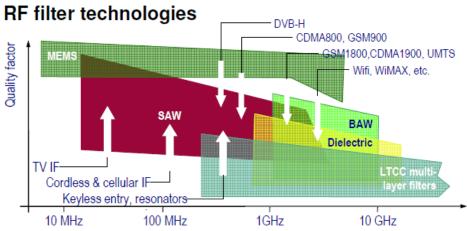
Industrial fabrication of piezoMEMS

Frode Tyholdt SINTEF


Outline

- Outline
- Sackground
 - Current market situation
 - Current situation regarding fabrication
- What is needed for up-scaling of piezoMEMS fabrication
 - Modeling
 - Fabrication
 - Tailored quality monitoring for piezoelectric thin films
- Conclusions

Current market situation – AIN

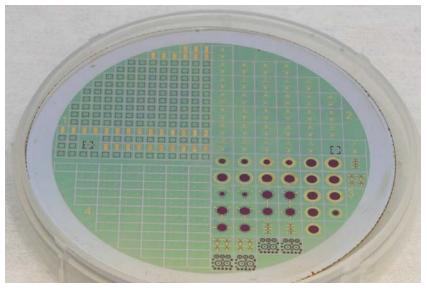
- Several commercial actors use AIN for GHz filters
 - TDK-EPC (EPCOS)
 - Filters main market for AIN but several other markets emerge. e.g.:
 - FBAR biosensors
 - Energy harvesting
- Production of AIN piezoMEMS is integrated into existing MEMS labs
 - Opposition by sputtering
 - AIN is CMOS compatible
 - Some MEMS foundries offer AIN

Current market situation – PZT

- Some large companies are working with PZT piezoMEMS
 - Ink-jet print heads
 - I High f ultrasonic transducers (medical)
- Small and medium companies/ Universities have ideas where piezoelectric PZT technology is needed
 - Need access to PZT based piezoMEMS foundry
- Companies are looking for high volume production solutions for PZT
 - Prototyping
 - Opposition
 - Fabrication

Medical ultrasonic transducer by Vermon

Ink-jet printer by Océ


How can my company access piezoMEMS production technology?

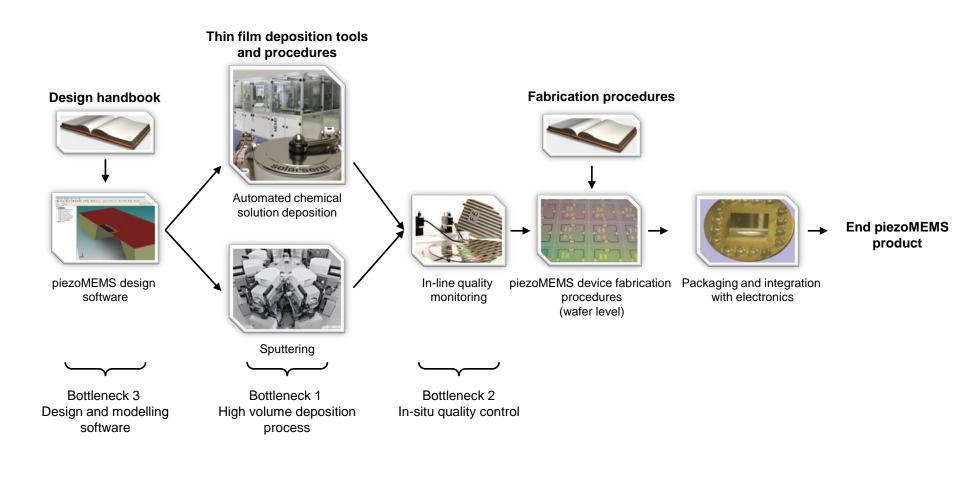
- •Low volumes (prototyping)
- Production

Current situation regarding low volume prototyping

- In, Europe there are a few Universities/Institutes that offer piezoMEMS feasibility studies:
 - Cranfield University (UK), PZT
 - SINTEF (NO), PZT
 - EPFL (CH), AIN and PZT (research)
 - Fraunhofer ISIT, AIN (DE)
 - IMEC, AIN (BE)
- Only SINTEF has a predefined process with design guidelines and fabrication procedure (moveMEMS)

