Pipe networks: coupling constants in a junction for the isentropic Euler equations

3rd Trondheim Gas Technology Conference
4-5 June 2014

Alexandre Morin, Gunhild A. Reigstad
SINTEF Energy Research
2014-06-04
Introduction

• Heat exchangers with parallel channels
 - Pressure drop dependent on phase composition
 - May result in wrong flow distribution
 - May cause instabilities
• Need to model junctions dynamically
 - F.ex. main inlet pipe to tubes
 - Repartition of mass flow in each pipe
Overview

- Numerical modelling of flow in pipes
- The model: Isentropic Euler equations
- The Riemann problem
 - Mathematical notions
 - Coupling of the pipes through the generalised Riemann problem
 - The right coupling condition
- Physical interpretation
- Numerical examples
 - Entropy condition at the junction
 - Conservation of energy in junctions
Modelling of flow in pipes

- One-dimensional models

![Diagram of a pipe with flow direction](image-url)
Modelling of flow in pipes

- One-dimensional models
- Finite-volume method

![Diagram showing a cell and its average]
Modelling of flow in pipes

- One-dimensional models
- Finite-volume method
- Boundary conditions with ghost cells

Ghost cell Cell Cell average
Junctions

- Several pipe connected together
Junctions

- Several pipe connected together
- How to represent a junction?
 - Pipes: one-dimensional models
 - Junction: multi-dimensional flow
Junctions

- Several pipe connected together
- How to represent a junction?
 - Pipes: one-dimensional models
 - Junction: multi-dimensional flow
- Describe the junction with ghost cells
 - Solve the pipes as independent domains
 - Set the ghost cells
- The junction has no volume
The model

Isentropic Euler equations

- Conservation of mass:
 \[\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v) = 0 \]

- Conservation of momentum:
 \[\frac{\partial \rho v}{\partial t} + \frac{\partial}{\partial x} \left(\rho v^2 + p \right) = 0 \]

Equation of state for isentropic flow

\[p = k \rho^\gamma \quad \text{(then, } s(x,t) = \text{const)} \]

In quasilinear form

\[\frac{\partial U}{\partial t} + A \frac{\partial U}{\partial x} = 0 \]

\[U = \begin{pmatrix} \rho \\ \rho v \end{pmatrix}, \quad A = \begin{pmatrix} 0 & 1 \\ a^2 - v^2 & 2v \end{pmatrix} \]

where \(a^2 = \left(\frac{\partial p}{\partial \rho} \right)_s = \frac{\gamma p}{\rho} \)
The Riemann problem

• Eigenvalues of the Jacobian
 \(v - a \), \(v + a \)
 with eigenvectors
 \[
 \begin{pmatrix} 1 \\ v - a \end{pmatrix}, \begin{pmatrix} 1 \\ v + a \end{pmatrix}
 \]

• Shock or rarefaction wave
The Riemann problem

- Eigenvalues of the Jacobian $\nu - a$, $\nu + a$
 with eigenvectors
 $\begin{pmatrix} 1 \\ \nu - a \end{pmatrix}$, $\begin{pmatrix} 1 \\ \nu + a \end{pmatrix}$

- Shock or rarefaction wave
The Riemann problem

- Eigenvalues of the Jacobian $\nu - a$, $\nu + a$
 with eigenvectors
 $$\begin{pmatrix} 1 \\ \nu - a \end{pmatrix}, \begin{pmatrix} 1 \\ \nu + a \end{pmatrix}$$
- Shock or rarefaction wave
The Riemann problem

- Eigenvalues of the Jacobian $v - a$, $v + a$
 with eigenvectors
 $\begin{pmatrix} 1 \\ v - a \end{pmatrix}$, $\begin{pmatrix} 1 \\ v + a \end{pmatrix}$

