

Project no.: 229196

Project acronym: piezoVolume

Project full title: High volume piezoelectric thin film production process for microsystems

Collaborative Project targeted to a special group (such as SMEs) Grant Agreement No.:

NMP2-SE-2009-229196

Start date of project: 2010-01-01 Duration: 3 years

D2.5 PiezoMEMS design tutorial

Due delivery date: 2010-12-31 Actual delivery date: 2010-12-17

Organisation name of lead contractor for this deliverable: COV

Proje	Project co-funded by the European Commission within the Seventh Framework Programme (2008-2011)					
	Dissemination Level					
PU	Public	Х				
PP	Restricted to other programme participants (including the Commission Services)					
RE	Restricted to a group specified by the consortium (including the Commission Services)					
CO	Confidential, only for members of the consortium (including the Commission Services)					

Deliverable number:	D 2.5
Deliverable name:	PiezoMEMS design tutorial
Work package:	WP2 – Tool development
Lead contractor:	COV

Author(s)								
Name	Organisation	E-mail						
Aurélie Cruau	COV	acruau@coventor.com						
Gerold Schropfer	COV	gschropfer@coventor.com						

Abstract

The following document presents a training manual on CoventorWare Modeling of an Energy Harvester in section 1.Tthe sane device is used as a training example for MEMS+ in section 2. Both sections are material for HandsOn. The Section 3 is the SEMulator3D tutorial which is made of slides and Live exercises.

Public introduction¹

¹ According to Deliverables list in Annex I, all restricted (RE) deliverables will contain an introduction that will be made public through the project WEBsite

TABLE OF CONTENTS

1	PZT	ENERGY HARVESTER DESIGN IN COVENTORWARE	4
-	11	Introduction	4
		1 1 1 PZT cantilever with Si Proof mass	4
		1.1.2 Tutorial Overview	5
	12	Technology setup	6
		1 2 1 Preparation	6
		1 2 2 Initialization	
		1 2 3 Load and update a Material Database	8
		1.2.4 Create a process	
		1.2.5 Building the 3D model.	
		1.2.6 Meshing	
	1.3	Simulations in Analyser	
		1.3.1 Running a mechanical analysis.	
		1.3.2 Running a piezoelectric modal analysis	21
		1.3.3 Running an harmonic with resistive load	22
2	PZT	ENERGY HARVESTER DESIGN IN MEMS+	25
4	21	Introduction	23
	2.1	2.1.1 PZT cantilever with Si Proof mass	23
		2.1.2 Tutorial Overview	23 26
	22	Technology setun	20 26
	2.2	2.2.1 Prenaration	20 27
	23	3D Device Creation Guidelines	27 27
	2.5	2.3.1 Initialization	27 27
		2.3.2 Modules	29
	2.4	Use a design Kit	30
	2.5	Design in Innovator	31
	2.0	2.5.1 Let's parameterize!	31
		2.5.2 Create the 3D model	32
		2.5.3 Mechanical connection	35
		2.5.4 Expose all needed information	36
	2.6	Simulations in Cadence	38
	2.0	2.6.2 Creating the Schematic	38
	27	Simulations	41
	,	2.7.1 Modal analysis	
3	USI	NG SINTEF MOVEMEMS DESIGN KIT INTO SEMULATOR3D	46

1 PZT ENERGY HARVESTER DESIGN IN COVENTORWARE

1.1 Introduction

As wireless sensor nodes become smaller, their energy supply is a limiting factor for further miniaturization as integration density is limited by the space requirements of the energy storage system. MEMS based vibration energy harvesters, such as the one shown in this example, are becoming a key enabler for further miniaturization and deployment of energy autonomous sensor nodes. Among existing methods, piezoelectric harvesting is the more studied thanks to its promising results.

The device is made with the SINTEF MoveMEMS design kit. It is based on a PZT stacked on a SOI wafer. A description of the MoveMEMS process is also given in the *Using CoventorWare* manual, starting on page U4-24.

Figure 1.0 Process description

1.1.1 PZT cantilever with Si Proof mass

The piezoelectric cantilever consists of a multilayered film of SiO₂/ Pt/ PZT/Au deposited on a silicon beam of nearly 8 microns of thickness. The silicon substrate is used to make a proof mass to improve sensing of environmental vibration or movement by decreasing resonant frequency.

The device is similar to the one published by Shen et al (D. Shen, J.-H. Park, J. Ajitsaria, S.-Y. Choe, H.C. Wikle III, D.-J. Kim "The design, fabrication and evaluation of a (see picture below)). The process is also based on PZT on SOI, yet the thicknesses are different so this exercise is made with other dimensions and results are not compared.

Figure 1.1 Cantilever and proof mass

1.1.2 Tutorial Overview

This tutorial is organized into three exercises, which demonstrate various techniques:

Exercise 1: Technology setup

- how to start a project
- how to add material to a Material Property Database
- how to create a suitable process

Exercise 2: 3D modelling

- how to draw a layout
- how to create the 3D MEMS
- how to mesh it
- •

Exercise 3: Simulations in Analyser

- how to run a piezoelectric modal analysis
- how to run an harmonic with load

1.2 Technology setup

In this section you will start a CoventorWare project and get familiar with its environment. You will then review the default Material Property Database and add the necessary materials. Finally you'll create a process file.

1.2.1 Preparation

The first design step is to define dimensions of the geometry. As can be seen in

Figure 1.2 Cantilever dimensions

1.2.2 Initialization

During this initialization process, you will create a working project directory. This directory will contain all the files created in the tutorial, a project database for tutorial models, simulation results, and a settings file that saves window settings.

Tasks	Clues & Comments
Start CoventorWare and load the tutorial called <i>SINTEF_energy_harvester</i> .	Find the <i>import tutorial</i> icon. In the Project Browser, a default Settings file appears on the Settings file line. This settings file stores the combination of files as you put them in the function manager.

1.2.3 Load and update a Material Database

Tasks	Clues & Comments
Go in the project directory and copy paste sintef_initial.mpd. Name the copy <i>sintef_tutorial.mpd</i>	 MPD has automatic load and save. To create new files you must copy/paste one first. Default MPD file mpd1.mpd is in Shared folder in your work directory.
Load the sintef_tutorial.mpd.	Browse to the project folder
Add Au-Cr, PZT-CSD and Pt-Ti with following properties.	See Au-Cr properties 4, 5.

Figure 1.3 Au-Cr properties

C Edit Materials in	D:\CW_Pro	ojects10	\training_sintef\SIN	VTEF_270710.mp	d			23	
New Ma	aterial	Import Material				×	Delete Material		
Material		PZT_C	SD	-					
Elastic Constants		Elastic	-Aniso	-			Edit		
Density(kg/um^3)		Consta	int-Scalar			7.75	0000e-015		
Stress(MPa)		Aniso		-			Edit		
TCE Integral Form	(1/K)	Consta	int-Scalar	-		2.50	0000e-006		
ThermalCond(pW/	umK)	Consta	int-Scalar	-		1.50	0000e+006		
SpecificHeat(pJ/kg	ю	Consta	int-Scalar	-		0.00	0000e+000		
ElectricCond(pS/ur	n)	Consta	int-Scalar	-		2.50	0000e-001		
Dielectric		PiezoE	lectric-Stress	•			Edit		
Viscosity(kg/um/s)		Consta	int-Scalar	-		0.00	0000e+000		
PiezoResistiveCoe	effs(1/MPa)	Consta	int_Scalar	•			Edit		
Custom Properties	; File	Piezoel	lectric_constant_fo	or_SINTEF_CSI)_PZT	_	C Edit Elastic-Ar	nIso	23
			Close	?					
						_	D1111	1.320	000e+005
🔁 Edit PiezoElectr	ic-Stress		Constant Section		×		D1122	7.100	1000e+004
							D2222	1.320	000e+005
D1	0.00000)e+000	0.000000e+000	-4.100000e+	000		D1133	7.300	1000e+004
D2	0.000000)e+000	0.000000e+000	-4.100000e+	000		D2233	7.300	1000e+004
D3	0.000000)e+000	0.000000e+000	1.410000e+0	001		D3333	1.150	1000e+005
D4	0.000000)e+000	0.000000e+000	0.000000e+0	000		D1112 D2212	0.000	00000+000
D5	1.050000)e+001	0.000000e+000	0.000000e+0	000		D3312	0.000	000e+000
D6	0.000000)e+000	1.050000e+001	0.000000e+0	000		D1212	3.000	000e+004
Dielectric	1.600000)e+003	1.600000e+003	1.600000e+0)03		D1113	0.000	000e+000
		ок	Cancel				D2213	0.000	000e+000
							D3313	0.000	000e+000
							D1213	0.000	000e+000
			Edit AnIso		×		D1313	2.600	0000e+004
							D1123	0.000	1000e+000
			0.5	4.750099			D2223	0.000	00000+000
			5X Cu	1.750000	*****		D3323	0.000	000000000
			Sy CT	0.000000	+002		D1323	0.000	1000e+000
			SZ		:+000		D2323	2.600	000e+004
			ОК	Cancel					
			(<u> </u>				ОК	Can	el

