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Executive summary 
 
The PDS method provides quantification of loss of safety for safety systems; it builds on 
traditional theory for reliability modelling, and the following comments apply: 
 

 Common cause failures (CCF): The PDS method does not, as many other modelling 
approaches, apply the beta factor model. In addition to the beta factor model, the PDS 
method applies a configuration factor (CMooN), to distinguish between the effect of various 
voting configurations (M-out-of-N MooN). It is noted that IEC 61508 in its new committee 
draft has suggested a similar set of correction factors. 
 

 Failure classification: The PDS method essentially uses the current IEC 61508 approach to 
failure classification, splitting failures into random hardware failures and systematic 
failures. There is one exception: In PDS a fraction of the failures are classified as non-
critical (affecting no major function) and is taken out of calculations. This approach has 
been adopted in the new committee draft of IEC 61508. 
 

 Degraded operation: The PDS method also suggests formulas for handling degraded 
operation. However, this is not seen to be particularly relevant for railway applications. 
 

 High vs. low demand mode: Traditionally, the PDS method has focused on “low demand 
mode”, that is quantifying safety in terms of PFD (probability of failure on demand). 
However, the present report discusses the difference between this measure and the measure 
suggested by IEC 61508 for high demand mode, i.e. PFH (probability of failure per hour). 
The presentation of the present report then focuses on PFH. 

 
The main objectives of the report are  
 

1. To demonstrate the applicability and usefulness of the PDS method for analysis of railway 
signaling systems  

 
2. To explain how the PDS method relates to definitions and approaches that are used in 

(particular the new committee draft of) IEC 61508. 
 
There are found some discrepancies in the quantification formulas of the present report (i.e. PDS) 
and the committee draft of IEC 61508. However, these discrepancies essentially relate to the 
contributions from independent failures, which in practical (railway) applications are completely 
dominated by the contributions from CCF.  
 
Regarding DD (Dangerous Detected) failures it is in PDS pointed out that whether DD failures 
should be included or not in the quantifications, will depend on the design and operational 
philosophy of the signalling system. The DD failures should not be included if the system 
(automatically) goes to a safe state on detection of a dangerous failure, and so for railway 
applications it is assumed most relevant not to include DD failures. However, the PDS method as 
such allows for both options, (based on a discussion of the most appropriate modelling of the 
design and operational philosophy for the signalling system under investigation). 
 
Therefore, the suggested calculation formulas in the current IEC draft, /2/, apply for a specific set 
of assumptions only, (and are not in particular adapted to railway applications). For most 
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configurations /2/ suggests to include contributions from DD failures. However, this seems to be 
handled somewhat inconsistently, as for a single system, the DD failures are not included.  
 
The CCF modelling and failure detection modelling, which are the main elements of the PDS 
method are seen as rather similar to the new suggested IEC approach. This is in particular the 
case, as the IEC committee draft also presents a CCF method (as an alternative to the beta factor 
modelling), which is completely analogous to the PDS approach.  
 
A numerical example is carried out to illustrate the method. This indicates that the CCF represent 
the most significant contribution to PFH. Further, if DD failures are included as a contribution to 
CCF, this could actually dominate. Thus, it is an important task to agree whether these failures are 
actually relevant for a specific application.  
 
The uncertainty related to any quantification of this type is stressed; so that the result must in no 
way be considered as exact figures. However, the structured process of carrying out such 
quantification can in itself be very useful, as it obviously can point out weak parts/components, 
and provide comparison of different configurations.  
 
Alternative quantification methods to the PDS method are shortly reviewed The PDS approach is 
based on the use of Reliability Block Diagram (RBD). Since the railway industry often uses fault 
trees as basis for reliability analysis, it should be noted that a RBD can always be transferred into 
a fault tree and vice versa. When the reliability model is established, the two approaches give the 
same result.  
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1 Introduction 
 
The PDS method, /3/, /4/, is a method used to quantify the safety unavailability for safety 
instrumented systems. It has achieved a broad use, in particular in Norwegian offshore industry, 
see the OLF guideline, /5/. However, it has also been applied in other industry sectors, like e.g. for 
railway safety systems. It should be noted that the PDS method is not static; it is continuously 
being developed, and a series of the PDS Method Handbook has been issued. There will appear a 
new edition in 2009, /20/.  
 
The PDS method is adapted (but not identical) to the calculation methods that are presented in 
part 6 of the IEC 61508 standard, /1/, and is even closer to the new draft version, /2/. The main 
objectives of this report are to demonstrate how the PDS method is applied to analysis of railway 
signaling systems, and to explain how the PDS method relates to definitions and approaches 
suggested in IEC 61508. 
  
As this report indicates, it is not straightforward to develop a model that reflects failure detection 
of railway signaling system. The approach presented in this report may therefore be used as basis 
for further discussion and investigation by reliability analysts and researchers. However, it should 
be noted that these challenges are overall rather than unique for the PDS method.  
  
Structure of the report 
Chapter 2 discusses the application of the PDS quantification method for safety instrumented 
systems operating in the “high demand mode”, and formulas for the use with railway signalling 
systems are presented. Comparison with the formulas presented in the new committee draft of 
IEC 61508 are given. The application of the formulas is illustrated by a practical example.  
  
Chapter 3 describes alternative quantification methods, and relates these to the PDS method. 
Overall methods like FTA and Markov are discussed. And also alternatives to the PDS CCF 
modelling are reviewed; e.g. the beta-factor model and the Binomial Failure Rate (BFR) model; 
(both discussed in /2/). 
  
Chapter 4 summarizes the main findings, in particular comparing the assumptions and formulas of 
the PDS method with those given in the committee draft of IEC 61508.  
  
Appendix A includes a more thorough discussion of required data, in particular for the modelling 
of common cause failures, and Appendix B provides a list of the most important abbreviations. 
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2 The PDS method for safety quantification 
 
The PDS method, as it is described in /3/, has so far been mainly used to quantify the reliability of 
safety instrumented systems working in the low demand mode. This means that most formulas and 
examples in /3/ are directed to such systems. A frequently used reliability measure for such 
systems is the (average) probability of failure on demand (PFD).  
 
Safety functions performed by railway signaling systems can be classified as operating in the high 
demand mode. In this case, the reliability measure is the frequency of dangerous failures per hour, 
or alternatively the probability of having a dangerous failure per hour (PFH), rather than the PFD. 
So far, in /3/ does not give much guidance on how to calculate the PFH; however, the associated 
formulas may be deduced from basic reliability modeling and key principles in /3/, for example 
related to failure classification and common cause failure modeling.  
 
This chapter outlines the differences in reliability calculations for high demand (continuous) mode 
vs. low demand mode. In the remaining part of the report we restrict to discuss high demand 
mode, being particularly relevant for railway applications. This chapter then describes various 
aspects of the PDS method: 
 

 failure classification 
 failure detection 
 CCF modelling 

 
The assumptions of the PDS method are also summarised, and a numerical calculation example is 
given. 

2.1 Use of low demand vs. high demand mode  

2.1.1 Definitions of low and high demand mode 

The IEC 61508 standard, /1/ makes a distinction between so called low demand systems and high 
demand systems. This split and the associated definitions given in IEC 61508-4, sect. 3.5.12, have 
caused a great deal of confusion and discussions and is one of the aspects that has been subject to 
discussions in the ongoing update of the IEC 61058 standard (ref. /2/).  
 
Roughly speaking, the two modes of operation can (at least in a historic perspective) be though of 
as: 
 

 A low demand safety system operates only upon a demand, can often be seen as an add-on 
to the basic control system, and shall only be called upon when something goes wrong or 
starts to go wrong 

 
 A high demand mode system may be a system that experiences frequent demands or more 

or less operates continuously. If operating continuously it can be seen more as a control 
system which shall prevent the process or equipment it controls from exceeding certain 
bounds.  

