A heuristic for maritime inventory routing

Oddvar Kloster, Truls Flatberg
Euro XXIII, Bonn
Overview

- Background
- Model
- Algorithms
- Test example
Invent

- Software library to solve generic Inventory Routing Problems
 - Primary focus on routing and inventories
 - Upstream/downstream activity disregarded
 - Contractual and economic aspects
 - Tramp shipping, industrial shipping and combinations

- Prototype with initial construction algorithm, genetic algorithm and nascent optimization

- Three applications used as pilot studies
 - Cement - multiple products, short horizon, no spot
 - Chemical tankers - tramp and inventory, multiple products, cleaning, tank handling
 - LNG - single product, long term, contracts, full loads
Model features (1)

- Heterogeneous vessels
 - One or more tanks with volume capacities
 - Or, simple stowage (max products)

- Ports, with storages
 - Variable production/consumption rates
 - Partly interruptible
 - Storage capacities

- Per-vessel time/distance/cost table
Model features (2)

- Multiple products
 - Keep track of quantity, weight and volume
 - Fixed or variable densities
 - Cleaning of tanks between products
- Load and discharge rates
- Boil-off
 - Product evaporates during sailing
- Full vessel loads
 - Leave from production ports with full loads
 - Discharge completely in consumption port except for boil-off needs
Model features (3)

- Bookings
 - Transportation demands not related to storages
- Contracts
 - Limit amount delivered to certain ports in certain periods
 - Define prices
Model features (4)

- Priority on storages and contracts
- Arrival and departure load limits (draft restrictions)
- Port closure periods
- Vessel maintenance periods
- Vessel-port compatibility
- Restrict # visits to storage in period
- Inter-arrival gaps
Plan structure
Objectives

Basic objectives

- Income (contract, stream, booking)
- Cost (sailing, port stay, cleaning)
- Performance (quantity transported)
- Penalized constraints

Combined objectives

- Weighted sum
- Lexical (prioritized)
Solution strategy

- Work with concrete plans
- Violate constraints by doing too little → penalize
 - Stockout/overflow
 - Unserviced booking
 - Contract limit not met
 - Too few visits in time period
- Add activities, as efficiently as possibly
- When doing too much, try delaying
Construction: overview

- Start with empty plan
- Identify earliest (highest priority) penalty event
 - Stockout/overflow
 - Unserviced booking
 - Contract limit
 - Too few visits in time period
- Generate journeys
- Rank journeys
- Add best journey and repeat
- If no fix found, forget event
- … until there are no more penalty events
Construction: journey generation

- One storage/booking/contract given
- Choose
 - (Contract)
 - Counterpart storage
 - (Counterpart contract)
 - Vessel
 - Insertion points
Construction: journey insertion

- Large parts of the plan may be affected
 - Schedule for selected vessel changes after new load action
 - Schedules for other vessel are unchanged
 - Schedules may change for storages visited by selected vessel

- Many constraints to satisfy

- Roughly:
 - Assume small quantity and propagate time
 - Find maximum possible quantity (including tank allocation)
 - Set quantity, propagate time and quantities
 - Insert tank cleaning actions
 - Check feasibility
 - If necessary, delay and repeat
Construction: journey ranking

- Evaluate criteria for each journey
 - Transport large quantity
 - Short sailing time
 - Large quantity/vessel capacity
 - Large quantity/sailing time
 - Low cost/quantity
 - ... Random
- Sort journeys for each criterion
- Final score is weighted sum of ranks
Genetic algorithm

- Population of individuals
- Each individual’s genome is a set of weights
- Fitness of each individual is evaluated by applying the construction algorithm
- Weights for new individuals drawn around parents’ weights (+ mutation)
Optimization

- Remove a bit of the solution
 - Any journey starting or ending in random (~10%) interval
- Compact solution
- Regenerate the missing part
 - Use criteria weights from the best GA individuals
- Accept if better or promising
- Avoid known solutions
 - by objective value
Test case

- LNG. 1 product, boil-off, full loads
- 2 production ports
 - Fixed purchase price
 - Fixed production rate
- 2 consumption ports
 - Some interruption allowed
 - Fixed sales price on send-out
- 3 identical vessels
- 360 day horizon
Example run (GA)
Example run (optimization)
A heuristic for maritime inventory routing

Oddvar Kloster, Truls Flatberg
Euro XXIII, Bonn