Figure 1.4 PZT properties

C Edit Materials in D:\CW_Projects10\training_sintef\SINTEF_270710.mpd								
🗅 New Material	🖆 Import Material 📔 Co	py Ma	Material 🔀 Delete Material					
Material	Pt_Ti	•						
Elastic Constants	Elastic-Iso	-	Edit					
Density(kg/um^3)	Constant-Scalar	•	2.145000e-014					
Stress(MPa)	Aniso	•	Edit					
TCE Integral Form (1/K)	Table-T	•	Edit					
ThermalCond(pW/umK)	Constant-Scalar	•	7.160000e+007					
SpecificHeat(pJ/kgK)	Constant-Scalar	•	1.330000e+014					
ElectricCond(pS/um)	Constant-Scalar	•	1.000000e+013					
Dielectric	Constant-Scalar	•	0.000000e+000					
Viscosity(kg/um/s)	Constant-Scalar	•	0.000000e+000					
PiezoResistiveCoeffs(1/MPa)	Constant_Scalar	•	Edit					
Custom Properties File	Titanium_adhesion_layer_Platinum	_bar	rier_layer Browse					
Close ?								

Edit Table-T									
Temperature Dependence									
	Т	Property							
1	3.000000e+002	8.900000e-006							
2	4.000000e+002	9.200000e-006							
3	5.000000e+002	9.500000e-006							
4	6.000000e+002	9.700000e-006							
5	7.000000e+002	1.000000e-005							
6	8.000000e+002	1.020000e-005							
7	0.000000e+000	0.000000e+000							
8	0.000000e+000	0.000000e+000							
9	0.000000e+000	0.000000e+000							
10	0.000000e+000	0.000000e+000							
OK Cancel									

ΟK

Cancel

Additional Resources

For more information on Material Properties Database see Using Coventorware Manual section 2.

1.2.4 Create a process

Once the materials are available in your Material Property Database you need to use or create a process description. Here we'll update a process with new steps.

Тая	sks	6			Clues & Comments	
1. l	1. Load the process <i>sintef_initial</i> shown in					Exercise 1. Day attention if the stan
	Nur	mber	Step Name	Layer Name	Material Name	is a dense it as a tab. You have the choice for
		0	Substrate	Substrate_Wafer	SILICON_100	is a deposit or etch. You have the choice for
	ļ.	1	Silicon-On-Insulator (SOI)			etch type.
		1.1	Thermal Oxidation	Buried_Oxide	SiO2	
		1.2	Grow Crystal Silicon	Si_Handle	SILICON_100	
		2	Wet Oxidation	Oxide_layer	SiO2	
		3	Oxide Etch Backside			
		• 4	Oxide Etch Frontside			
	-	5	Sputtering Bottom Electrode	Bottom_electrode	Pt_Ti	
		6	PZT Chemical Solution Deposition	PZT_piezoelectric	PZT_CSD	
		7	Metal Deposition	Top_electrode	Au_Cr	
		8	Top electrode Patterning			
	-	9	PZT Patterning			
		10	Bottom Electrode Patterning			
		11	Backsidet Etch			
		12	RIE Release Etch			
	an	d save	it as sintef_tutorial.proc			

Process Editor - [D:/CW_Projects10/training_sintef/Devices/SINTEF_initial.proc]										
El File Lait View lools Windows Help										
📙 🗆 🚰 🗔 🖌 🗞 🗙	9 🤍	🕹 🖹 🔰	3							
Number Step Name	Layer Name	Material Name	Thickness	Mask Name	Photoresist	Depth	Mask Offset	Sidewall Angle	Comments	[
- 0 Substrate	Substrate_Wafer	SILICON_100	380	SubstrateMask					The order of th	Process Library
i Silicon-On-Insulator (SOI)									Starting point,	Modeling Actions
1.1 Thermal Oxidation	Buried_Oxide	SiO2	0.3							User-Defined Steps
1.2 Grow Crystal Silicon	Si_Handle	SILICON_100	7.34						At start of proc	Anistropic Wet Etch
2 Wet Oxidation	Oxide_layer	SiO2	1.5						Oxidation, fron	Anisotropic Wet Etch
3 Oxide Etch Backside				BEICH	-		U	0	Oxide patternin	Generic Wet Etch
4 Oxide Etch Prontside				ALIGN	÷		U	U	Oxide patternin	Generic Dry Etch
									•	Deep Reactive Ion E
Step Name Oxide Etch Backside									_	Release Dry Etch
Action 📥 Straight Cut										Release Wet Etch
			Maala		PETCU		_			Stripping
C Cut Last Layer Completely			MIdSK	Mask BEICH						Thermal Oxidation
C Ry Death	th -0. Clabal Tap	E dit	Photores	Photoresist -						Generic PECVD
о ву верит раер	ur=o,Giobai Top	Eult	Sidewa	Sidewall Angles (degrees)						Sputtering
By Layer(s) Oxi	ide_layer 🔻	Edit								Evaporation
, 			Distri	Distribution Scalar						LPCVD
C By Material(s) <d< td=""><td>noose></td><td>Edit</td><td colspan="7"></td><td>Spin Casting</td></d<>	noose>	Edit								Spin Casting
			Nomi	nal Value 0	E Silicon-On-Insulator					
C Front Side										
-			Antisymmetric Increments:							
 Back Side 			X Faces 0						E LIGA	
			Y	Y Faces 0						🕀 🔁 Anodic Glass Wafer I
										🗄 🗄 Silicon Fusion Wafer
	Offset							E Poundry Processes		
	Distribution Scalar 💌				-					
							dit			
			Nomina				une -			
Comments Oxide extransice front/back inductionalizament/oxyumarka										
Oxide parterning, ironyback, including alignment/saw-marks.										
								-		
	Della di compositi	the supervise of	1. Mar. 1. Mar	and the second se	100			and the second second second	And in case of the local division of the loc	

Figure 1.6 Initial process

Tasks	Clues & Comments
2. Add the 3 deposit steps as shown below to make the piezoelectric stack.	Just note the thicknesses

Nun	Number		Step Name	Layer Name	Material Name	Thickness	Mask Name	Photoresist	Depth	Mask Offset	Sidewall Angle
	0		Substrate	Substrate_Wafer	SILICON_100	380	SubstrateMask				
ġ.	1		Silicon-On-Insulator (SOI)								
	ŀ	. 1.1	Thermal Oxidation	Buried_Oxide	SiO2	0.3					
	Ŀ.		Grow Crystal Silicon	Si_Handle	SILICON_100	7.34					
	2		Wet Oxidation	Oxide_layer	SiO2	1.5					
	3		Oxide Etch Backside				BETCH	-		0	0
	4		Oxide Etch Frontside				ALIGN	+		0	0
	5		Sputtering Bottom Electrode	Bottom_electrode	Pt_Ti	0.12					
	6		PZT Chemical Solution Deposition	PZT_piezoelectric	PZT_CSD	2					
ĺ	7		Metal Deposition	Top_electrode	Au_Cr	0.2					

Figure 1.7 Deposit steps over oxidized SOI wafer

Tasks	Clues & Comments
 Add the etch steps for the top electrode, PZT, bottom electrode and the backside and frontside etch 	 On the backside etch you will etch the silicon substrate. b. On the front side, you need to etch 3 layers: oxide_layer, buried_oxide and Si_handle.
2. Save the process.	The validation will be made by creating the 3D model.