 
For both modes, dangerous (D) failures are “dormant”, and thus the D failures are not detected 
without performing a test or a demand occurs. IEC 61508, /1/ has defined the split between these 
two operating modes by saying that systems where the frequency of demands exceed one per year 
or greater than twice the proof test interval shall be defined as continuous mode systems. This 
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split is however somewhat unmotivated and leaves an impression of two different types of 
systems that shall be treated completely different when calculating the safety level. This is n
necessarily the case, and one of the topics that the IEC 61058 update committee has discussed i
whether the two separate tables for low demand versus high demand systems could be merged 
into one common table, (however not the case in the current CDV version, 

ot 
s 

 in 

2.1.2 Quantification formulas for independent failures 

ependent failures only. The formulas 

he draft IEC 61508 standard, /2/ suggests two slightly different ways to measure the safety level 

 as: 

ety system is operational (does not have a 
, τ], 

n B.2.3.1 of /2/): 

e PFH over an interval  

us 

 PFH = λ                  (high demand mode, single comp.) 

 PFD = 1 – [1-exp(-λD τ)] / (λD τ) ≈ λD · τ/2             (low demand mode, single comp.)1 

der to obtain the PFD, we just multiply the rate PFH with the average period (τ /2) that 

o take a more general example, consider a 1ooN configuration2 of N identical components, 
s 

w(t) =N·[1-exp(-λD t)]N-1·λD exp(-λD t) ,      (1ooN voting) 
 

hich says that N-1 failures have occurred prior to time t and the last component fails at time t. 

PFH1ooN = [1-exp(-λD τ)] / τ  ≈ (λD τ ) / τ,    (1ooN; independent failures only) 
 

/2/). Further, as seen
the preceding section, the calculation formulas for the two operating modes are essentially 
equivalent. 

In this section, we illustrate the argument by considering ind
that are derived here are based on traditional reliability analysis, and are not specific for the PDS 
method. 
 
T
for low demand and high demand mode of operation: 

 For the “low demand” mode we measure safety
PFD = Probability of failure on demand. 
PFD is the (average) probability that a saf
dangerous failure) upon a demand. If MDT(τ) is the mean down time over a period [0
then we also have PFD = MDT(τ)/ τ,  (see Section B.2.2 of  /2/). 

 For the “high demand” mode we can measure safety as (see Sectio
PFH = Probability of Failure per Hour; being a rate of failures. 
If w(t) is the unconditional failure intensity at time t, then averag

[0, τ], equals PFH(τ) = 


0
)( dttw / τ, (being the average rate of failures over the interval).  

The formulas for these two “m pletely analogous, and we shall see that there is a odes” are com
close relation between the two. Consider as an example a single component with rate of dangero
(D) failures, λD. As usual we apply the exponential failure model with constant failure rate. Then 
for this single component, (cf. /6/) 
 

D

 

 
Hence in or
the component will be unavailable due to a D failure.  
 
T
which are failing independently, i.e. not considering Common Cause failures, (CCF). Then it i
easily shown that  
 

w
Further, from this expression for w(t) it is easily derived that the average rate over [0, τ] equals 

N N

                                                 
1 We use the standard approximation 1-exp(-λD τ ) ≈ λD τ, (valid for small λD τ). 
2 With respect to safety, meaning that at least 1 out of N components must function to avoid system failure. 
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The rel

nctional testing, and so it is assumed that w(t) is “restarted” immediately after a test, and for a 

he term [1-exp(-
 τ)]  ≈ (λ  τ)  is the probability that all N units (components) fail within the same  interval of 

ean that at least 1 out of the N 
omponents must function in order for the system to function; so it fails when all N components 

ation between w(t) and PFH is illustrated in Figure 1. Here τ is taken as the period of 
fu
1ooN voting with N>1 this means w(t)=0 at the beginning of each test interval. 
 
We can actually give a simple interpretation of the above formula for PFH1ooN. T

N NλD D

length τ, resulting in a system failure. So PFH1ooN equals the probability of system failure during 
the interval (of length τ), divided by the length of this interval.  
 
Note that by a 1ooN (1-out-of-N) voting configuration we here m
c
fail. 
 

 

Figure 1: w(t) and PFH (N>1) 

 
The analogous standard approxim t failures in a 1ooN system 
quals (e.g. see Table 10.1 in /3/): 

    (1ooN; independent failures only) 
 

Here 1 f the i terval and thus 
system having a dangerous failure). 

ery similar and are just two different ways to express safety. 
 the above example of a 1ooN voting we have 3:  

Such a d, and we can easily transform the formula for the 
ilure probability, PFD to a rate of failures, PFH and vice versa. We also note that none of these 

e is a 

 

 

ation for PFD due to independen
e
 

PFD1ooN ≈ (λD τ)N/ (N+1),   

/(N+1) is the average fraction o n τ that all N components are failed, (

 
Note that PFD1ooN and PFH1ooN  are v
In
 

PFD1ooN = PFH1ooN · τ / (N+1)      
 

 relation is also more generally vali
fa
measures are restricted to be used for low demand or high demand mode only. However, ther
difference in interpretation: PFD is the relative time that the system is unavailable; PFH expresses 
the rate at which failures occur (irrespective of duration of the unavailability). For high reliability 
systems (with repair times being very short compared to MTTF 4), it could seem rather arbitrary 
which measure is chosen. However, in our opinion PFH has a weakness compared to PFD. Using 
PFH as a measure for loss of safety it does not matter whether the failure exists in the system just
for a few seconds or for days (or even weeks); it is just counted as a failure. But if a system failure 
is detected almost instantly, we suggest that it should not be “given the same weight” as if it 
remains undetected for a long period. PFD, however, will account for this difference in criticality.  

                                                 
3 is interpreted as the average duration of the unavailability period after a failure has occurred.  Here the factor τ/(N+1) 
4 Mean Time To Failure. 
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The description of the PDS method, /3/, focuses on the measure PFD, suggested by IEC 6150
low demand mode. However, in spite of the above mentioned weakness, the present report 

8 for 

cation  

DS mainly follows the failure classification of IEC 61508. Both 
pproaches classify failures according to their causes and according to their effects, see Figure 2.  

s, which are aging failures, i.e., failures that are due to natural 
(and foreseen) stresses. The time to failure may be modeled by a probability distribution 

 failures, which are due to inadequate design, manufacturing, installation, or 
peration and maintenance. The time to failure may not be predicted in the same way as 

 

e 

. 

h temperature, unforeseen corrosive medium and so on. 

sition, 

 

focuses on PFH, since IEC 61508 suggests this for high demand mode, (which is the relevant 
mode for railway). 

2.2 Failure classifi

 
The failure classification of P
a
IEC 61508 distinguish between: 
 

 Random hardware failure

function. 
 

 Systematic
o
random hardware failures. In PDS the systematic failures are further split into(Figure 2):
o Software failures e.g. due to inadequate specification or programming error. 
o Design failures, whose causes may be traced back to the design phase, e.g. inadequat

specification,  
o Installation failures, which could be caused by wrong installation of valve or incorrect 

sensor location
o Excessive stress failures caused by stresses outside the design envelope, i.e., excessive 

vibration, too hig
o Operational failures whose causes are associated with inadequate interaction during 

operation and maintenance. Examples include leaving a valve in wrong po
making a calibration error, or leaving a detector in bypass mode 

 

 
 

Figure 2. Failure classification, (from /20/). 
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IEC 61508 requires that random hardware failu
and that systematic failures, including software

res are included in the quantification of reliability, 
 failures, should be handled (i.e., avoided, 

vealed, and corrected) by procedures. Here, the PDS method takes a slightly different approach, 

ithout the systematic failures, we can expect that the predicted reliability (based 
n the data for random hardware failures) may deviate from the actual or experienced reliability, 

 

 Safe (S): A failure that does not have the potential to put the safety-related system in a 

 DU = Dangerous Undetected 

re that is hidden (or dormant) until there is a real demand or a 
tected failure is revealed prior to this point, by self-testing 

iagnostics). 

ion: In 
DU failures to the unknown unreliability, and the DD failures to the known 

nreliability when operating in degraded mode. It is often assumed that a DD failure is repaired 
at 

ible.  

f the IEC 61508 standard is somewhat inconsistent at this point; see below.  

nd. It is sometimes 
ebated whether or not such transitions are safe, as they may cause unnecessary stress on 

ted system. In the PDS method, such failures are classified as non-critical failures, a 
oncept that seems to have been adopted in the new committee draft of the IEC 61508 standard.  

