Fugro OCEANOR SEAWATCH Wind LiDAR BUOY

A compact, proven measurement buoy that includes waves, current profile and wind profile

Seawatch Real-time Monitoring Buoys

Seawatch Wind LiDAR Buoy Timeline

Motion analysis – UiA Grimstad

Wind speed deviation for each motion category

Change in standard deviation (moving-ref.)

Regression values for each motion category

- 2011 Motion test
 Stewart platform
 - WindCUBE
 - ZephIR
- 2011 ZephIR 300 selected

Seawatch design

SEAWATCH Wavescan

- Successful track record world-wide since 1985
- Uniquely designed to optimise wave direction measurements
- Full on-board processing of all measured data
- Two-way communication link for data transfer and control
- Robust and reliable in temperature
 extremes and harsh environments

FUGRO

Use a proven oceanographic measurement buoy that has withstood extreme environmental conditions. Add a proven LiDAR Wind Profiler.

Early design sketch.

Seawatch Wind LiDAR Buoy Timeline

7 Fugro OCEANOR Seawatch Wind LiDAR Buoy, Vegar Neshaug, October 2015

Titran comparison field test 2012

Seawatch Wind LiDAR Buoy Timeline

9 Fugro OCEANOR Seawatch Wind LiDAR Buoy, Vegar Neshaug, October 2015

ENECO Met-mast validation

A roadmap towards commercial acceptance of the floating LiDAR technology has been generated and adapted to the SEAWATCH Wind LiDAR buoy specifics by DNV-GL. It defines three stages of technical maturity for the system

- Baseline: As a pre-requisite, the LiDAR measurement unit should have achieved widespread acceptance within the offshore wind industry as "proven" in the field of wind resource characterization for non-complex terrain types at least.
- Pre-commercial: Following a successful pilot validation trial, the floating LiDAR technology may be used commercially in limited circumstances – specifically in conditions similar to the ones experienced during the trial. Elevated measurement uncertainty assumptions may be expected for such application, when benchmarked against the deployment of a conventional fixed offshore meteorological mast.
- Commercial: Following successful further trials and early commercial deployments covering a range of site conditions, a sufficient body of evidence is accumulated to relax the elevated uncertainty assumptions.

Wind Profile Data

Wind Speed

- R^2 = 0.99 (Best practice criteria >0.98, minimum 0.97)
- Slope = 0.98 (Best practice criteria 0.98-1.02, minimum 0.97-1.03)
- Mean offset between 0.11 and 0.15 m/s

Wind Direction

- R^2 between 0.96 and 0.97. (Best practice criteria >0.97, minimum >0.95)
- Slope between 0.97 and 0.99 (Best practice criteria 0.97-1.03, minimum 0.95-1.05)
- Mean offset between 1.5 and 5.8 degrees (Best practice criteria <5 degrees, minimum <10 degrees)

Met-Ocean Data

Time UTC

SEAWATCH Wind LiDAR Buoy approval – pre-commercial

Project name:	Fugro/Oceanor Seawatch Wind LiDAR Buoy	DNV GL / GL Garrad Hassan
Report title:	ASSESSMENT OF THE FUGRO/OCEANOR	Deutschland GmbH
	SEAWATCH FLOATING LIDAR VERIFICATION AT	Section Offshore Germany
	RWE IJMUIDEN MET MAST	Brooktorkai 18
Customer:	Fugro/OCEANOR AS, Trondheim, Norway	20457 Hamburg
Contact person:	Lasse Lonseth, Olaf Sveggen	Germany
Date of issue:	2015-01-30	Tel: +49 40 36149 2748
Project No.:	4257 13 10378	DE 118 606 038
Report No.:	GLGH-4257 13 10378-R-0003, Rev. B	

Task and objective: 3rd Party Assessment of an Offshore Performance Verificaton of the Fugro/Oceanor SEAWATCH Wind LiDAR Buoy at RWE IJmuiden Met Mast in the Dutch Northsea Sector