Number		r	Step Name	Layer Name	Material Name	Thickness	Mask Name	Photoresist	Depth	Mask Offset	Sidewall Angle
-	• 0		Substrate	Substrate_Wafer	SILICON_100	380	SubstrateMask				
Þ	• 1		Silicon-On-Insulator (SOI)								
		1.1	Thermal Oxidation	Buried_Oxide	SiO2	0.3					
	L.,	1.2	Grow Crystal Silicon	Si_Handle	SILICON_100	7.34					
	2		Wet Oxidation	Oxide_layer	SiO2	1.5					
	• 3		Oxide Etch Backside				BETCH	-		0	0
	• 4		Oxide Etch Frontside				ALIGN	+		0	0
	5		Sputtering Bottom Electrode	Bottom_electrode	Pt_Ti	0.12					
	6		PZT Chemical Solution Deposition	PZT_piezoelectric	PZT_CSD	2					
	7		Metal Deposition	Top_electrode	Au_Cr	0.2					
	8		Top electrode Patterning				TOPEL	+		0	0
	9		PZT Patterning				NOPIE	-		0	0
	10		Bottom Electrode Patterning				BOTEL	-		0	0
	11		Backsidet Etch				BETCH	-		0	0
	12		RIE Release Etch				FETCH	-		0	0

Figure 1.8 Final Process

Now you are done with the technology which is the basis of all CoventorWare project. You are ready to start building your device.

1.2.5 Building the 3D model

This exercise will guide you through the creation of your MEMS device in 3D. It explains how to draw a layout using the process you have chosen, then build the 3D solid, mesh it and finally name the relevant patches.

1.2.5.1 Layout Editor

The layout Editor will start with the layer names defined in the process.

Tasks	Clues & Comments
1. Open the Layout Editor and review the layer parameters using the layer browser	We will use only some layers of the SINTEF process. As defined in the process, ALIGN is ignored.
2. Change the necessary Dark/light option in layers	Dark or Light will define if the shape is preserved or etch

🔀 cat:layer	🖌 catilayerbrowser										
<u>F</u> ile <u>L</u> ay	Eile Layer										
∄±∓∎	🕴 🛨 🖬 📾 No IOs 68 🌊										
Layer Name	Color	Fill	v	s	Layer Polarity on Mask	Mask Name	Dark/Light Mask Field	SAT/IGES	GDS	CIF/DXF	
Substrat	blue	none			(2) + () -	Substrat	OD OL	🖌 Substrati	🛃 LODO	🛃 Substrate	
BETCH	red	none	V	V	(◎+ ()-	BETCH	OD OL	🛃 ВЕТСН	🛃 L1 D0	🗹 BETCH	9
ALIGN	green	none	>	>	(◎+ ()-	ALIGN	OD OL	ALIGN	🛃 L2D0	🗹 ALIGN	9
TOPEL	yellow	none	>	>	(2) + ()-	TOPEL	OD OL	TOPEL	🛃 L3D0	TOPEL	
NOPIE	cyan	none	>	>	(◎+ ()-	NOPIE	⊙D OL	🗹 NOPIE	🛃 L4D0	🗹 NOPIE	
BOTEL	gray	none	>	>	()+ ()-	BOTEL	OD OL	BOTEL	🛃 L5D0	🕑 BOTEL	
FETCH	magenta	none	V	V	⊙+ ○-	FETCH	OD OL	FETCH	🛃 L6D0	FETCH	

Figure 1.9 SINTEF process Final layer brower

Tasks	Clues & Comments
 3. Select the NOPIE layer and create a rectangle of 200um in y and 1100um in x. 4. Select the FETCH layer and create a rectangle of 200um in y and 1500um in x. 5. Select BETCH and create a square of 400um side, and look 	 Use the arrow in the current layer menu b. Use the rectangle tool on the left toolbar and draw or enter points. c. Use Modify > object to change the rectangle corners positions.
for its relative position.	
 6. Copy and paste the NOPIE rectangle into the TOPEL layer. 7. Copy and paste the FETCH rectangle into the BOTEL layer. 	Use edit> paste to layer once the object selected. Place it and then correct its position or define its center while in the paste to layer menu
 Save the library as Energy_harvester and the cell as cantilever 	The library is the .cat file storing the cells. One cell is just defined here but a hierarchy of cells can be created using the reference cell function.

		BETCH
0	TOPEL = NOPIE	BOTEL = FETCH

Figure 1.10 Energy Harvester Layout

1.2.5.2 Build the 3D model

Once the layout and process established and saved, the next step is to build, manipulate and check the 3D solid.

Tasks	Clues & Comments
1. Create the solid and check it.	Just click the build 3D icon and save it as harvester.b. For checking different viewing tools can be used
2. Correct either the process or layout if some errors appear.	See bl = 1 400um mw = 400µ
	 as a reference. b. In the drop-down arrow next build 3D icon choose the rebuild option to recreate the 3d solid from the modified process and/or layout.

Figure 1.11 3D model of the energy harvester

1.2.6 Meshing

To run analyses into Analyser, a mesh is of course required and also patch (surface) names. We'll do this right now.

Tasks	Clues & Comments
1. Add all the layers in the mesh model	Only one region should be created
2. Name the patches at fixed beam end as anchor.	Use the zoom and rotating tools to be sure to select all the patches. You should have 6. b. Right click and find set name function
3. Name the patches of the piezoelectric layer corresponding to the electrodes as <i>topel</i> for the Au-Cr electrode and <i>botel</i> for the Pt-Ti electrode	Hide all layers except PZT to have a better viewing/selecting
 Mesh with parabolic Manhattan bricks of 50 microns size in x and y and 0.3 in z. Define a maximum of 4 elements in the thickness. 	Right click and find mesher settings b. Look in Advanced options
5. Save it as harvester_meshed.	

Figure 1.12 Meshed Energy Harvester

1.3 Simulations in Analyser

A piezo harvester acts like a battery (capacitive power source).

Figure 1.13: Equivalent circuit for piezo energy harvester

Figure 1.13 shows an equivalent circuit for a piezo harvester. In closed circuit (CC) conditions (i.e. when Rload = 0), the piezoelectric layer generates a charge only and no voltage is generated across the electrodes. In open circuit conditions the piezoelectric layer outputs a voltage without any charge. Both these *ideal* conditions can be simulated with Coventor's MemMech PZE solver.

To simulate CC the potentials on the electrodes are set to be equal, e.g 0V. MemMech will solve for the charge on each electrode generated by the reverse piezo electric effect. To simulate OC one electrode is set to *TiePotential*, the other to a potential, e.g. 0V. MemMech will solve for the unknown potential on the electrode that has the *TiePotential* specified and charge for the electrode that has potential specified.

Note, the MemMech PZE solver must have either a charge or voltage specified on each electrode. To simulate OC conditions one might therefore specify zero charge on each electrode. However, CoventorWare does not have the BC option to specify charge in the GUI. However, if no charge (or voltage) is specified, the solver assumes 0 total charge. So you can specify a zero charge indirectly by *not* setting a voltage boundary condition on an electrode.