 

re
by introducing a probability of having test independent failures (PTIF). This is further commented 
in Section 2.3.2. 
 
Comment: Excluding the contribution from systematic failures is an obvious deficiency of the 
quantification.  W
o
(based on the actual number of experienced failures).  
 
Similar to IEC 61508, the PDS method distinguishes between different failure effects. IEC 61508
classifies failures (or failure modes) as either: 
 

 Dangerous (D): A failure that has the potential to put the safety-related system in a 
hazardous or fail-to-function state.  

hazardous or fail-to-function state.  
 
Both safe and dangerous failures are further split into detected and undetected failures, i.e. 
 

 DD = Dangerous Detected 
 SU = Safe Undetected 
 SD = Safe Detected 

 
An undetected failure is a failu
functional test, whereas a de
(d
 
Both DU and DD failures contribute to the unreliability of the safety instrumented funct
particular, the 
u
within short time (a few hours), and if we use PFD as a measure for loss of safety, this means th
the contribution from DD failures, compared to the contribution from DU failures, is neglig
 
When we use PFH as a measure for loss of safety it could be a more difficult question to what 
extent DD failures shall be included in the quantification. In our opinion the new committee draft 
o
 
Safe failures include spurious operation failures, i.e. failures that lead to the execution of a safety 
function of a component (e.g., red light signal) without the presence of a dema
d
components, on the operators (e.g., train drivers), and added risk during the restoration of the 
process.  
 
Safe failures also include various types of failures that do not have any effect on the safety 
instrumen
c
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The discussion of the present report focuses on DU and DD failures. 

2.3 Failure detection and the effect on safety 

 
The dangerous failures of safety systems are “dormant”, i.e. there are detected either by some kind 
of testing or by demands. Mainly, we have three methods for failure detection: 

 Automatic self test (diagnostic testing) at period, τ  

 

 
1

 Functional testing, at period, τ 
 Demands 

Remaining test 
independent failures

Revealed by 
demands and 

functional tests

DU

Revealed by self-
diagnosticsDD

 

Figure 3. Failure detection and the classification of rate of dangerous failures, λD = λDU+λDD   

 
All three types of tests contribute to the detection of dangerous failures in the way that is 

 t

at some DU failures are neither detected by demands or functional tests. Most other approaches 

 
ere DC = λDD / λD. 

nguish between the rate of DU (dangerous undetected) failures, λDU, and the rate of 
D (dangerous detected) failures, λDD.   

 
or a 1ooN system without CCF (common cause failures) the contribution to PFH from failures 

rt, (i.e. essentially continuous testing), and this 
ontribution to PFH is negligible, (for N>1). However, (unless τ1 is very low), this should be 

checked by calculation; further see Section 2.4, below.  

illustrated in Figure 3. For simplicity we assume that essentially the same failures are detec ed by 
functional tests and demands. Observe that, in principle the PDS method opens for the possibility 
th
assume that the coverage of these tests are 100%. 

2.3.1 Automatic self test 

The PLC components are subject to automatic self test with diagnostic coverage, DC. Then we 
split λD into  

λD = λDU + λDD,    wh
 
Here, we disti
D

F
detected by automatic self test, i.e. DD failures, equals (λDD τ1)N / τ1. In many applications the 
period of diagnostic testing, τ1 is very sho
c
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It is worth noting that the DC of a single component may be improved when it is inserted in a 
redundant system subject to comparison between redundant branches.  

2.3.2 Functional testing 

Functional testing aims to test all components involved in the execution of a safety instrumented 
ing 

rval equal to e.g., τ = 6 
months. This testing principle is different from what is used for railway signaling systems. 

 period 
f for instance 24 hours. Thus, for railway signaling systems, τ = 24 hours may be considered as a 

 of the 

tional test has taken place. This failure probability could be 
aused by systematic failures (software; inadequate testing) or by failure of maintenance 

d 
xposure 

 reveal wrong location of the detector and if 
e detector head is covered with dust or dirt. 

ow assuming the coverage of functional testing to be 100%, the contribution from DU failures to 

tic selftest and the 
terval of functional test can easily be included in the modeling. There could for instance be a 

sis for the modelling:  
 Which functions, objects and components are tested? 

detection. However, in offshore 
in some cases been considered as “functional tests”, thus in 

 

function, for example to secure a rail section. Presently, the PDS method relates functional test
to the manual testing on an offshore installation, performed with an inte

 
For railway signaling systems, the functional tests must be performed more often to achieve a 
sufficient level of safety. For this reason, all objects involved in securing a rail section are tested 
as part of a train passing request. A functional test, simulating a train passing request. is 
performed automatically for objects that have not been activated by a train passing during a
o
(typical) functional test interval.  
 
The functional testing (as demands) is often assumed to be “perfect”, (i.e. detecting 100%
failures). However, the PDS method also allows for a non-perfect functional testing by adding the 
contribution PTIF

5 to PFD; which is the probability that the system will not function on a demand 
occurring immediately after a func
c
personnel to carry out testing/maintenance correctly. 
 
Example (“test independent failure”): Consider the testing of gas detectors at an oil and gas 
installation. Such detectors are often tested with test gas rather than hydrocarbon gases (to avoi
the risk of ignition), often through a hose going into the detector chamber rather directly e
at the detector head. In this case, the test is not able to
th
 
Further analysis may be required if “test independent failures” is an issue also for railway 
signaling systems. In the present report we will not proceed on this question, but point out the 
possibility of the PDS method to model functional testing to be imperfect.  
 
N
PFH for a 1ooN voting (without CCFs), approximately equals (λDU τ)N / τ. 
 
We note that an additional test interval, in addition to the interval of automa
in
third test with test interval 1 year. This could be modeled in exactly the same way as the two test 
introduced above. For each test the following should be documented as a ba

 How often are they tested? 
 What types of failures are detected by the test; (what is the coverage)?   

2.3.3 Demands (train passings) serving as testing 

It is not so common to model demands as a means for failure 
applications of PDS demands have 
reality reducing the period of functional testing. 

                                                 
5 TIF = Test Independent Failures; (Failures not detected in functional tests). 
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In railway applications, we should also consider demands (train passings) as additional tests 

ssume that, on the average, there are k train passings affecting a certain object in a secured rail 
an 

ot 
 (with identically same interval). In practice, 

 is as an approximation suggested to include demands into the automatic self-test term, by 
 

 
 CCF]  (1)   

ty 
tribution from demands is included in the first term. Note 

at possible failures that are not detected in functional testing (or train passing) are not included 
in the a

 

y of failures (and not unavailability), and since it is here 
ssumed that “degraded operation” does not apply for railway operation. 

 
are the order of 

agnitude of the “DU term” and the “DD term”. The DD term is insignificant if the period of 
pared to τ, and we do not have λDD >> 

 λDD 
ot 

re, and therefore gives PFH = λDU for 1oo1, (see Section B.3.3.2.1 
f /2/). As we comment below, it is unclear why this argument to remove the DD term apparently 

he above formula (1), except for the case N=1, as discussed in 
e Note above.   

particularly since each train passing request and rail section securing involve a continuous 
confirmation of correct operation of the components. 
 