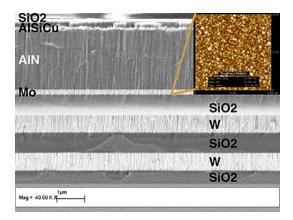
Multi-project piezoMEMS wafer from SINTEF

Current situation regarding high volume fabrication


- There are 3 main bottlenecks for high volume fabrication
 - High volume deposition
 - AIN process already commercial (sputtering)
 - Commercial PZT process being developed now (2010)
 - Quality monitoring tool (piezoelectric coefficient)
 being developed in 2010
 - piezoMEMS design and modelling tools (+procedures)
 - Seing developed in 2010

piezoMEMS accelerometers (SINTEF)


A piezoMEMS high volume fabrication process



AIN piezoMEMS

- The deposition process for AIN has been commercial for several years.
 - Sig companies have it in-house (FBAR filters)
- Not so much focus on AIN piezoMEMS for actuation (low e_{31.f}). Mostly sensing.
 - MFI (<u>http://www.memsfoundry.de</u>)
 - IMEC (<u>www.imec.be</u>)
 - EPFL (<u>lc.epfl.ch</u>) (research)
- Some use ZnO as well, but AIN has similar properties.

Oerlikon CLUSTERLINE 200 II

SEM cross-section image showing the SMR-type film stack

The moveMEMS process (PZT)

Starting point: Silicon-on-insulator wafer (SOI)

Backside opening by wet etch Pt bottom electrode by sputtering Piezoelectric layer by CSD, sputtering or PLD Au/Cr top electrode by vapour deposition and lift off patterning

Pattering of piezoelectric layer by wet etch Back side cavity by wet etch

Release by reactive ion etch

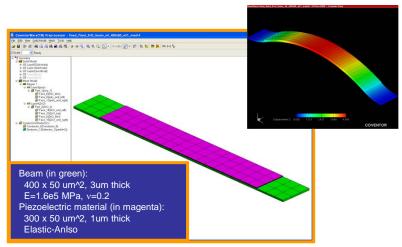
- Au/Cr top electrode layer
- PZT or AIN piezoelectric ceramic
- Pt/Ti bottom electrode layer
- SiO₂ Si

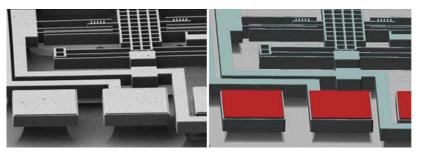
Release etch of piezoMEMS wafers

SINTEF

The moveMEMS design handbook

- Material specifications and design guidelines
 - Material parameters
 - Design guidelines and process limitations
 - Oefinition of lithographic masks


	5.2.2	Design rules	23
6	PIEZOEL	ECTRIC THIN FILM BASED MICROSYSTEMS	
6	.1 Мот		.24
6		CERO DEVELORMENT	25
6	.3 MAT	ERIAL SPECIFICATIONS	
		Specifications for stilicon substrates (SOI)	
	6.3.2	Specifications for the glass wafers	
	6.3.3	PZT film specifications	
	6.3.4	Mechanical and geometrical specifications of the multimorph PZT stack	
	635	Dreakdown voltages	
6	4 DES	IGN GUIDELINES	31
	6.4.1	Bulk silicon etching - Etching of the silicon wafer	
	6.4.2	Design limitations	
	6.4.3	Definition of mask layers and design rules	
7	REFERE	NCES	


piezoMEMS modelling tool

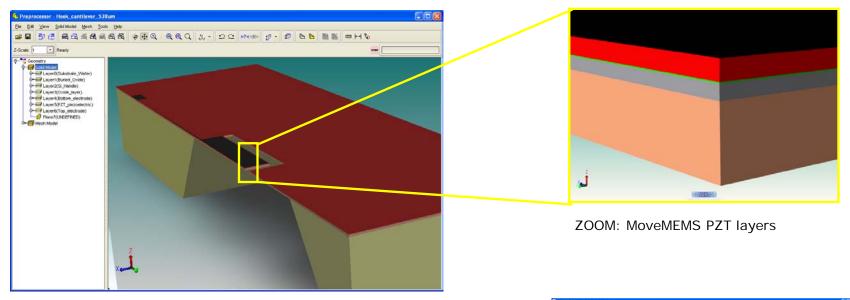
- piezoMEMS modelling tool
 - 3D parametric library of standard piezoMEMS components
 - Integration with FEM software
 - Material parameters included in process design kit (PDK)
- Process emulation (virtual manufacturing)
 - 2D masks + description of fabrication process to create a voxel based 3D solid model.
- Virtual manufacturing
 - Save Money by finding problems before fabrication.
 - Enhance communication with highly detailed, interactive 3D models.
 - Reduce time-to-market and gain a competitive advantage.
 - Improve documentation and reduce document creation effort.
 - Enhance Yield through improved design rules and defect modelling.