Note also that, the surfaces of the piezoelectric layer are covered with a conducting (metal) layer to allow electrical connection. This electrical layer also enforces an equipotential over the underlying surface of the piezo. To enforce this condition in the MemMech PZE solver, use the tie potential boundary condition to constrain a constant voltage over the electrode.

1.3.1 Running a mechanical analysis

Tasks	Clues & Comments
 Open Analyser and run a mechanical modal analysis on the harvester model with the settings described on Figure 1.14 	This analysis does not include piezoelectric effect.

Physics	Mechanical		<u>Set the mem</u> available RA	ory at maximum 80 % o	<u>f your</u>
Analysis Options			$\frac{1}{22}$ bits system	ma are limited to 2CP	
Linear or Nonlinear?	Nonlinear		<u>52 Ults system</u>		
Restart from prev. result	🔾 Yes 🛛 💿 No	Coluer Memory (MD	`	0000	
Time Dependence	SteadyState	Max Number of Inc.	i) romanta	8000	
Stop Time(s)	1.0E-5	Max Number of Incl	rements	0	
Output Timestep(s)	1.0E-6	— miliai increment Si. — Minimum la menera	20	1.0	
Timestep Method	Variable	— Winimum incremer	it Size	0.0	
Solver Timestep(s)	1.0E-7	— Maximum Increme	nt Size	0.0	
Residual Tolerance(mN)	10.0	Max Equilibrium ite	rations	16	
Max Temperature Inc.(K)	10.0	Max Discontinuity it	erations	12	
		Max Number of Cut	backs	5	
Additional Analysis	Modal	Cutback Factor		U.25	
Solution Method	Lanczos		Juse	All available	Ľ
Specify modes by Number of Modes Minimum Freq. (Hz) Maximum Freq. (Hz) Freq. of Interest (Hz) Number of Vectors Harmonic Analysis Minimum Freq. (Hz) Maximum Freq. (Hz) No. of Frequencies Modal Damping Coeff. Include thermoelastic dampin	Number of Modes 4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 g? Ø to O Yes		Change the c	<u>default to</u> <i>all available</i> .	
ОК	Advanced Cancel Next->	?			
SurfaceBCc EinTure	Potch1 and1	Potch2 and2	Potch2	Load)(alua)(ariabla	Tranciant
Set1 fixAll	anchor and		none Scalar		ved .

Figure 1.14 Mechanical modal analysis

Tasks	Clues & Comments
2. Look at 3D results and note the frequencies and mode shapes. (see Figure 1.15)	The piezoelctric effect is ignored in a mechanical analysis. These modes are purely mechanical.
3. In the Tables choose mechdomain. Look at the maximum displacement.	This 91 um displacement in z is due to residual stress.

Figure 1.15 Mechanical Resonant modes

1.3.2 Running a piezoelectric modal analysis

Tasks			Clues & Comments	
1. Run an open circ settings describe	uit piezoelectric d on	modal analy	This piezoelectric BCs simulate sensing behavior where the top electrode gets a voltage thanks to _applied stress	
Physics	Physics Piezoelectric			
Analysis Options Linear or Nonlin Restart from pre	Analysis Options Linear or Nonlinear? Restart from prev. result O Yes O No			[
Time Dependen Stop Time(s) Output Timest Timestep Met	Time Dependence Stop Time(s) Output Timestep(s) Timesten Method			
Solver Timest Residual Tole Max Temperat	Ninestep Merida Variable Solver Timestep(s) 1.0E-7 Residual Tolerance(mN) 10.0 Max Temperature Inc.(K) 10.0			
Additional Analysis Solution Method Modal Analysis Spacifi meda	Additional Analysis Mo Solution Method La Modal Analysis			
Number of Mo Minimum Free Maximum Free	des (. (Hz) q. (Hz)	4 0.0 0.0		
Freq. of Intere Number of Ve Harmonic Analy Minimum Fred	Freq. of Interest (Hz) 0.0 Number of Vectors 0 Harmonic Analysis 0			
Maximum Fre No. of Freque Modal Dampir	q. (Hz) ncies ng Coeff. gelastic damning?	0.1		
SurfaceBCs Set1 fixA Set2 Po Set3 Tie	FixType JI	Patch1 a anchor I and botel I and topel I and	and1 Patch2 d v none v d v none v d v none v	
	OK Can	cel Next->	l	
 Look at results and displacement. Run a query to g 	nd note the new et the voltage or	frequencies 1 topel.	 The frequency shift is due to piezoelectric effect. The residual stress impact differs and the displacement is only 86 um. b. Note the piezo bricks have only 20 nodes instead of the 27 node of standard parabolic bricks. So results are inherently slightly different. A mesh convergence study is needed to validate them. 	

Physics		Piezoele	ectric			Ţ							
		1 1020010	Jourio					🖸 mo	deDon	nain			×
Analysis Options							Ι.			Frequency	Genera	alized Mas	s Damping
Linear or Nonlinear	,	Nonline	ar					1	e	.276284E0	2 9.95	5046E-08	0
Restart from nrev re	eult							2	3	.019744E0	3 5.749	3148E-08	0
Time Denendence	oun	Sybcots						3	7	.198187E0	3 6.159	9564E-08	0
Ston Time(s)		1 0E-5	nuno					4		2.05452E04	4 4.2	13E-08	0
Output Timesten/	-)	1.05-6								1			
Timesten Method	27	Variable								l	UK		
Colver Timesten/	4		,					(
Docidual Toloran		10.0						C me	chDon	nain	1000		×
May Temperatura		10.0									Maxim	um	Minimum
		110.0						Node	Disp	lacement	9.25234	1E01 2	.310451E-38
Additional Analysis		Model						Node	X Dis	olacement	3.31154	1E01 -	3.379091E00
Colution Mothod		Longton					Ι.	Node	Y Dis	olacement	4.94680	1E-02 -	4.946799E-0
Solution Metrica		Lanczus	5					Node	Z Dis	olacement	8.69783	3E01 -	1.211111E-3:
Choosify modes by		hlumbor	rofMode										
Specily modes by		Number	ronwoue	38							ОК		
Minimum From ///		4				_							
Maximum Freq. (F	∠) I=\	0.0							-				
Maximum Freq. (F	12) I=X	0.0				C	ра	tchQuery	155				
Freq. of interest (F	12)	0.0							Step	topel PZE	Potential	1 topel_F	ZEPotentiall
Number of Vector:	5	U					Sim	11:	1	1.147	242E00		0
Harmonic Analysis													
Minimum Freq. (Hz)											OK		
Maximum Freq. (F	-					_(_	ī						
NO. OT Frequencie	s ~												
Modal Damping C	oeπ.	0.1	0.4										
include thermoela	istic damping?	@ No	O Yes										
SurfaceBCs	FixType	Patch1	and	1 Pa	atch2	an	d2	Patch:	3	LoadV	alue	Variable	Transier
Set2 Potenti	al 🔽	botel 6	and		e 💌	and		Inone		alar 🗐	0.0	Fixed	Fixed
		L'SOLOI L			- <u> </u>	arra -					0.0	L NOW L	

Figure 1.16 Piezoelectric modal analysis settings and results

1.3.3 Running an harmonic with resistive load

Tasks	Clues & Comments
1. Run a piezoelectric harmonic analysis around the first mode of the open state with 1G acceleration on Z and a resistive load of 100k ohms with the settings described on Harmonic analysi.	The acceleration is an harmonic BC. Keep surface settings.b. Go in circuit elements to set a resistor between the 2 electrodes.