A
section in between each functional testing. This means that the average time between “tests” c
be seen as τ/(k+1). However, the additional “tests” are occurring more randomly, and will n
have the same efficiency as if they very evenly spread
it
replacing τ with 2 τ/(k+1) in the formula for PFH; (if this modeling is adopted we of course have
k>0, and if k =1 this conservative suggestion actually gives no credit for the train passing). 

2.4 Total quantification result for independent failures (1ooN voting) 

 
From the previous section, the overall result for a 1ooN voting, considering the effect of 
independent failures only, now equals 

PFH1ooN ≈ (λDU τ)
N / τ + (λDD τ1)N / τ1      [for 1ooN voting, without

 
Here τ can be modified according to the number of train passings affecting a specific safe
function, (Section 2.3.3), and so the con
th

bove formula, cf. Section 2.3.2. 
 
Relevance of MTTR 
Note that in the above equation (1), there is no term for repair/restoration time, (e.g. MTTR = total
time elapsing from a component failure is detected, until it is again fully operative). This is the 
case since PFH is a measure of frequenc
a
 
Accounting for DD failures in the calculations 
The second term of (1) with the contribution from DD failures can often be ignored. In general 
this will depend on the “operational philosophy”, as discussed for PFD in /3/. However, when loss
of safety is measured by PFH, we simply take a numerical check to comp
m
automatic self test (incl. train passings) is very short com
λDU; (i.e. if λDD τ1 << λDU τ). 
 
Note: If we take a look at the above formula (1) for the case N=1, we get PFH1oo1 = λDU +
(independent of any test period!). So here the above argument related to the length of τ1 does n
apply. However, for a single system IEC 61508 requires that a safe state should be achieved by 
detection of a dangerous failu
o
applies only for the 1oo1 voting. 
 
Comparison with the most recent formulas in IEC 61508, /2/, (independent failures). 
Section B.3.3.2 (Informative) of the committee draft, /2/ gives formulas for PFH for standard 
configurations, like 1oo2, 2oo3 etc. We presently restrict to consider independent failures, and 
these IEC formulas deviate from t
th
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 The IEC standard uses (1-β) λDU where PDS suggests to simply use λDU. This is a 

conservative approximation often applied in PDS. However, this is not essential, and the
factor (1-β) could of course be introduced also in the PDS quantifications, (and often is). 
 

 

 Further, the IEC formulas actually includes MTTR (through the term tCE), which is not 
ing of 

ontributes to system unavailability but not frequency of dangerous system failures. 

 
t 

 

.5 CCF modeling  

. 

ce the effect of redundancy. For redundant systems, the loss of 
 often dominated by the occurrence of CCFs, and these failures therefore 

eed to be taken proper care of in the reliability models. 

es 

ponents (or systems) A and B: Given the information that 
 not change our prediction of when unit B will fail, and vice 

 Dependence between two components (or systems) A and B: Given the information that 

ailure of two or more (redundant) components of the same cause, occurring 
simultaneously or within a rather short time interval. 

ent, /6/. 

included in the above PDS formula for PFH. As stated above, from our understand
railway operation, MTTR terms should not be included in PFH, as there is no degraded 
operation of the safety system during repair of a single critical component. Thus, MTTR 
c
 

 Actually, the contribution from independent failures in the suggested quantification 
formulas of Annex B in /2/, also in other respects differs from the very simple expression
given in the above equation (1). However, the exact derivation of the formulas in /2/ is no
given, and is not pursued in the present report; cf. discussion in /19/.  

In conclusion, the PDS formula with respect to independent failures deviates from the formulas 
presented in /2/. The discrepancies will, however, in most practical applications have no actual 
effect on the total result, as the contributions from CCF will dominate in the quantifications.  

2

 
In safety critical systems we often introduce redundancy to increase the availability of the system
However, the common cause failures (CCFs) may cause two or more redundant units to fail 
“simultaneously” and thus redu
reliability and safety is
n

2.5.1 Some basic definitions 

For the further discussion it may be useful to repeat some of the definitions on dependent failur
and common cause failures. Somewhat pragmatically we suggest the following definitions:  
 

 Independence between two com
unit A has failed this will
versa: 

 

unit A has just failed; this will change our prediction of when unit B will fail.  
 

 CCF: F

 
 β-factor: The fraction of common cause failures among all failures of a compon
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N=3 N=2 

 
 

Figure 4. Illustration of the beta factor model for N=2 and N=3 identical components. 

1- 

1- 



1- 

1- 1- 

 
Hence, in the so-called beta factor model, a fraction, β of the component failure rate λ is 
introduced, resulting in all redundant components to fail, see Figure 4 (for N=2 and N=3). That is, 
the rate of all N (similar) components failing due to a CCF equals: 
 

PFHsys =        (N>1) 
 

This model is simple and easy to understand but has some obvious weaknesses: 
 

 It will not allow a “double” CCF to occur in a triplicated system, and so on. 
 Thus it will not distinguish between configurations like 1oo2, 1oo3 and 2oo3: all three 

configurations will have the same rate of CCF, which is rather unrealistic. 
 It will also be problematic to estimate  from actual data, as there can actually occur 

double failures in a triplicated system (N=3), and so on. 
 
So the beta factor model is OK for N=2 components in parallel, but will not provide a proper 
ranking of the various voting logics, (which of course is an essential feature of the safety 
modeling!) 

2.5.2 The PDS model for CCF 

From the beginning of CCF modelling in the 1970-s, the modelling has focused on the so-called 
beta factor (β-factor) due to its simplicity as discussed above. The β-factor model is also the 
model suggested in the present revision of the IEC 61508 standard, /1/.  
 
As an attempt to improve the β-factor model and make it more realistic for systems with higher 
degree of redundancy, SINTEF has developed a modification of the model, as described in the 
PDS method handbook, ref. /3/.  
 
One difference between the PDS approach and the current IEC 61508 approach is the use of the 
so called CMooN (configuration) factors. This is a correction factor that reflects the fact that when 
going from a simple redundant 1oo2 system to another voting configuration, e.g. 1oo4 or 1oo5, 
this needs to be reflected in the applied common cause failure rate. In other words, an important 
reason for including the CMooN factors is that credit shall be given when increasing the redundancy 
from two to more components, (and result should also depend on the voting of these redundant 
components). 
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1- 1- 

1 - 1.7

 

Figure 5. PDS model for CCF, (N=2 and N=3) 

 
 
In the CCF model of PDS, β represents the fraction of CCF between any two redundant 
components (see Figure 5). When going from a 1oo2 to a 1oo3 voting, three components instead 
of two components must fail to get a system failure. This, as illustrated in Figure 5, three 
components voted 1oo3 has a smaller probability than two components failing (1oo2). Formally, 
in the PDS model the rate of system CCF for a MooN configuration of N identical components 
with rate λ equals: 
 

PFHMooN = CMooN    ,    for M<N,   [for MooN voting M<N; CCF only]     
 
Suggested values for some configuration factors, CMooN, are given in /3/: 
 
 
 
 
 
When having systems (like e.g. the ABB Merkur system), where we have up to five redundant 
protection layers, the IEC 61508 standard does not provide an answer on which formulas to apply. 
It does not make sense to apply the beta factor model directly for a 1oo5 (or 1oo4) voting as this 
would lead to the same result as a 1oo2 voting.  This obvious deficiency of the standard beta 
factor model has been recognized by the IEC 61508 working committee, and the new committee 
draft /2/  includes CMooN factors, however, with slightly different values than in the PDS method. 
These values are further commented in Appendix A, and in the forthcoming version of the PDS 
method handbook, /20/, the CMooN factors will also be modified. 

2.6 Total quantification formulas for CCF 

 
In PDS the CCF contribution from a MooN voting (accounting for both DU and DD failures) now 
equals:  
 

)(CPFH DDDDUMooN
(CCF)
MooN     [for MooN voting, M<N; CCF only]       (2) 

 
where β and βD is the beta factor for DU failures and DD failures, respectively. In PDS it is 
common not to distinguish between β and βD, but of course the method allows for this, (if it is 
found relevant to include the DD term). 
 