"An evaluation of the Fugro/Oceanor SWL Buoy floating LiDAR system was completed by comparing its measurements against data from the IEC-compliant IJmuiden met mast. Sufficient data were collected to allow an assessment in line with the Roadmap. In the IJmuiden offshore trial very encouraging results were indeed obtained. DNV GL concludes that the FO SWL Buoy system has demonstrated its capability to produce accurate wind speed and direction data across the range of sea states and meteorological conditions experienced in this trial (i.e. up to about 5.8 m significant wave height and 9.8 m maximum wave height and 10 min averaged wind speeds up to 26 m/s). Furthermore, it has recorded excellent availability throughout the 6 month period and demonstrated structural survivability in the met-ocean conditions present from early spring."

The Seawatch Wind LiDAR Buoy

The result

- A robust proven multiparameter Meteorological and Oceanographic Measurement Platform
- Wind profiling capability up to 300m
- Current profiling capability down to 1000m
- Directional wave measurements
- Measurement of a wide range
 of met-ocean parameters
- Flexible energy system
- A fraction of the cost of a traditional met-mast and mobile

Fugro Lidar Buoy validation site – Titran, Frøya

fugro

- Pre- and post validation site approved by DNVGL
- On-shore Lidar reference Stabben Fort
- Standard anemometry reference NTNU mast

Bottom fixed wind farms Floating wind turbines Offshore Oil&Gas Bridges and Construction

Eneco, edf, rvo Statoil, Modec OMV (Barents Sea)

Thank you for your time

Fugro OCEANOR SEAWATCH Wind LiDAR BUOY

Vegar Neshaug

Industry Meets Science 2015

SEAWATCH Wind LiDAR Buoy – Navitus Bay, English Channel

FUGRO

Parameters

Mooring at 35m water depth Wave height, period and direction 3-axis buoy motion and rotation Near surface current profile and water temperature Wind speed and direction from 4m to 190m Air pressure

Air humidity and temperature

Observations

The highest recorded significant wave height exceeded 4 m, the highest wind speed was 25 m/s, and currents regularly peaked at 120 – 170 cm/s.

SEAWATCH Wind LiDAR Buoy – Navitus Bay

SEAWATCH Wind LiDAR Buoy – Navitus Bay

SEAWATCH Wind LiDAR Buoy – Wisting Field, Barents Sea

Parameter s

Mooring at 400m water depth Wave height, period and direction Near surface current profile and water temperature

Wind speed and direction profile from 4 to 200m Air pressure

Air humidity and temperature

Near surface water temperature and conductivity

Near bottom current profile and water temperature using seabed observatory and acoustic transmission

Observations

Remotely scheduled by operators based on storm forecasting

15th October 2014 to 31 January 2015 - 2402 wind profiles – data recovery 100%

Recorded 8 storms with significant wave height exceeding 6m

Max wind speed 28.6 m/s

Max wave height 13.4m

Max current 60cm/s in upper 40m

SEAWATCH Wind LiDAR Buoy – Wisting Field, Barents Sea

SEAWATCH Wind LiDAR Buoy – RVO Borssele - Ongoing

FUGRO

Borssele Wind farm survey and Belwind wake effects study

Parameters

Mooring at 30m water depth Wave height, period and direction 3-axis buoy motion and rotation Near surface current profile(35m) and water temperature Wind speed and direction Wind speed and direction profile Air pressure Air humidity and temperature

Observations

Turbulence intensity, inflow angle and wind shear/veer

www.fugro.com

 fugro

SEAWATCH Wind LiDar Buoy – next generation

Full power system redundancy

- Increased solar
- adding wind turbine(s)
- fuel cells as back-up

Increased volume

- increased buoyancy
- increased carrying capacity

Achievement

• Twelve months service intervals

New parameters

- turbulence intensity
- Inflow angle, shear and veer
- 1Hz motion corrected raw data

Sensor Combinations

- bird counter
- hydrophone mammals
- eccosounder
- temperature profile