Physics	Piezoelectric			
nalysis Options				
Linear or Nonlinear?	Nonlinear			
Restart from prev. result	🔿 Yes 💿 No			
Time Dependence	SteadyState			
Stop Time(s)	1.0E-5			
Output Timestep(s)	1.0E-6			
Timestep Method	Variable			
Solver Timestep(s)	1.0E-7			
Residual Tolerance(mN)	10.0			
Max Temperature Inc.(K)	10.0			
dditional Analysis	Direct Harmonic			
Solution Method	Lanczos			
Modal Analysis				
Specify modes by	Number of Modes			
Number of Modes	4			
Minimum Freq. (Hz)	0.0			
Maximum Freq. (Hz)	0.0			
Freq. of Interest (Hz)	0.0			
Number of Vectors	0			
Harmonic Analysis				
Minimum Freq. (Hz)	600			
Maximum Freq. (Hz)	650			
No. of Frequencies	20		C Edit Accelerati	ion 🕒
Modal Damping Coeff.	0.0			
Include thermoelastic damping	? 💿 No 🔾 Yes		Av	0.0
	Advanced		Av	0.0
	Cancel Next->	?	Az	9.8e6
		4		Cancel
rmonic_VolumeBCs				
onic_VolumeBCs BCType Set1 Acceleration	ALL V	LoadV Acceleration	alue / Variable Edit Fixed 💌	Phase Real 💌
	ОК	Cancel		1
cuit_Elements			and and a second	
it Elements Type	Terminal 1	Terminal 2	Property Value	Variable
			riopong_raide	Tanabic

Figure 1.17 Harmonic analysis with circuit element resistor settings

Tasks	Clues & Comments
2. Look at results plots for displacement and power.	The resistor plays a damping role in the analysis.

Figure 1.18 Harmonic Analysis Results

1.3.3.1 References

- 1. D. Shen, J.-H. Park, J. Ajitsaria, S.-Y. Choe, H.C. Wikle III, D.-J. Kim "The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated proof mass for vibration energy harvesting", *J. of Micromechanical and Microengineering*, vol.18, April 2008
- 2. To find documentation please go to: Start > All Programs > Coventor > CoventorWare2010 >Documentation or browse to ...\Coventor\CoventorWare2010\docs

2 PZT ENERGY HARVESTER DESIGN IN MEMS+

2.1 Introduction

As wireless sensor nodes become smaller, their energy supply is a limiting factor for further miniaturization as integration density is limited by the space requirements of the energy storage system. MEMS based vibration energy harvesters, such as the one shown in this example, are becoming a key enabler for further miniaturization and deployment of energy autonomous sensor nodes. Among existing methods, piezoelectric harvesting is the more studied thanks to its promising results.

The device is made with the SINTEF MoveMEMS design kit. It is based on a PZT stacked on a SOI wafer. A description of the MoveMEMS process is also given in the *Using CoventorWare* manual, starting on page U4-24.

Figure 2.1 Process description

2.1.1 PZT cantilever with Si Proof mass

The piezoelectric cantilever consists of a multilayered film of SiO2/ Pt/ PZT/Au deposited on a silicon beam of nearly 8 microns of thickness. The silicon substrate is used to make a proof mass to improve sensing of environmental vibra ions or movements by decreasing resonant frequency. The device is similar to the one published by Shen et al (D. Shen, J.-H. Park, J. Ajitsaria, S.-Y. Choe, H.C. Wikle III, D.-J. Kim "The design, fabrication and evaluation of a (see picture below)). The process is also based on PZT on SOI, yet the thicknesses are different so this exercise is made with other dimensions and results are not be compared.

Auburn University device (Ref 1)

Figure 2.2 Cantilever and proof mass

2.1.2 **Tutorial Overview**

This tutorial is organized into three exercises, which demonstrate various techniques:

Exercise 1: Technology setup

- how to start a project •
- how to use a design kit •
- Exercise 2: Design in Innovator
 - how to parameterize dimensions •
 - how to create the 3D MEMS with components •
 - how to connect components
 - how to apply Boundary Conditions •

Exercise 3: Simulations in Cadence

how to run a piezoelectric modal analysis •

2.2 **Technology setup**

In this section you will start a MEMS+ project and use The SINTEF MoveMEMS design kit.

2.2.1 Preparation

The first design step is to define dimensions of the geometry. As can be seen in

2.3 3D Device Creation Guidelines

The Section 6 of the *MEMS*+ User Guide and Reference has a description for each component used in this tutorial.

2.3.1 Initialization

The MEMS+ interface offers access to all its modules through a single console. They include the Material Database, the Process Editor, Innovator, and Scene3D (this one appears when opening

simulation results). See

Figure 2.4 MEMS+ environment

Figure 2.4 MEMS+ environment

Tasks	Clues & Comments
 Start MEMS+. Explore the interface, change options and move menus to create the environment as seen in 	You can select the subwindows and displace them by dragging anywhere.
🕂 Coventor MEMS+ - Untitled	
🗅 🚰 🗸 🔑 📨	_
MaterialDataBase ArccessEditor 🕂 Innovator	-
🔄 🗅 🧉 🕶 🗔 🔕 🨕 🔍 🕶 🔑	٥
Components ■ × 🔯 ⊕ ⊕ A 🖉 😓 😓	
 ▲ Inputs → Acceleration ♦ Angular Velocit 	
	~
Utputs Inputs	
2. Figure 2.4 MEMS+ environment	
2	

2.3.2 Modules

2.3.2.1 Material Database

The first step in creating a design is to enter the material properties associated with the fabrication process in the Material Database, which stores materials and their properties in a *.mmdb* file. In the Process Editor, the user associates the process with the material database file, and the material list stored in that file becomes available in the individual steps of the process. In turn, the material properties of the selected materials are taken into account in the device simulation. The user can create a material database or can select and modify an existing database.

2.3.2.2 Process Editor

The second step in creating a design is to use the Process Editor to create a description of the sequence of steps involved in the fabrication process. The user creates the sequence by selecting prototype steps from the Item Library. Each step has parameters that must be specified. For example, for deposit steps the user must specify the material to be deposited and the deposit thickness. For etch steps, the user must specify a mask and an etch operation by layer, material, or depth. In Innovator, the user selects this process file so that individual components can be assigned to the process deposit layer(s).

2.3.2.3 Innovator

Innovator allows users to assemble their MEMS device using a library of parametric components. As components are added, the user sets the dimension and layer information. Each component has a rich set of parameters that can be incorporated in a P-cell implementation. The component then appears on the canvas as the user defined it. Any mistakes in dimensions or orientation are immediately apparent to the user. When the model is complete, the user can export a layout in GDS or a solid model in SAT format or import the MEMS model into a Cadence Virtuoso P-cell or a schematic.

2.3.2.4 Scene3D

Scene3D allows users to import and visualize results from Cadence Virtuoso. This module is only accessible then a result file is selected. Users will be able to visualize DC, DC sweep, AC, and transient results with Scene3D. In Cadence, when the user creates a schematic using a MEMS+ symbol, and then simulates that schematic, Cadence produces results files with the same name as the Innovator schematic used to produce the MEMS+ symbol. Those result files can then be opened in Scene3D.

2.4 Use a design Kit

When MEMS+ is first launched, the Innovator tab is active. All MEMS+ components require a valid Material Database and process file as input. In the next steps you will load the SINTEF Material Database (.mmpd file) and MoveMEMS process flow (.proc file). The 3-D schematic file is dependent on the material database and process files, so if you select a 3-D schematic file, MEMS+ automatically loads the material database and process file used to create that schematic. Clicking on either the Material Database or Process Editor tabs will display the associated files.

Tasks	Clues & Comments
 Click on the Material Database tab and load the SINTEF_MPD.mmdb. 	 a. Use the "replace" icon from the menu bar b. The SINTEF_MPD.mmdb is stored here: C:\Coventor\MEMS+1.0\Examples
2. Review properties and check they are the same as shown in next pages.	 a. In the Material Properties sub-window make the Expression column appear by right-clicking on top bar.

Once the materials are available in your Material Property Database you need to use or create a process description. Here we'll load MoveMEMS process.