piezoMEMS beam in Coventorware ARCHITECT.

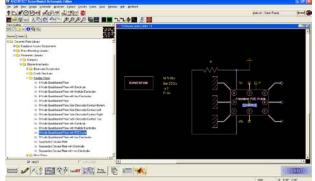
Virtual manufacturing of MEMS bond pads and comb drive. Courtesy X-FAB Semiconductor Foundries, AG.

Process design kit (PDK)

- A Library of process emulation files (*.proc) define foundry-specific processes
- Material property database (*.mpd) provides process-specific values associated with materials
- Layout template file (*.cat, *.gds) contains geometric and process descriptions for pre-defined MEMS elements
- Library of parametric and nonparametric elements support schematic and physical design (optional)
- Link to design handbooks including validated MEMS design rules, detailed process information and design case studies are available upon request


🗋 🧉 🗟 💺 🗡 🥂 📓 🛃 🐨 🧭 🕐											
mber	Step Name	Layer Name	Material Name	Thickness	Mask Name	Photoresist	Depth	Mask Offset	Sidewall Angle		
0	Substrate	Substrate_Wafer	SILICON_100	380	SubstrateMask						
1	Silicon-On-Insulator (SOI)										🗄 🚰 Modeling Acti
- 1.1	Thermal Oxidation	Buried_Oxide	5i02	0.3							🗄 - 🚰 User - Defined
1.2	Grow Crystal Silicon	Si_Handle	SILICON_100	7.34							🗄 🚵 Foundry Proc
2	Wet Oxidation	Oxide_layer	5i02	1.5							
3	Oxide Etch Backside				BETCH	-		35	1.5		
4	Oxide Etch Frontside				ALIGN	+		0	1.5		
5	Sputtering Bottom Electrode	Bottom_electrode	Pt_Ti	0.12							
6	PZT Chemical Solution Deposition	PZT_piezoelectric	CSD_PZT	2							
7	Lift-off Top Electrode										
7.1	Metal Deposition	Top_electrode	Au_Cr	0.2							
7.2	Patterning				TOPEL	+		0	0		
8	PZT Patterning				NOPIE	-		0	0		
9	Bottom Electrode Patterning				BOTEL	+		0	0		
10 ep Name	RIE Release Etch PZT Chemical Solution Depositio	n			FETCH	-	12	0.5	•	-	
ep Name	PZT Chemical Solution Depositio	Thick				-	12	0.5			
ep Name tion ayer Nam aterial	PZT_Chemical Solution Deposition Conformal Shell PZT_piezoelectric CSD_PZT	▼ Thick			FETCH	-	12	0.5		•	
tep Name ction ayer Nam aterial 7 Front :	PZT Chemical Solution Deposition Conformal Shell PZT_plezoelectric CSD_PZT Side	Thick Distrib Nomin	ution Normal		T Edk	-	12	0.5		•	
tep Name tion ayer Nam aterial Front : Back S	PZT Chemical Solution Deposition Conformal Shell PZT_piezoelectric CSD_PZT	Thick Distrib Nomin Display	ution Normal al Value 2 Color Red			-	12	0.5			
tep Name ction ayer Nam laterial 7 Front : 8 Back S Under:	PZT Chemical Solution Deposition Conformal Shell PZT_piezeelectric CSD_PZT Side ide side Costing	Thick Distrib Nomin Display Surface	ution Normal al Value 2 Color Red		T Edk	-	12	0.5		•	
ep Name ction aver Nam aterial Front : Back S Under	PZT Chemical Solution Deposition Conformal Shell PZT_piezoelectric CSD_PZT	Thick Distrib Nomin Display Surface Conforr	ution Normal al Value 2 Color Red		T Edk	-	12	0.5		•	
tep Name ction laterial 7 Front : 8 Back S 7 Under: 7 Rour	PZT Chemical Solution Deposition Conformal Shell PZT_piezeelectric CSD_PZT Side ide side Costing	Thick Distrib Nomin Display Surface	ution Normal al Value 2 Color Red		T Edk	-	12	0.5		•	
tep Name ction ayer Nam laterial Front : Back S Under: Nour	P2T Chemical Solution Deposition Conformal Shell P2T_plezoelectric CSD_P2T Side de de Coating dd Conters	Thick Distrib Nomin Display Surface Conforr	ution Normal al Value 2 Color Red		T Edk	-	12	0.5		•	
tep Name ction ayer Nam laterial Front : Back S Under: Nour	PZT Chemical Solution Deposition Conformal Shell PZT_piezeelectric CSD_PZT Side ide side Costing	Thick Distrib Nomin Display Surface Conforr	ution Normal al Value 2 Color Red		T Edk	-	12	0.5			
ep Name ction ayer Nam aterial Front : Back S Under: All Convex C	P2T Chemical Solution Deposition Conformal Shell P2T_plezoelectric CSD_P2T Side de de Coating dd Conters	Thick Distrib Nomin Display Surface Conforr	ution Normal al Value 2 Color Red		T Edk	-	12			•	

