values for the storage efficiency factor in the range between 3 - 40%

Storage capacity estimates should always be accompanied with information on assumptions and approach for storage efficiency factor

Techno-Economic Resource-Reserve pyramid

Practical capacity with economic and regulatory barriers applied to effective capacity and with matching of sources and sinks: Site specific efficiency factor from reservoir simulations

Effective capacity with technical/geological cut off limits applied to theoretical capacity: Detailed estimates with evaluated efficiency factor

Theoretical capacity including large uneconomic/unrealistic volumes: Estimates without efficiency factor

Why a Nordic CO2 Storage Atlas?

GEUS

Nordic mapping projects

2010 Oljedirektoratet (Norwegian Petroleum Directorate) CO₂ storage atlas for Norway – published December 2011

2011

The Nordic Top-level Research Initiative announces a call for proposals to support the establishment of a Nordic User Driven Competence Centre for realisation of Carbon Capture and Storage.

2011 NORDICCS is granted 35 mill. NOK for a 4 year period

- One of the major tasks is the creation of a Nordic CO₂ Storage Atlas.

NORDICCS

NORDICCS is the Nordic CCS research and innovation platform involving the major CCS stakeholders in the five Nordic countries.

Activities

Integrating activities

- Building the Centre
- Defining a common basis

Joint R&D

- Collaborative research and development activities
- Sharing expertise and research infrastructure

Spreading excellence

- Communication to the general public
- Structured information dissemination among partners

NORDICCS

GEUS

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

Partners working with the Nordic storage atlas: GEUS, SINTEF-PR, University of Oslo, SGU, University of Iceland, Reykjavik Energy

The Nordic CO2 Storage Atlas Review and update existing data bases and generate "The Nordic CO_2 Storage Atlas"

Guidelines for Safe Storage in the Nordic area

Define criteria, methods and timeframe for CO₂ storage in the Nordic area

Safe Storage Modelling

Investigate the filling capacity for selected storage site cases and narrow the uncertainty in storage capacity assessment

NORDICCS

Expected result in 2015 – a GIS based Nordic CO₂ storage atlas

GEUS

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

www.geus.dk

NORCEM

HEIDELBERGCEMENTGroup

SGU Sveriges geologiska undersökning

Thank you!

IGME 5000