1 - 1.70.7

0.70.7

 

0.3

1 - 1.7

Voting 1oo2 1oo3 2oo3 1oo4 2oo4 3oo4 

CMooN 1.0 0.3 2.4 0.15 0.8 4.0 
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Note that in PDS the DD term is usually not included, cf. discussion in Section 2.4. But there 

to 

2.7 Reliability Block Diagram and overall quantification formulas 

he first step of a reliability analysis is to develop a thorough description of the system supported 

 reliability block diagram (RBD) is a success-oriented network describing a specified system 

he way n components are interconnected to fulfil a specified system function may be illustrated 

should be a thorough discussion (based on design and operational philosophy), whether or not 
include DD terms. However, it is our opinion that the IEC draft, /2/, is inconsistent at this point. 
Since it does not include the DD term for 1oo1 voting, (see above), it is found strange that it 
includes βDλDD in the suggested formulas for a MooN voting when N>1. 

 
T
by an architectural model and/or functional block diagram. This information is used to construct a 
reliability model, where the purpose is to model events and components that contribute to system 
success, alternative system failure. 
 
A
function and can be applied as an alternative to a fault tree. RBD shows the logical connections of 
(functioning) components needed to fulfil the system function.  
 
T
by a reliability block diagram as illustrated in Figure 6. Each of the components is illustrated by a 
block in the diagram. When we have connection between the end points a and b, we say that the 
specified system function is achieved.  
 

a b

CPU

CPU Relay

Relay

Relay

Relay

 

Figure 6: Example of RBD 

 
wo important structures of a reliability block diagram are a series structure and a parallel 

 all of 

lify 

e 

nalysis of RBD is presented e.g. /6/. A detailed description of RBD is to find in the standard, 

T
structure. These are illustrated in Figure 7 below. A system that is functioning if and only if
its N components are functioning is called a series structure or N-out-of-N, (NooN); see left part 
of Figure 7). A parallel structure or 1-out-of-N (1ooN) structure (right in Figure 7) is a system 
that is functioning if at least 1 out of the N components is functioning. In general a MooN 
structure is functioning if at least M of its N components is functioning. Often, we can simp
the RBD to approximate it with a series structure of MooN structures; That is, inputs have one 
voting configuration, CPUs another, etc., and we can obtain the total loss of safety by adding th
contributions of these. For MooN votings where M<N, the independent failure contribution is 
often negligible compared to the CCF contribution, but this must be verified.  
 
A
IEC61078 (2006).  
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Note that a RBD can always be transferred to fault tree and vice versa. When the model is 
established, the two approaches give the same result. However, when constructing a fault tree, we 
focus on how a function may fail rather than how the function may be achieved. This failure 
oriented approach is therefore considered more comprehensive and complete than RBD, features 
that are appreciated for safety instrumented systems with complex interactions. The construction 
of a fault tree could be a supplement to the PDS approach, see Section 3.1.1.  
 

 

Figure 7. The RBD of a series structure, NooN, (left), and parallel structure, 1ooN, (right).  

 
Now we summarise main PDS formulas for quantification of loss of safety by PFH. We split the 
contributions to the system PFH in the contribution from CCF and independent failures (ind.) as 
follows 

)()( CCFind
sys PFHPFHPFH                 (3) 

 
Accounting both for DU failures and DD failures, the approximate contribution from independent 
failures of a MooN voting equals, (cf. equation (1) for the case M=1)6, 

 

 1
1

1DD
1

DU
(ind)
MooN /)(/)(

)!1()!1(

!
PFH   


 MNMN

MMN

N
           (4) 

 
where τ is the functional test interval, and τ1 is the self-test interval. (The analogous formula for 
PFD is given in /3/.) 
 
The CCF contribution from a MooN voting( M<N)  was given in eq. (2) above: 
 

)(CPFH DDDDUMooN
(CCF)
MooN                    

 
As discussed above, in PDS it is often found to be an appropriate approximation to exclude the 
DD terms, and in that case we get: 
 


 1

)(
1

PFH 1(ind)
MooN











 MN
DUM

N
                  (DU terms only)            (5) 

 

DUMooN
(CCF)
MooNPFH   C            (DU terms only)             (6) 

 
 

                                                 

6 Note that we often write 










 1)!1()!1(

!

M

N

MMN

N
 



 19

 
2.8 Summary of assumptions 

ions and limitations of the PDS method are given below 
nalogue to assumptions are made in the IEC standard): 

constant with respect to time. [standard 
assumption] 

mption] 

rpreted as the fraction of D failures detected before any train is 
ld be lower than DC for independent failures). This 

PFH  are small 

0.2 

garding testing, data uncertainty and system modelling. 

ple of the application of the PDS quantification method for the system 
lustrated by the RBD of Figure 6. The figure illustrates an example system, the RBD showing 

s 

 
Some important general assumpt
(a
 

 Exponential failure model, i.e. all failure rates are 

 A component is considered “as good as new” after a repair or a functional test (period τ ). 
[standard assu

 System in a safe state during repair. 
 For CCF, the DC is inte

operated by the system, (this DC cou
will imply that DD will not contribute to system rate of D failures. 

 The PFH of the function (safety system) is obtained by summing the PFH of each (series 
of / set of) redundant modules(s). That is we assume that PFHA and B

enough to let: 1-(1-PFHA)  (1-PFHB) ≈ PFHA+PFHB 
 The term DU  τ should be small enough to allow e-DU  τ ≈ 1 - DU  τ, i.e. DU  τ  

 
In addition assumptions and limitations concerning each analysis must be evaluated; e.g. 
re

2.9 Numerical example  

 
This section gives an exam
il
four parallel branches. The “Relay” is common for all branches (similar components in parallel) 
and must be considered as a CCF contribution. In addition, for the upper two branches the CPU i
common, where also a CCF contribution must be considered. Including these CCF contributions 
as blocks in the RBD, we get the RBD shown in Figure 8.  
 
 

a b

CPU
(ind.)

Relay
(ind.)

Relay
(CCF)

CPU
(CCF)

CPU
(ind.)

Relay
(ind.)

Relay
(ind.)

Relay
(ind.)  

Figure 8: RBD of numerical example 

ritten (eq. (3)) 
 
The total rate of system failures can be w
 

)()( CCFind
sys PFHPFHPFH   
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It should be noted that the CCF contribution for this system is the CCF of the four relays. The 

s 

hen we estimate PFH(ind) we will first estimate the independent failure of the two upper 
is 

 

 
his gives the following expression for the system PFH: 

CCF of the CPUs becomes a part of the independent PFH, as if such a CCF occurs the system i
still functioning.  
 
W
branches (branches 1 and 2) with one CPU and one relay each. Then the CCF of the CPUs 
added, giving a joint figure for the upper two branches. Finally, this figure is multiplied by the
PFH for the two lower branches (branches 3 and 4), i.e. 
 

4branch 3branch 2 and 1 branches
(ind) PFHPFHPFHPFH   

T
 

     (CCF)
RelayDU,

2(ind)
RelayDU,

(CCF)
CPUDU,

2(ind)
RelayDU,

(ind)
CPUDU, PFH/PFHPFH/PFHPFH  PFH          (7) 

 

etailed calculations are given below. In the first simplified example only DU failures are 

alculation 1: Excluding DD failures, using PDS formulas. 
low:   

 
D
considered, i.e. DD failures are neglected, (and the formulas (5) and (6) are used). 
 
C
The input data used in this example case is listed in the table be
 

β Component τ λDU 

CPU  2  0.1 -1 0.05 4 h ·10-6 h

Relay 24 h 0.2·10-6 h-1 0.02 

 
he CMooN factors used in the estimation are the suggested factors from the PDS handbook, i.e. 

est 

he independent failures of one CPU and one Relay respectively are, using the formula (5): 

and 

 
he common cause failure of the two CPUs is, using (6): 

= =

 
nd the common cause failure of the four relays is: 

= 

 
hus, the estimate for the system PFH is as follows, putting the above estimates into (7): 

T
C1oo2 equals 1 and C1oo4 equals 0.15. Further, we do not account for train passing between each t
interval, (i.e. k=0 , ref. section 2.3.3). 
 