- Shock or rarefaction wave
The Riemann problem

- Eigenvalues of the Jacobian
 \[\nu - a, \nu + a \]
 with eigenvectors
 \[
 \begin{pmatrix}
 1 \\
 \nu - a
 \end{pmatrix},
 \begin{pmatrix}
 1 \\
 \nu + a
 \end{pmatrix}
 \]

- Shock or rarefaction wave

- The star-state \(U^* \)
 - Related to \(U_L \) and \(U_R \)
 through the wave of family 1 and 2, respectively
The Riemann problem

Equations for the waves of the second family

\[v^* (\rho^*; \rho_R, v_R)_{R2} = v_R \]
\[+ \frac{2\sqrt{yk}}{y-1} \left(\rho^* \frac{y-1}{2} - \rho_R \frac{y-1}{2} \right), \quad 0 < \rho^* \leq \rho_R \]
\[v^* (\rho^*; \rho_R, v_R)_{S2} = v_R \]
\[+ \sqrt{\frac{k(\rho^* - \rho_R)(\rho^* y - \rho_R y)}{\rho^* \rho_R}}, \quad \rho^* > \rho_R \]

Hugoniot Locus: points connected by a curve separated by one wave
The Riemann problem

Pipe initialised with a Riemann problem
The Riemann problem

After evolution. At the initial discontinuity, the U^*-state
The Riemann problem

• Pipe cut in two at the initial discontinuity,
 - U^* as initial value in the boundary cells.
• The same waves propagate to the left and to the right as in the whole pipe.
• The two half-pipes are coupled using the U^*-state.
The generalised Riemann problem

• We can couple 2 pipes and get the same behaviour as if we had a single pipe.
 - U^*-state is the only information needed to couple them
• Can we find a U^*-state for more than 2 pipes?
The generalised Riemann problem

• We can couple 2 pipes and get the same behaviour as if we had a single pipe.
 – U^*-state is the only information needed to couple them
• Can we find a U^*-state for more than 2 pipes?
 – Yes, but slightly more complicated
The generalised Riemann problem

- Each pipe section has its own U^*_k-state,
- following the conditions:

\[U^*_1, \ldots, U^*_N \text{ are related together} \Rightarrow \text{Junction condition} \]
The generalised Riemann problem

- Each pipe section has its own U_k^*-state,
- following the conditions:
 - Each U_k^* is related to the initial U_k in the k^{th} section
 ⇒ Wave equation (positive speed or stationary)
The generalised Riemann problem

- Each pipe section has its own U_k^*-state,
- following the conditions:
 - Each U_k^* is related to the initial U_k in the k^{th} section
 \[\Rightarrow \text{Wave equation (positive speed or stationary)} \]
 - U_1^*, \ldots, U_N^* are related together
 \[\Rightarrow \text{Junction condition} \]
The generalised Riemann problem

- Each pipe section has its own U_k^*-state,
- following the conditions:
 - Each U_k^* is related to the initial U_k in the k^{th} section
 ⇒ Wave equation (positive speed or stationary)
 - U_1^*, \ldots, U_N^* are related together
 ⇒ Junction condition
- Reminder: the junction has no volume
The coupling conditions

Two conditions are needed to close the system

\[
\sum_{k=1}^{N} (A_k \rho^*_k v^*_k) = 0
\]

What about momentum?

– It is a vector quantity
– Conserved as a scalar in 1D-models
– Conserved as a vector in 3D

Junctions are 3D objects
The coupling conditions

Two conditions are needed to close the system

• Conservation of mass is an obvious condition

\[
\sum_{k=1}^{N} \left(A_k \rho_k^* \nu_k^* \right) = 0
\]
The coupling conditions

Two conditions are needed to close the system

• Conservation of mass is an obvious condition

\[\sum_{k=1}^{N} \left(A_k \rho_k^* \nu_k^* \right) = 0 \]

• What about momentum?
 - It is a vector quantity
 - Conserved as a scalar in 1D-models
 - Conserved as a vector in 3D
The coupling conditions

Two conditions are needed to close the system

- Conservation of mass is an obvious condition
 \[\sum_{k=1}^{N} \left(A_k \rho_k^* \nu_k^* \right) = 0 \]