Process Flow of the piezoVolume PZT process represented in CoventorWare



Coventor architect and designer

3D model of piezoelectric cantilever in MoveMEMS PZT

•Piezoelectric actuators and sensors included (SINTEF moveMEMS) from version 2008.010

PZT plate model for schematic design

Implementation in CoventorWare

Proces	s Editor - [C:/Work/Covento	rWare/SINTEF_	MoveMEMS_P	ZT/Device	s/SINTEF_Mov	eMEMS_PZ	Г_v0.рі	roc]		
File Edit View Tools Windows Help										
Number	Step Name	Layer Name	Material Name	Thickness	Mask Name	Photoresist	Depth			9
0	Substrate	Substrate_Wafer	SILICON_100	380	SubstrateMask				tess Library	
	Silicon-On-Insulator (SOI)								Modeling Actions	
1.1	Thermal Oxidation	Buried_Oxide	SiO2	0.3				-	Contract Steps	
····· 1.2	Grow Crystal Silicon	Si_Handle	SILICON_100	7.34					Anistropic Wet Et	t
2	Wet Oxidation	Oxide_layer	SiO2	1.5					🕰 Anisotropic Wet B	ŧ
3	Oxide Etch Backside				BETCH	-				-
4	Oxide Etch Frontside				ALIGN	+				
5	Sputtering Bottom Electrode	Bottom_electrode	Pt_Ti	0.12						
6	PZT Chemical Solution Deposition	PZT_piezoelectric	CSD_PZT	2					Release Dry Etch	
· 7	Lift-off Top Electrode									
7.1 Metal Deposition 7.2 Patterning		Top_electrode	Au_Cr	0.2						1
					TOPEL	+			···· 🗖 Stripping	
8 PZT Patterning					NOPIE	-				,
							<u> </u>		🛲 Generic PECVD	
									Sputtering	
5tep Name	e Grow Crystal Silicon									
	- Charle Mathematic									
Action	르 Stack Material									
Layer Nam	ne Si_Handle	_ Thickr	less				_		···· 🛋 Spin Casting	
Material	SILICON_100	Distrib	ution Normal		-		E	Statistica	l Properties: Thick	ness
▼ Front Side Nominal Value 7.34 Edit										
E Pack Side						C Tolerance	e 0			
Display Color Upper Limit 7.84							nit 7.84			
Comments At start of process the Silicon handle layer is 8000 ± 500 nm . However, after oxidation Lower Limit 6.84						nit 6.84				
Apply Ok C						Cano				

Implementation in CoventorWare

COVENTOR

Choice of PZT deposition method

	-e _{31,f} [C/m ²]	Relative permittivity. e _r	Dissipation factor, tan d	Current main bottleneck for high volume
CSD	12-18	1100-1600	~0.03	Throughput
Sputtering	~4-8?	900?		Quality