T
 

 CPUDU ,
(ind)

CPUDU,PFH   16101.0  h  

 layDU Re,
(ind)

RelayDU,PFH  16102.0  h  

T
 

(CCF)
CPUDU,PFH CPUDU,CPU1oo2  C 1916 100.5101.005.01   hh  

A
 

(CCF)
RelayDU,PFH RelayDU,Relay1oo4  C = 11016 106102.002.015.0   hh  

T
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110

1102161921616

(CCF)
RelayDU,

2(ind)
RelayDU,

(CCF)
CPUDU,

2(ind)
RelayDU,

(ind)
CPUDU,

106

10624/24102.0100.524/24102.024101.0

PFHPFHPFHPFHPFHPFH











h

hhhhhhhhhh

 
From the calculations we see that the contribution from independent failures (including the CCF 
of the CPUs) is negligible compared to the contribution form the CCF of the four relays. As 
discussed above it is often found that contribution from CCF dominates over independent failures, 
especially for configurations with more than two redundant branches.  
Given the assumptions in section 2.8, the estimated PFH for the example system is  
6·10-10 per hour, i.e. approximately one system failure per 20 000 year. 
 
Note that this figure just gives the contribution from DU failures, as DD failures have been 
ignored in the calculations. 

 
Sensitivities of calculation 1  
As a sensitivity we could also apply the CMooN values suggested in the IEC 61508 draft version 
(i.e. table D.5 in part 6, ref. /2/). For C1oo4, the new draft standard suggests 0.2 (instead of 0.15 as 
used in PDS). This will increase the results above with a factor of 4/3. 
 
Further, we could also account for train passings as tests; assuming k>0.  However, as the 
independent failures are completely dominated by CCF, there is no need to perform this additional 
calculation, (which would reduce the contribution from independent failures even more.  
 
Calculation 2: Including DD failures, using PDS formulas. 
Now, we estimate the PFH value including DD failures, assuming the following data, (τ, DU and 
β as above): 
 

Component τ τ1 λD DC λDD λDU βD β 

CPU  24 h 0.1 h 1.0·10-6 h-1 90 % 0.9·10-6 h-1 0.1·10-6 h-1 0.01 0.05 

Relay 24 h 0.1 h 1.3·10-6 h-1 85 % 1.1·10-6 h-1 0.2·10-6 h-1 0.01 0.02 

 
Detailed calculations are not shown for independent failures her, but as in the above calculations, 
the independent contribution becomes negligible compared to the CCF contribution from the 
relays.  
 
The common cause failure of the four relays using (2) now becomes: 
 

(CCF)
RelayD,PFH = 

)( RelayDD,Relay D,RelayDU,Relay1oo4  C

1818

616

102.0)105.1(15.0

101.101.0102.002.0(15.0








hh

hh

=

 
18181 )101.1104.0(15.0)   hh

 
We see that in this case when we have chosen to include the DD failures, these will dominate. In 
fact the DD contribution makes 73 % of the total PFH figure for the system.  
 
To illustrate the calculation of an independent PFH, we have calculated the contribution from a 
1oo2 voting of CPUs: 
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1

1CPU DD,
1

CPU DU,
(ind)

CPU 1oo2,

102.3101.8104.21.0/)1.0109.0(24/)24101.0(

/)(/)(
)!11()!112(

!2
PFH












hhhhh

MNMN 
 

 
which is smaller than the CCF contribution to the overall PFH with a factor about 10-5. 
Furthermore, since the RBD regarding independent failures actually has 3 (4) branches in parallel, 
(cf. Figure 8), the contribution of independent failures to the overall PFH is even much less than 
this result for the 1oo2 voting. 
 
These two calculations illustrate that the discussion whether or not to include DD failures is 
indeed important. However, this discussion is not about making a choice between PDS and IEC 
approaches, but about clarifying the design and operational philosophy of the system, (cf. 
discussion of /2/ regarding 1oo1 referred above).  
 
Finally, consider the result that would be obtained, using suggested formulas in the IEC draft /2/. 
 
Calculation 3: using IEC formulas. 
The IEC draft, /2/ gives no formulas for 1oo4, which is most relevant in the present example. 
However, from the formulas given for 1oo2 and 1oo3, it is clear that the CCF contribution will 
equal, (here in PDS notation)7: 
 

)(CPFH DDDDU1oo4
(CCF)
1oo4     

 
This is identical to the general PDS formula, and in particular to the formula used for Calculation 
2 above. However, /2/ provides no discussion on whether the DD term shall be included, and also 
suggests another value for C1oo4. The “C-factor” given in /2/ equals C1oo4 = 0.3, as compared to 
C1oo4 = 0.15 used in the above PDS quantifications8; (cf. Appendix A of the present report).  
 
Regarding the contribution from independent failures, /2/ gives rather complex formulas, cf. 
discussion in Section 2.4 above, and it is not clear which is the exact formula that IEC would 
suggest for a more complex configuration like the one illustrated in Figure 8. However, it is clear 
that also in the IEC approach the contribution to PFH from independent failures will be 
completely dominated by the CCF contribution, (cf. numerical illustration in Calculation 2 
above).  
 
Thus, the conclusion is that the IEC formulas will give essentially the same formula as PDS, when 
DD failures are included. However, the suggested input values can differ. If we apply the same τ, 
DU, DD , β and βD as in Calculation 2 above, the IEC calculation will give the numerical result  
 
 PFH = 0.4 10-8 h-1 
 
i.e. twice the result of Calculation 2. The reason is that the value of the “C-factor” here is twice 
the value of the suggested C-factor in the current PDS method handbook, /3/. If the standard beta 
factor model is applied, we get PFH =1.5 10-8 h-1. 
 
 
 
                                                 
7 If the standard beta factor model is applied, we insert C1oo4 = 1. 
8 The forthcoming update of the PDS Method Handbook, /20/, will suggest C1oo4 = 0.3 as the “generic value”. 
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2.10 Uncertainty in safety quantification 

 is important to realize that safety quantification is associated with uncertainty.  This means that 

tem 

e may relate the uncertainty to : 

 The model: To what extent is the model able to capture the most important phenomena of 

nflicting interests: 
vailable mathematical 

ntly ``realistic’’ such that the results are of practical 

  the analysis: To what extent are the data relevant and able to capture the 

a are usually expressed by statistical models, and a failure rate gives 

, 

 few samples, lack of censoring, and not including 

Regarding data, there may in particular be considerable uncertainty about the values of model 

 In the new CDV draft version of IEC 61508, /2/, CMooN values for modifying the β-factor 

 

 It is correct, as is with the new proposed values in IEC 61508 (part 6 – table D.5), that the 

ral of 
e, 

n. 

 
It
the results that we obtain from such analyses are not the true value, but rather an indication and a 
basis for comparing the reliability of different system designs.  One of the most important 
objectives of quantitative (and qualitative) analyses is to increase the awareness among sys
designers, operators, and maintenance personnel to how the system may fail and what the main 
contributors to such failures are. 
 
W
 

the system, including its operating conditions? 
In practice, we often need to balance the two co

o The model should be sufficiently simple to be handled by a
and statistical methods, and 

o The model should be sufficie
relevance. 
 