- What about momentum?
 - It is a vector quantity
 - Conserved as a scalar in 1D-models
 - Conserved as a vector in 3D
 - Junctions are 3D objects
The coupling conditions

Momentum condition expressed as a coupling constant

For all k, $\mathcal{H} \left(\rho_k^*, \nu_k^* \right) = \tilde{\mathcal{H}}$

- The quantity $\mathcal{H} \left(\rho_k^*, \nu_k^* \right)$, function of the U_k^*-state,
- is equal to a unique $\tilde{\mathcal{H}}$ for all the pipe sections.
- It is called the coupling constant.
The coupling conditions

Momentum condition expressed as a coupling constant

For all k, $H\left(\rho_k^*, v_k^*\right) = \tilde{H}$

- The quantity $H\left(\rho_k^*, v_k^*\right)$, function of the U_k^*-state,
- is equal to a unique \tilde{H} for all the pipe sections.
- It is called the coupling constant.

What should be the coupled quantity $H\left(\rho, v\right)$?

- The pressure?
 $$H_p(\rho, v) = p = k\rho^\gamma$$
The coupling conditions

Momentum condition expressed as a coupling constant

For all \(k \), \(\mathcal{H}(\rho_k^*, v_k^*) = \tilde{\mathcal{H}} \)

- The quantity \(\mathcal{H}(\rho_k^*, v_k^*) \), function of the \(U_k^* \)-state,
- is equal to a unique \(\tilde{\mathcal{H}} \) for all the pipe sections.
- It is called the coupling constant.

What should be the coupled quantity \(\mathcal{H}(\rho, v) \)?

- The pressure?
 \[\mathcal{H}_p(\rho, v) = p = k\rho^y \]
The coupling conditions

Momentum condition expressed as a coupling constant

For all k, $\mathcal{H}\left(\rho_k^*, v_k^*\right) = \tilde{\mathcal{H}}$

- The quantity $\mathcal{H}\left(\rho_k^*, v_k^*\right)$, function of the U_k^*-state,
- is equal to a unique $\tilde{\mathcal{H}}$ for all the pipe sections.
- It is called the coupling constant.

What should be the coupled quantity $\mathcal{H}\left(\rho, v\right)$?

- The pressure?

 \[\mathcal{H}_p(\rho, v) = p = k\rho^y \]

 ✗

- The momentum flux? (Conservation of momentum)

 \[\mathcal{H}_{MF}(\rho, v) = \rho v^2 + p = \rho v^2 + k\rho^y \]
The coupling conditions

Momentum condition expressed as a coupling constant

For all \(k \), \(\mathcal{H}(\rho_k^*, v_k^*) = \mathcal{H} \)

- The quantity \(\mathcal{H}(\rho_k^*, v_k^*) \), function of the \(U_k^* \)-state,
- is equal to a unique \(\mathcal{H} \) for all the pipe sections.
- It is called the coupling constant.

What should be the coupled quantity \(\mathcal{H}(\rho, v) \)?

- The pressure?
 \[
 \mathcal{H}_p(\rho, v) = p = k\rho^\gamma \quad \text{✗}
 \]

- The momentum flux? (Conservation of momentum)
 \[
 \mathcal{H}_{MF}(\rho, v) = \rho v^2 + p = \rho v^2 + k\rho^\gamma \quad \text{✗}
 \]
The coupling conditions

Momentum is a vector quantity

- If the flow derives from a scalar potential field, it is possible to return to a scalar coupling condition
- The Bernoulli invariant is the scalar potential
- It is the stagnation enthalpy $h + \frac{1}{2}v^2$
The coupling conditions

Momentum is a vector quantity

- If the flow derives from a scalar potential field, it is possible to return to a scalar coupling condition.
- The Bernoulli invariant is the scalar potential.
- It is the stagnation enthalpy $h + \frac{1}{2}v^2$.