Tasks	Clues & Comments
 Load the process <i>MoveMEMS.proc</i> shown in Figure 2.5. Review the steps. 	a.

🐚 MaterialDataBase 🧧 ProcessEdi	itor 📲 Innovato	r					
🗅 🧉 - 🗔 😡 🎔 - 🔑	+ 46	🗙 aje					
Name	Layer Name	Material Name	Material Color	Thickness		Mask Name	Photoresist
⊿ ^{,,,,,,,} Substrate	Oxide_layer	SiO2		1.5		GND	
## bottom_oxide_etch						BETCH2	Negative
🛲 substrate wafer	Substrate_wafer	SILICON_100		380			
🗯 back etch						BETCH	Negative
🛲 oxide	buried_oxide	SiO2		0.3			
릈 si handle	Si_handle	SILICON_100		7.34			
릈 oxidation	Oxide_layerfront	SiO2		1.5			
🛗 release						FETCH	Negative
🚔 PtTi bottom electrode	bottom_elec	Pt_Ti		0.12			
Him Bottom electrode patterning				_		BOTEL	Negative
🚔 Conformal Shell5	piezo	PZT		2			
## PZT paterning				_		NOPIE	Negative
🛲 Conformal Shell6	top_elec	Au_Cr		0.2			
top electrode patterning						TOPEL	Positive
							•
Process Step Properties				ł	γ×	Variable	₽×
Name	Value	Expression	Units			Name	Value
	value	Expression	Units			A sh Variables	value
Layer Name	bottom_el	ec bottom_e	elec				709
▲ Material : Pt_Ti						SiO2 stross	20109
Pt_Ti						PT stress	1 75e+00
Thickness	0.1	12 (0.12	um 🔻			273.15
Wafer Side	2 Front	Pront				Ee .	275.15
Surface Conformality Factor (SCF)		1	1				
UnderSide Coating		V					
Round Corners : undef]						
0.12	0.12		1.2e-07	um			- F

Figure 2.6 MoveMEMS process as described in MEMS+

Now you are done with the technology which is the basis of all MEMS+ project. You are ready to build your device.

2.5 Design in Innovator

This exercise will guide you through the creation of your MEMS device in 3D. It explains how to build the geometry from the MEMS component library, create mechanically and electrical connections, and expose variables of interest so that they can be changed in the simulator.

2.5.1 Let's parameterize!

In MEMS+ you can define variables in the variable table. Variables names can be created as unique names or share a common group name.

Tasks	Clues & Comments
1. In the innovator tab, Save the model as <i>Harvester</i>	
2. Add the variables to the model as shown in	 a. Right click on Variables and add a group or a variable as needed. O Some limits can also be added for each variable. This allows you to integrate some design rules directly in the 3D Schematic O You can also define logical statement like <i>lfthenelse</i>. It is written with the syntax: <i>if</i>(<i>a</i><=<i>b</i>,<i>c</i>,<i>d</i>)
2. Figure 2.7 Var below.	
3. Expose beam and mass groups to enable their direct use in the simulator.	When opening the MEMS+ device properties you'll be able to change the exposed parameters.

Figure 2.7 Variables

2.5.2 Create the 3D model

In this section you will use one rigid plate component to create the mass and one flexible plate to model the piezoelectric beam.

Tasks	Clues & Comments
1. Open the help and browse to the components properties	 a. Review the parameters of each component while adding them for better understanding.
 Add one rectangular plate standing for the beam and name it PiezoBeam. 	 a. Right click on <i>Components</i> and select Add The plate is flexible and the number of mechanical connectors (18) is given by orders in x and y.
 Add a piezo layer and name the 2 added electrode connectors top and a bottom. 	 a. Again just right click on platethe piezo is recognized as PZT automatically b. Use electrical viewing mode to identify E1 and E2.

Figure 2.8 Beam properties

Tasks	Clues & Comments					
 Add one rigid plate composed of two rectangular segments and name it Mass. 	a. Use the properties of					
	+ RectangularSegment2 Properties					
	Name Value Expression					
	▲ Local Frame					
	A Origin					
	y 0					
	In-plane Angle 0					
	▷ Flip Merge					
	▲ Layers : buried_oxide, Si_handle ▼					
	buried_oxide					
	▷ Si_handle ▷ Ovide laverfront					
	bottom_elec					
	Vertical Offset 0					
	▷ Center					
	x 400					
	у 200					
	RectangularSegment1 Properties					
	▲ Local Frame					
	▲ Origin					
	v 0					
	In-plane Angle 0					
	▶ Flip					
	Merge Add ▼					
	♦ Oxide_layer					
	Substrate_wafer					
	Center					
	▲ Size					
	x 400					
	y 400					
	a. Figure 2.9 Mas					
	b. The layers are given in the picture below for					
	both segments.					
	-					

cal Frame Origin x 1300 beam_length+mass_length/2 um v y 0 0.0 um v In-plane Angle 0 0.0 Degrees v Flip
Origin x 1300 beam_length+mass_length/2 um v y 0 0.0 um v In-plane Angle 0 0.0 Degrees v Flip
x 1300 beam_length+mass_length/2 um ▼ y 0 0.0 um ▼ In-plane Angle 0 0.0 Degrees ▼ ▷ Flip
y 0 0.0 um ▼ In-plane Angle 0 0.0 Degrees ▼ ▷ Flip Merce Add ▼
In-plane Angle 0 0.0 Degrees ▼ ▷ Flip derge Add ▼
▷ Flip Merce
Merce Add T Add T
AUU 1
avers: buried oxide Si handle ▼
buried oxide
Si handle
Novide laverfront
battam alar
> bottom_elec
Center
Size
x 400 mass_length
y 200 beam_width
Perforation
lame Value Expression Units
Local Frame
4 Origin
x 1300 beam length+mass length/2 um 🔻
x 1300 beam_length+mass_length/2 um v
x 1300 beam_length+mass_length/2 um ▼ y 0 0.0 um ▼ lo-plane Angle 0 0.0 Degrees ▼
x 1300 beam_length+mass_length/2 um ▼ y 0 0.0 um ▼ In-plane Angle 0 0.0 Degrees ▼
x 1300 beam_length+mass_length/2 um v y 0 0.0 um v In-plane Angle 0 0.0 Degrees v > Flip
x 1300 beam_length+mass_length/2 um ▼ y 0 0.0 um ▼ In-plane Angle 0 0.0 Degrees ▼ > Flip Merge Add ▼ Add ▼
x 1300 beam_length+mass_length/2 um v y 0 0.0 um v In-plane Angle 0 0.0 Degrees v > Flip Merge Add v Add v
x 1300 beam_length+mass_length/2 um v y 0 0.0 um v In-plane Angle 0 0.0 Degrees v > Flip Merge Add v Add v > Oxide_layer, Substrate_\ v
x 1300 beam_length+mass_length/2 um v y 0 0.0 um v In-plane Angle 0 0.0 Degrees v > Flip Merge Add V Add V > Oxide_layer, Substrate_\ v > Oxide_layer > Substrate_wafer
x 1300 beam_length+mass_length/2 um ▼ y 0 0.0 um ▼ In-plane Angle 0 0.0 Degrees ▼ > Flip Merge Add ▼ Add ▼ Layers : Oxide_layer, Substrate_\ ▼ > > > Oxide_layer > Substrate_wafer Vertical Offset 0 0 um ▼
x 1300 beam_length+mass_length/2 um ▼ y 0 0.0 um ▼ In-plane Angle 0 0.0 Degrees ▼ ▷ Flip Merge Add ▼ Add ▼ Merge Add ▼ Add ▼ ▷ Oxide_layer, Substrate_v ▼ > ▷ Oxide_layer > ▷ Substrate_wafer Vertical Offset 0 0 ○ Center
x 1300 beam_length+mass_length/2 um ▼ y 0 0.0 um ▼ In-plane Angle 0 0.0 Degrees ▼ > Flip Merge Add ▼ Add ▼ Layers : Oxide_layer, Substrate_\ ▼ > Oxide_layer > Oxide_layer > Substrate_wafer Vertical Offset 0 um ▼ Center Size 0 um ▼
x 1300 beam_length+mass_length/2 um ▼ y 0 0.0 um ▼ In-plane Angle 0 0.0 Degrees ▼ ▷ Flip Add ▼ Add ▼ Merge Add ▼ Add ▼ ↓ Layers : Oxide_layer, Substrate_\▼ ▷ Oxide_layer > ▷ Substrate_wafer Vertical Offset 0 ○ Center Size x 400 mass_length um ▼
x 1300 beam_length+mass_length/2 um ▼ y 0 0.0 um ▼ In-plane Angle 0 0.0 Degrees ▼ ▷ Flip Add ▼ Add ▼ Merge Add ▼ Add ▼ a Layers : Oxide_layer, Substrate_v ▼ > ▷ Oxide_layer > > Substrate_wafer Vertical Offset 0 o 0 y 400 mass_length um ▼ y 400
x 1300 beam_length+mass_length/2 um ▼ y 0 0.0 um ▼ In-plane Angle 0 0.0 Degrees ▼ ▷ Flip Add ▼ Add ▼ Merge Add ▼ Add ▼ a Layers : Oxide_layer, Substrate_v▼ > O ▷ Oxide_layer > Substrate_wafer Vertical Offset 0 0 um ▼ > Center a Size x 400 mass_length um ▼ y 400 mass_width um ▼