Data used in
future performance?  

o Reliability dat
not the exact time between failures, but the mean time between failures. Even with 
a mean time between failures of 100 years, the next failure may occur tomorrow. 

o Historical performance is not the same as future performance, even for the same 
component. The historical performance is often based in various samples with 
various operating conditions and in some cases different properties (such as size
design principle and so on).   

o Data may be incomplete due to
all type of failures, for example software related failures.  
 

parameters like the β-factor and the CMooN factors: 
 

for different MooN voting configurations are proposed (ref. new part 6 – table D.5). This 
approach is fully in line with the PDS approach, even if the modification factors suggested
in the standard deviates somewhat from the values suggested in PDS. The main point is 
that the CCF model provides a ranking of the various configurations with respect to safety 
(and the ranking in /2/ is very similar to that of PDS). 

 

CMooN factors have not been validated by field experience but are based on expert 
judgements. However, as is clearly seen (in /3/ and the above Table from /2/ ) seve
the C-factors are > 1, so the approach as such is neither conservative nor non-conservativ
it is just considered somewhat more realistic (as confirmed by data) than the model 
suggested in the present version of IEC 61508. See Appendix A for further discussio
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An obvious limitation in the quantification approach suggested by IEC 61508 is the exclusion of 
application software failures and other systematic failures from the analysis as application 
software can be the main contributor to unreliability.  
 
The technology development has made it possible to replace traditional hardware implemented 
functions with software implemented functions. As the contribution from software failures is 
excluded from the quantification, we may expect that it will become easier and easier to fulfill the 
quantitative SIL 4 requirement, alternatively another specified target for tolerable hazard rate. 
This is an area that may need more attention in the future. 
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3 Alternative quantification methods  
 
In this chapter we review some alternatives to the PDS quantification approach. We mainly 
restrict to discuss models suggested in the Draft IEC standard, /2/).  We start with commenting on 
the overall reliability modelling, and further discuss various options for the CCF modelling. 

3.1 Overall modeling approaches 

 
There are a couple of alternatives to the RBD modeling approach being used in PDS. Below we 
shortly discuss the use of Fault Tree Analysis (FTA) and Markov analysis. However, note that the 
degree of approximations in the modeling and the modeling of CCF and failure detection have a 
much greater impact on the quantification result than the choice between RBD, FT and Markov 
analyses. 

3.1.1 FTA vs. RBD 

When establishing a reliability/safety model of a technical system, fault trees (FT) and reliability 
block diagrams (RBD) are two well proven and frequently used techniques, e.g. see /6/. Both are 
Boolean models, and Appendix B of /2/ describes these methods and gives examples of how they 
are used. As pointed out there (e.g. Appendix B.4.4.1), RBD and FT represent exactly the same 
things, and the calculations may be handled exactly in the same way. A RBD may be given an 
equivalent representation as a FT, and a FT may be converted to a RBD. A common advantage of 
the two approaches is that they split the graphical representation (RBD or FT) from the 
calculations. Actually RBD is often mainly seen as a method of representation than as an analysis 
method. 
 
Roughly speaking a reliability block diagram approach is often chosen when the system structure 
is fairly simple and/or the number of components is limited. However, the FT constitutes a top 
down method, helping the analyst to develop the reliability model step by step from the unwanted 
“top” event. So if the system structure is very complex one might find it advantageous to use a FT 
to model it. There are also software available, which find cut sets and carry out the safety 
calculations of a FT.  
 
However, software to carry out the PDS safety quantifications of a given RBD, is now being 
developed in the PDS project, (and there also exist an old version of such a program).  
 
In summary, for users who prefer to use FT as a graphical representation and calculations, this can 
very well be combined with use of the PDS-method, as long as the calculations are based on the 
modeling presented in Chapter 2. 

3.1.2 Markov analysis 

The Markovian approach is another old and well-proven reliability technique, e.g. see Appendix 
B.5.2 of /2/ and /6/. It is a time dependent approach, i.e. giving state probabilities depending on 
time. For a safety system we should then derive the time dependent solution for the interval τ, 
And then calculate the average over the interval. This can be quite a complex approach, unless the 
system is very simple. Thus, for safety systems we see the Markov approach mainly as a means to 
carry out rather detailed analyses for relatively simple systems, and do not see Markov analysis as 
a general alternative to FT or RBD. Markov analysis, using asymptotic probabilities (which are 
much easier to derive), could be seen as an alternative. However, for safety systems this 
represents an approximation, which validity must be verified. 
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3.2 Alternative CCF models 

 
A number of CCF models exists. The simplest and perhaps most commonly used, the beta factor 
model, was also discussed in Chapter 2. Another relatively simple model is the Binomial Failure 
rate (BFR) model. Finally we refer to the class of completely general CCF models, which the CCF 
model of PDS belongs to. Also note that various aspects of CCF modeling of safety instrumented 
systems offshore are discussed in /18/. 

3.2.1 Beta Factor model 

Due to its simplicity, the beta factor model is often applied in actual reliability and safety (risk) 
analyses. However, it assumes that all redundant channels fail when there is a CCF. This could 
give quite sensible results for a small (2-3) number of “channels” (redundant components), or if 
the β-value is allowed to change with the configuration. However, if β is identical for all 
configurations it is commonly accepted that this model is too simplistic to give a good comparison 
of various design options.  

3.2.2 Binomial Failure Rate BFR model 

Models, like the Binomial Failure rate (BFR) model, have a limited number of parameters to fit a 
multiplicity distribution of CCF. This model assumes that a redundant set of N components are 
subject to shocks at rate v. At each shock the number of components failing, X, has a binomial 
distribution with parameters N and p; that is the probability that X = x equals 
 

Nxpp
x

N
p xNx

x ....,,2,1,0;)1( 







   

 
To specify this CCF distribution we must estimate both v, and p; whilst N is known. Estimation of 
the shock rate, v is not straightforward, as this model allows it to be shocks both with 0 and 1 
component failing. This is a somewhat unpleasant feature of the model. If p = 1 all N components 
fail and we have a beta factor model. 
 
A generalization of the model has been suggested, where there are two types of shocks, one rate v 
as above and another rate vL, which is “lethal”, i.e. causing all N components to fail. This idea of 
introducing a “lethal shock rate” could be relevant, not the least for large N. Also the PDS method 
could easily be modified to account for these types of shocks, (in addition to the standard CCF 
model). 

3.2.3 General CCF models and the need of data 

A number of models have been defined and used to allow for several “failure multiplicities” when 
there is a CCF (similar to the BFR model). Several models are referred in /4/; more information is 
given for instance in /7/, /8/, /9/, /10/ and /11/. Some models are completely general; that is there 
can be an “arbitrary” probability that x out of N components fail in a CCF, (x= 2, … , N).  
Examples are the alpha factor model, Greek letter model, Basic Parameter (BP) model, (see above 
references), and it is rather a matter of convenience which of these models (parameterizations) to 
choose. 
 
The CCF model of PDS, e.g. see /2/, /11/, /12/ and /14/, belongs to this type of general models. 
One advantage of this PDS model is that it is a very direct generalization of the commonly used 
beta factor model. One could say that for a MooN configuration we have a beta factor that is 
modified by a configuration factor (CMooN), i.e.: βMooN = CMooN · β. And even if we just apply 
generic C-values, we could estimate an application specific β (cf. the IEC 61508 approach), and 
thus get more sensible results from the quantifications.  
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4 Summary and conclusions 
 
The application of the PDS quantification approach for railway applications is discussed, and it is 
concluded that it is very suitable also for railway applications. 
 
It is true that in the past the PDS approach has essentially been applied to quantify PFD rather 
than PFH. However, it is seen that there is a close relation between PFD and PFH, and the same 
modelling used for PFD can also be applied for PFH.  
 
It is not found any convincing argument why PFD shall necessarily apply to so-called low 
demand mode and PFH necessarily to high demand mode. In principle, both PFD and PFH could 
be applied to both low and high demand mode.  
 
It is seen as a weakness of the safety measure, PFH, that it does not distinguish between failures 
that are detected almost immediately, and failures that are detected after very long time of 
operation. The PFH just counts the number of failures, and whether the failure is detected 
“immediately” (e.g. after a fraction of a second) or after 6 months makes no difference: a failure 
in the system has occurred. In this respect, the measure, PFD is better, as it describes the relative 
time the safety system is unavailable. 
 