€ CSD: High quality, but low throughput (manual deposition ~1 wafer/h µm)

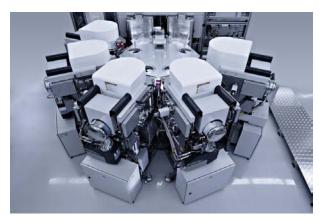
• Sputtering:

- Multi target DC reactive sputtering: low throughput
- Single oxide target RF sputtering: higher throughput, but still too low quality
- PLD also coming up as candidate

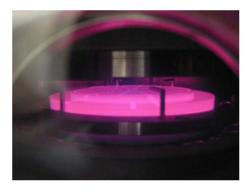
Production deposition tools for PZT – CSD

- Adaptation of Solar-semi cluster coater tool
- Throughput goal
 - 4 wafers/h·µm (65 nm/min) on 200 mm wafers using new automatic CSD tool (15.000 wafers/y @ 43 % uptime)
- Performance goal
 - e_{31,f} ~ -14 C/m²
- Opposition cost
 - I0-20 €/wafer.µm due to consumables and equipment depreciation @ 43 % uptime
 - € 4-8 €cent per 1x1 cm die using 200 mm wafers
- Will be optimized for PZT but can also be used for other oxides

Solar-semi coating cluster


Production deposition tools for PZT – sputtering

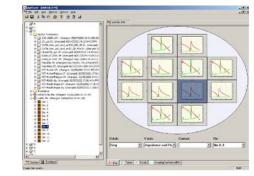
- Development of add-on for Oerlikon's Clusterline 200 II for in-situ sputtering of PZT
- Throughput goal
 - 3.6 wafers/h·µm (60 nm/min) on 200 mm wafers (11.000 wafers/y @ 43 % uptime)
- Performance goal
 - e_{31,f} ~ -14 C/m²
- Oeposition cost
 - 10-20 €/wafer.µm due to consumables and equipment depreciation @ 43 % uptime
 - 4-8 €cent per 1x1 cm die using 200 mm wafers



Oerlikon Systems Clusterline 200 II

Hot chuck during sputtering

Method	Information retrieved	Suitability for high volume piezo thin film quality monitoring
In-situ XRD	Structure/texture/ morphology	No 1:1 correlation between e.g. rocking curve and piezoelectric performance
Ellipsometry	Thickness/refractive index	Only thickness
Electromechanical	Piezoelectric coefficients/ ϵ_r	Wafer must be processed to extract the coefficients



In-line quality monitoring

- Indirect estimation of $e_{31,f}$ from $d_{33,f}$ and ϵ
 - Needed resolution for thin films <10 pm
 - Laser interferometry
- Accuracy
 Accuracy
 - Setter 4 % of real e_{31,f}
- Throughput
 - 💿 10 wafers/h
- Automation of measurements through electrode mask layout
 - Parameter/coefficient tracking
- Operations cost
 - 4 €/wafer due to equipment depreciation @ 43 % uptime

aixACCT double beam laser interferometer (aixDBLI)

aixPlorer data management and analysis software

piezoMEMS competence centre

The competence centre aims to act as contact point for interested parties and covers the whole production process for piezoelectric microsystems

- World-class piezoelectric thin films (PZT). e_{31,f} ~ -14 C/m² @ 10 Hz
- Opposition process and tools for high-performance PZT thin films on silicon wafers
- Modelling software specifically for piezoMEMS
- Modelling of device ideas and design assistance
- Evaluation of alternative processing routes
- C Testing services and sophisticated testing equipment
- Manufacturing of prototypes
- Small scale production using 150 mm wafers

<u>www.piezovolume.com</u>

Conclusions

- There is a high focus on establishing production technologies for piezoMEMS (PZT)
- C Low volume prototyping
 - AIN are offered by some MEMS foundries
 - PZT are offered by some commercially by a few institutes
- I High volume fabrication
 - In All Already at high volumes in companies
 - PZT deposition processes currently under development
 - I High volume deposition tools
 - Chemical solution deposition (piezoVolume)
 - Sputtering (piezoVolume)
 - PLD (SolMates)
 - Process specific design and modelling tool
 - Quality monitoring tool