Figure 2.9 Mass two segments properties

2.5.3 Mechanical connection

Tasks	Clues & Comments
 Connect the mechanical connectors of the plates together. 	a. Use the Mechanical Connector viewing mode.b. Use the Autoconnect and place the point at beam end
2. Fix the beams end that act as anchor.	a. Use the <i>fix</i> icon. The connectors become yellow when selected and grey once fixed.

Figure 2.10 Mechanical connection

2.5.4 Expose all needed information

Tasks	Clues & Comments
1. Expose the Inputs : acceleration and angular velocity	These will be input in Cadence environment to excite all DOF for the modal analysis.
2. Expose the electrodes	These will become pins in the simulator so that the device can be driven or sensed.

Figure 2.11 Final Device.

Figure 2.11 Final Device

2.6 Simulations in Cadence

This section demonstrates how to import a MEMS+ model into Cadence Virtuoso and then run an AC, DC, and transient analysis on a schematic which includes that model. It is not intended to be a detailed tutorial on how to use Cadence Virtuoso; for details on how to use the Cadence Virtuoso interface, see the Cadence Virtuoso online documentation.

This section of the tutorial assumes that you have Cadence Virtuoso installed and configured to run with MEMS+, and that you are familiar with Cadence Virtuoso.

2.6.1.1 Additional Ressources

For more information on configuring Cadence for MEMS+ see Section 3 of the *MEMS*+ *Installation*.

2.6.2 Creating the Schematic

In this section we will cover the Cadence Library Manager,

Schematic: MEMS+ schematic Import. Creation, parts library, wiring,

Layout: Cadence tech file, display resources, GDS import/export, shape creation, hierarchy references, Pcells, LSW manipulation, F3 key, ruler, world view (and other tools).

2.6.2.1 MEMS+ import into Cadence

The first step to simulating a MEMS+ model in Cadence is to import it into the Cadence Virtuoso environment.

Tasks	Clues & Comments
1. Start Cadence Virtuoso, and open the Library Manager.	 a. At our <u>Paris office</u>, we have created a bash shell which set up the environment for MEMS+ and launch Virtuoso. Just type <i>cadence610</i> in a terminal. b. Once encoded select Table > Library Manager
	b. Once opened, select rools > Library Manager.
2. Import the technology from MEMS+ using command	a. Use the MEMS+ menu in the library manager
MoveMEMS	 In the dialog that opens, specify a technology library name and browse to the <i>MoveMEMS</i> process file.
3. Import the <i>harvester</i> MEMS+ model into the technology	a. Select the technology library and go in MEMS+
	b. Make sure the Lavout and Model options are
	selected

C Select Process File and N	lew Library Name					
New Technology Library Name	MoveMEMS		all the 3.	mmdl	o, .pro	c, .3dsch must
MEMS+ Process File	/home/demo/CW_MEMS+/SINTEF/M	loveMEMS.proc	be in the	<u>same</u>	<u>folder</u>	
	C Import options, destin	ation libraries and folders				
	Library	Cell	Layout	Model	Local	Absolute
	MoveMEMS	- harvester	⊻	¥		⊻
					ОК	Cancel Help

Figure 2.12 Import the process and device

Tasks	Clues & Comments
 Open the layout, select one suspension arm and open its properties. 	Note the layers in the LSW are taken from the process description; see Error! Reference source not found
 Open the symbol and check all exposed connectors are set as pins then open its properties. 	 a. Note that the symbol has 8 pins: the 6 mechanical inputs and the 2 electrical pins; see Error! Reference source not found b. Edit > Properties > CellView

Figure 2.13 Harvester Layout

							 - ·						
1.11													
							[@in	sto	inc	eΝ	am	ne]	
			.E	tóp									
			Ť										
	avz		ق.			·						•	
•	avy												
-	avx	[@	D'ar	τN	aim	ne]							
•	taz												
– –––	tay												
–	tax												
	1.1												

C Edit Cellviev	v Properties	_ × _				
Show	🗌 system ⊻ user					
Property	Value	Display				
Library	SINTEF	off 🔽				
Cell	harvester	off 🔽				
View	symbol	off 🔽				
	Add Delete Modify					
User Property	Value	Display				
PZT_stress	1.75e+08	off 🔽				
Pt_stress	7e+08	off 🔽				
Scene3DfileBas	no/CW_MEMS+/SINTEF/harvester.3dsch	off 🔽				
SiO2_stress	-3e+08	off 🔽				
SuggestScaling		off 🔽				
beam_length	1100	off 🔽				
beam_width	200	off 🔽				
mass_length	400	off 🔽				
mass_width	400	off 🔽				
partName	harvester	off 🔽				
vendorName		off 🔽				
OK Cancel Apply Defaults Help						

Figure 2.14 Harvester symbol

2.6.2.2 Basic schematic creation

We'll start to study the MEMS only by adding sources on the harvester pins.

Tasks	Clues & Comments
1. Create a new cell named <i>harvester_testbench</i> with the schematic of Error! Reference source not found. using <i>vdc</i> voltage source, resistor <i>res</i> and <i>gnd</i> for the ground.	 a. Work in the <i>MoveMEMS</i> library b. Copy paste vdc source and just change its cell name for gnd and you'll have the updated component as they are all in the same library.
2. Set the voltage on the DC electric pin to 0.	No actuation and closed state modelling.
3. Check and Save and correct possible errors.	Read the virtuoso log CDS.log for hints and ask for help

Figure 2.15 Test schematic for Harvester component

2.7 Simulations

Tasks	Clues & Comments
1. Turn on the sources on the accelerations and angular velocities for the AC modal analysis.	Set the acmag of vdc sources to a non-zero value1uV is fine. Keep the acphase and vdc to 0 for all
2. Launch the simulator ADE L.	
3. Go in Setup > Model Libraries and browse to the varactor_mems.scs file (see	This is to indicate the location of the MEMS+ device to Cadence simulator so it can netlist the complete schematic.