There are a couple of discrepancies in the PDS formulas and the formulas of the IEC 61508 
committee draft. The most notable is the handling of the DD failures. It is pointed out that 
inclusion of DD failures must be based on a discussion of design and operational philosophy of 
the system; i.e. is the DD system immediately brought to a safe state upon detection of a DD 
failure?  
 
The IEC committee draft suggests not to include DD failures for a 1oo1 voting configuration, but 
to include them for CCF of redundant systems. This is seen as inconsistent. The present report 
suggests that for railway applications DD failures should usually not be included; but the PDS 
method as such allows both options. 
 
In general the PDS formula for the quantifying the contribution of independent failures to PFH is 
much simpler than the corresponding formulas of the IEC committee draft, and the exact 
argument for the formulas given in this draft is not known. However, this discrepancy will in most 
practical applications have no significance, since the quantifications are complete dominated by 
the CCF.  
 
Some further comparisons between the IEC 61508 and PDS approaches are given in the table 
below. 
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Topic Approach in IEC 61508 Comparison with the PDS method 
Failure 
classification 

 Classification of failure 
causes into random 

 Same approach as in IEC 61508, except 
that a

hardware failures and 

dangerous failures 

 certain fraction of safe failures 
are defined as non-critical 

as systematic failures 
 Classification of failure 

effects into safe and 

 New committee draft of IEC 61508 h
adopted a similar approach 

 Further classification of 
failure effects into detected 
and undetected failures 

Basic formulas  RBD used as basis and 

 correction 
factors as an alternative 

(MTTR) is not well 
defined and is questioned 

 The PDS method uses RBD, but does 

 present 

failure detection, the PDS method for 
modeling CCF (with correction 

ion 
ft, and 

er 
assumptions about the inclusion of 
dangerous detected failures and repair 

for probability of 
dangerous failure 
per hour, PFH, 
(high demand 
systems) 

formulas are illustrated for 
some configurations 

 CCF are modeled with the 
standard beta factor model, 
but the new committee 
draft suggests

not currently describe formulas for 
PFH. 

 The PDS method for PFH in the
report has been deduced, based on the 
principles of the PDS approach for 

approach. 
 The approach for including 

dangerous detected (DD) 
failures and repair time 

factors), the IEC 61508 interpretat
of PFH in the new committee dra
traditional reliability theory. 

 The PDS method for PFH make oth

in this report. 
 

times, which are believed to be better 
founded than formulas given in IEC 
61508. 

Reliability data  Provides approach to  Standard beta values suggested, but 

the PDS method, due to different 

estimate betas. 
 The Committee draft 

includes suggested values 
for configuration factors 

IEC approach can also be applied (for 
beta of 1oo2 configuration) 

 Currently, there are some differences in 
the configuration factors suggested in 
the committee draft of IEC 61508 and 

underlying assumptions and expert 
judgments. 

Handling of 
systematic 
failures 
(including 
application 
software failures) 

 IEC 61508 does not 
recommend to include the 
contribution from 
systematic failures and 
software failures 

 The PDS method suggests using 
reliability data that reflects ``real’’ 
performance. This means that historical 
data should be preferred over 
theoretical estimates which are often 
restricted to random hardware failures. 

 A contribution from test independent 
failures is sometimes added, if test 
conditions are different from demand 
conditions, (incomplete test). 
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Appendix A: Data 

ssential for achieving reliable results. The PDS Data Handbook 

for parameter estimation could apply also using 

e standard values 

 
/3/, /4/): 

sted in the IEC Draft standard /2/, (with 
DS values in parenthesis). 

N 

 
Providing realistic input data is e

idprov es generic parameter values for relevant offshore safety equipment, to be used as a rough 
estimation of safety. However, system specific data should be provided (failure rate, DC, etc.) 
 
Regarding beta values, the approach suggested 
the PDS method  
 
Regarding the configuration factors, CMooN, the PDS method also suggests som

ed(bas  on experience, expert judgments and literature studies). 
 
Table D5 of the Draft IEC standard, /2/, suggests similar following modifications of β, (numbers
in parentheses are the numbers suggested in PDS, 
 
 
Table A1. Modification factors (CMooN) of β sugge
P

MooN 
2 3 4 5 

1 β   (β) 0,5·β (0,3·β) 0,3·β  (0,15·β) 0,2·β  (0,08·β) 

2 - 1,5·β (2,4·β) 0,6·β  (0,75·β) 0,4·β  (0,45·β) 

3 - - 1,75·β  (4,0·β) 0,8·β  (1,2·β) 

 
 

M 

4 - - - 1.0·β  (6,0·β) 

 
 
It is observed that /4/ and /2/ essentially give the same ranking of the configurations, and for line 1  
we see that the PDS values for N=3-5 is quite systematically 50% of the values in /2/. We have 
been informed (ref Ken Simpson) that the values in /2/ are obtained from a combination of data 
and expert judgments, (as PDS values are). However, we consider these differences of estimates 
to be within the uncertainty of these values, (as this uncertainty at present is considerable), but our 
judgment is that both these sets of estimates are far more credible than using the value β for all 
configurations (beta factor model). In a forthcoming version of PDS handbook the CMooN values 
will be very close to that of the IEC committee draft. 
 
There are also other sources for data on CMooN. SKI (Statens Kärnkraft Inspektion / Swedish 
Nuclear Power Inspectorate) has through several reports investigated CCF. In particular, from /15/ 
configuration factors can be derived for CCF data on EPV (Electromagnetic pilot valve) and 
MNV (Main Valve). The results are summarized in the table below (also referred in /16/): 
 
Table A2. Estimated CMooN values for some configurations (votings). 

Voting  
Source 1oo2 1oo3 2oo3 1oo4 2oo4 3oo4 
SKI: EPV 1,0 0,4 2,3 0,2 1,0 3,0 
SKI:MNV 1,0 0,5 2,0 0,4 1,0 2,5 
PDS 1,0 0,3 2,4 0,15 0,75 4,0 
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Again we find a reasonable agreement with PDS values. However the PDS value for 1oo4 (and 

ller than those reported in other sources by a factor approximately 2. 

F 

ir Tables 2 and 3,  
 /9/, see their Table 6, 

1oo5?) seems to be sma
 
A number of other sources discuss and estimate multiplicity distributions for CCF. Most of these 
use other models (see Appendix 3.2.3), but it is possible to transform their results to the PDS CC
model. Of these other sources we mention a few:  
 

 /7/, see their Table 5-11 giving suggested generic α-factors of the alpha factor model,  
 /8/, see the

 /17/, giving a number of estimates for α–factors (for N = 2, 3, 4, 5, 6) in the alpha factor 
model; (from NUREG/CR-6497).  
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Appendix B: Abbreviations 
 
Below is a list of abbreviations used in this report. 

CF  - Common Cause Failures 

ing Unit 
us 

d 
PV  - Electromagnetic Pilot Valve 

FTA  - Fault Tree Analysis 
IEC  - International Electrotechnical Commission 
MDT  - Mean Down Time 
MooN  - M-out-of-N  
MTTR  - Mean Time To Restore 
MNV  - Main Valve 
PDS  - Reliability of computer-based safety systems, (Norwegian: Pålitelighet for  

            datamaskinbaserte sikkerhetssystemer) 
PLC  - Programmable Logic Controller 
PFD  - Probability of Failure on Demand 
PFH  - Probability of Failure per Hour 
RBD  - Reliability Block Diagram 
SKI  - Statens Kärnkraft Inspektion 
 

 
BFR  - Binomial Failure Rate 
BP  - Basic Parameter 
C
CDV  - Committee Draft Vote 
CPU  - Central Process
D  - Dangero
DD  - Dangerous Detected 
DU  -  Dangerous Undetecte
E
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