In terms of coupled quantity $\mathcal{H}(\rho, v)$

$$\mathcal{H}_{BI}(\rho, v) = h + \frac{1}{2}v^2 = \frac{ky}{\gamma - 1} \rho^{\gamma - 1} + \frac{1}{2}v^2$$

- The flow is virtually brought to a rest at the junction.
- It then flows in the pipe sections from the stagnation state, independently of the other sections.
The coupling conditions

Momentum is a vector quantity

- If the flow derives from a scalar potential field, it is possible to return to a scalar coupling condition
- The Bernoulli invariant is the scalar potential
- It is the stagnation enthalpy $h + \frac{1}{2}v^2$

In term of coupled quantity $\mathcal{H}(\rho, v)$

$$\mathcal{H}_{BI}(\rho, v) = h + \frac{1}{2}v^2 = \frac{ky}{y - 1} \rho^{y-1} + \frac{1}{2}v^2$$

- The flow is virtually brought to a rest at the junction
- It then flows in the pipe sections from the stagnation state, independently of the other sections
The coupling conditions

To summarise

- Need to find the stagnation enthalpy (identical for all U_k^*)
- Such that, in each pipe section k, U_k^* and U_k are related by the relevant wave equation
- One stagnation enthalpy, N different $U_k^* = (\rho_k^*, u_k^*)$
Numerical results

• Examples of why the Bernoulli-based coupling is right
 – Entropy condition at an isolated junction
 – Energy in a closed system
• Simulated with a Roe scheme
Entropy condition in a junction

- Three pipe sections
 - Junction at one end
 - Extrapolation at the other end (infinite pipe)
- Initialised with v_3 either 0 m/s or 50 m/s.
- The junction reaches steady state

<table>
<thead>
<tr>
<th>Section</th>
<th>Pressure (bar)</th>
<th>Velocity (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Section 2</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>Section 3</td>
<td>1.4</td>
<td>v_3</td>
</tr>
</tbody>
</table>
Entropy condition in a junction

Entropy condition

\[\sigma_J = \sum_{k=1}^{N} A_k \rho_k^* \nu_k^* \left(h_k^* + \frac{1}{2} \nu_k^* \right) \leq 0 \]

Value of the entropy condition at steady state

<table>
<thead>
<tr>
<th>Equal pressure</th>
<th>Momentum flux</th>
<th>Stagnation enthalpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu_3 = 0 \text{ m/s})</td>
<td>(1.1 \times 10^5 \text{ J/s})</td>
<td>(-8.2 \times 10^4 \text{ J/s})</td>
</tr>
<tr>
<td>(\nu_3 = 50 \text{ m/s})</td>
<td>(-6.6 \times 10^4 \text{ J/s})</td>
<td>(9.8 \times 10^4 \text{ J/s})</td>
</tr>
</tbody>
</table>
Energy balance in a closed system

- Three pipe sections
 - Junctions at each end
- The system’s energy content is followed
 - Should decrease, because shocks dissipate energy

Initial conditions

<table>
<thead>
<tr>
<th>Section</th>
<th>Pressure (bar)</th>
<th>Velocity (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Section 2</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>Section 3</td>
<td>1.4</td>
<td>0</td>
</tr>
</tbody>
</table>
Energy balance in a closed system

\Rightarrow Wrong coupling constants in the junctions cause a non-physical production of energy.
Summary

• Using the wrong coupling quantity breaks the laws of physics
 – In particular, energy conservation
• Rather theoretical derivation, proved for isentropic Euler equations
• Coupling multiphase flow models with real thermodynamics
 – Physical interpretation hints that stagnation enthalpy should play a role
• Energy is a scalar quantity: same conservation principle as mass?

Proofs in:
Acknowledgment

This publication is based on results from the research project Enabling low emission LNG systems, performed under the Petromaks program. The author(s) acknowledge the project partners; Statoil and GDF SUEZ, and the Research Council of Norway (193062/S60) for support.