C spectre0: Model Library Setup		_ X
Model File	Section	ī
⊡- Global Model Files ✓ /home/demo/cadence610/ MoveMEMS/harveste	er/harvester.scs	
		I A A A A A A A A A A A A A A A A A A A
		×
	OK Cancel Apply	Help

Figure 2.16 Link Cadence to MEMS+ model

2.7.1 Modal analysis

Tasks	Clues & Comments
 Set an AC analysis from 100 to 10k with 10k number of steps in a linear mode. 	Check you get the same line as in Figure 2.17 .
 Set the gmin value to 0 : In the ADE window, select Simulation > Options >Analog. In the Simulator Options dialog that opens, click on the Algorithm tab and Set the gmin value to 0. 	The gmin parameter controls the creation of additional conductances across each and every nonlinear device of the netlist. Its purpose is to facilitate the convergence of the solver. However, on typical MEMS devices, the default alue of 1e-12 is high enough to significantly affect the precision of a simulation with a MEMS+ model. It is best to run simulation involving MEMS+ devices with gmin set to zero. However, if you need gmin to be set to have the simulator converge, please verify its effect on the MEMS device.
3. Set the Rload to 1T (1 teraohm)	
4. Save this session as a CellView and name it <i>ac</i> .	so you'll keep your settings
 Start the simulation and check results are the one in Figure 2.17 . 	
 Browse results once the analysis is done to find signals inside a component. In this case open ac-ac and open instance I0 (MEMS reference in virtuoso) 	 a. Go in Tools > Results Browser and double click ac_ac then I0 O Note the instance number I0 and the connector number M6 may be different in your case.

Session Setup Analyses Variables Outputs Simulation Results Tools Help Cādence III Status: Setting Rload = 1 T=27 C Simulator: spectre State: ac Design Variables Analyses Analyses Image: Calification of the calification	👫 Virtuoso® Analog Design En	vironment (1) - SINTEF harvester_testbench schematic	
III Status: Setting Rload = 1 T=27 C Simulator: spectre State: ac Design Variables Analyses Name ∧ Value ∧ Type ∧ Enable Arguments ∧	S <u>e</u> ssion Set <u>u</u> p <u>A</u> nalyses <u>V</u> ariable	es <u>O</u> utputs <u>S</u> imulation <u>R</u> esults <u>T</u> ools <u>H</u> elp cādence	
Design Variables Analyses	Ⅲ Status: Setting Rload = 1 T=27 C	Simulator: spectre State: ac	
1 Rload 1 ac 1 100 10K 10K Linear Number of Steps Start-Stop Ac 0 0 0 0 0 0 0	Design Variables Name Value 1 Rload 1T	Analyses Type _ Enable Arguments 1 ac 100 10K 10K Linear Number of Steps Start-Stop Outputs Image: Contract of the start of the	
🙀 Virtuoso (R) Visualization & Analysis L Results Browser		🌃 Virtuoso (R) Visualization & Analysis L Results Browser	×
> Results in /home/demo/simulation/f Eile Tools Options Help caden /	> Results in /home/demo/simulation/t	<u>File T</u> ools <u>O</u> ptions <u>H</u> elp	cādence
7 Choose Design	7 Choose Design		nituda 🗖
/home/demo/simulation/harvester_testbench/spectre/schematic/psf Image: the state of		/home/demo/simulation/harvester_testbench/spectre/schematic/psf Image: Search <	M9x M9y M9z M10arx M10arx M10ax M10ax M10ax M10ax

Figure 2.17 AC analysis

Figure 2.18 AC signals plot

Tasks	Clues & Comments
7. Back into MEMS+ open DC results into Scene3D	Use open icon and choose the file with the name extended by .dc.
8. Measure the maximum displacement at device tip	
9. Open AC results into Scene3D.	Same with .ac
10. Use the graph tool to place the view at the peak frequencies and animate the 2 resonant modes found.	 a. To add signals select the part in the component tree and drag it in the new graph b. Right click to use <i>Move progress bar here</i> and <i>Add data label</i>. c. Exaggerate displacements and increase the scales for a better viewing.

Figure 2.19 Resonant modes in z and rx/ry

3 USING SINTEF MOVEMEMS DESIGN KIT INTO SEMULATOR3D

What is Virtual COVENTOR **Fabrication?** Virtual Fab Actual Fab software Rectangular 2-D layout Blank area of interest wafer Move wafer thru line, **Mimic equipment** to build 3-D model following recipe (partial or full sequence) (partial or full sequence) Processed 3-D model wafer Sample, Visualize, image, image, measure measure Slide 3 Who uses/needs COVENTOR virtual fabrication Process Development Team Model the whole process sequence, including CMOS Find problems before mask tapeout . or running wafers • Save wafers (\$\$\$) and time **Device Designers** Silicon-accurate 3-D models for input to analysis tools **Design Review Technical Writers** An easier way to add realistic 3-D graphics for more effective documentation

Example: DLP Mirror

Slide 4

COVENTOR

Alternative 3D Modeling Approaches

Solid Modeling – Analog

- Exemplified by Pro/E, SolidWorks, Solid Edge, CATIA, etc.
- Surfaces are modeled with mathematical shapes (planes, cylinders, spheres, NURBS...)

Voxel Modeling – Digital

- Exemplified by SEMulator3D and medical image processing
- □ Volume is filled with uniformly sized cubic *voxels* \cong 3D pixels

Section of a voxel model

Advantages of SEMulator3D voxel models for semiconductor applications

Fidelity - faithful to real process technology

Robustness – modeling operations do not fail

<u>Scalability</u> – modest CPU and memory req's; (model build from transistor to to wafer-level)

Parameters

of Selected

Step

Implant

Users can...

- Select a pre-defined, generic process stack
- Create a custom process stack using steps from the library
- Calibrate steps with data from cross-section measurements
- Create custom steps with Python scripting
- Import a process stack from an Excel spreadsheet or other data formats (e.g. XML) via Python

Slide 8

COVENTOR SEMulator3D Library of Standard Process Steps MEMS/CMOS process steps Shallow Trench Isolation Implant, Extension Implant Spacer Formation Lithography Oxidation Diffusion Diffusion CVD (many types) C)RIE Etch Isotropic (wet) etching Lit-Off

Sputtering, Evaporation

CMP

COVENTOR

Powerful 3D Visualization

Slide 9

With the SEMulator3D Visualizer, you can

Interact with a 3-D view

- Create and animate <u>dimensionally accurate</u> cross sections
- Color by material or by electrical connectivity
- Hide/show materials or electrical nets
- Take measurements
- Exaggerate scale in x,y or z
- Capture 3-D images
- Animate the fabrication steps

Slide 10

COVENTOR

Use Case – Design review

"We have now established a strict submission procedure within Baolab for all the foundry runs, and one imperative step is to simulate the whole die micromachining process using SEMulator3D and to visualize the 3D result using the mechanical coloring scheme, and this must be included in the final report."

Green indicates Oxide not removed despite non-violation of design rules

Slide 14

Process Documentation COVENTOR and Training The Traditional Way - Static 2D Cross Sections 10 Proce Created in a drawing program or PPT Handboo Not to scale; not scalable Manual => High effort to reproduce the Ē graphics The New Way – Interactive 3D Views Created with SEMulator3D To scale, supports interactive measurements Quickly and automatically re-generate for new design & processes and variations Automatically generate ppt-slides New free viewer (2011 version) Slide 15 **Beyond MEMS** COVENTOR Processes... SEMulator3D applies to semiconductor processes as well **CMOS** Logic □ FEOL and BEOL Digital and Analog/Mixed Signal Advanced processing nodes (22 and 15 nr⁻) Current processing nodes (45 nm and large Memory □ Advanced 6T DRAM cells Advanced flash memory cells đ. **CCD** Image Sensors Hard Disk Read/Write Heads

Slide 16

• Think of it like the Adobe PDF Reader.

<text><image><image><image>

<image><image><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

COVENTOR

Hands-on Exercises (3)

Exercise 3 – Mesh the Mirror

- 1. Use GET tool to select only the Mirror device for emulation
- 2. Add a Volume Mesh to the process to create a unv format
- 3. Build model 0.1 resolution
- 4. Enable Mesh viewing in Zsplat

Slide 26