
Draf
t

Draf
t

Real-Time GPU Silhouette Refinement using adaptively blended
Bézier Patches

Christopher Dyken1,2 and Martin Reimers1 and Johan Seland1

1Centre of Mathematics for Applications, University of Oslo, Norway
2 Department of Informatics, University of Oslo, Norway

EARLY DRAFT
Final version to appear in Computer Graphics Forum

Abstract
We present an algorithm for detecting and extracting the
silhouette edges of a triangle mesh in real time using
GPUs (Graphical Processing Units). We also propose a
tessellation strategy for visualizing the mesh with smooth
silhouettes through a continuous blend between Bézier
patches with varying level of detail. Furthermore, we
show how our techniques can be integrated with displace-
ment and normal mapping. We give details on our GPU
implementation and provide a performance analysis with
respect to mesh size.

1 Introduction
Coarse triangular meshes are used extensively in real-time
rendering applications such as games and virtual real-
ity systems. Recent advances in graphics hardware have
made it possible to use techniques such as normal map-
ping and per pixel lighting to increase the visual realism of
such meshes. These techniques work well in many cases,
adding a high level of detail to the final rendered scene.
However, they can not hide the piecewise linear silhouette
of a coarse triangular mesh. We propose an effective GPU
implementation of a technique similar to the one proposed
by two of the authors in [7], to adaptively refine triangu-
lar meshes along the silhouette, in order to improve its
visual appearance. Since our technique dynamically re-
fines geometry at the vertex level, it integrates well with
pixel based techniques such as those mentioned above.

We start by reviewing previous and related work in
the following section, before we introduce our notation
and recall the silhouetteness classification method that
was introduced in [7]. In Section 4 we discuss the con-
struction of a cubic Bézier patch for each triangle in the
mesh, based on the mesh geometry and shading normals.
These patches are in the subsequent section tessellated
adaptively using the silhouetteness to determine the lo-
cal level of detail. The result is a “watertight” mesh with
good geometric quality along the silhouettes, which can
be rendered efficiently. We continue by discussing details
of our GPU implementation in Section 6, and show how
to integrate our approach with normal and displacement
mapping. Thereafter, in Section 7, we compare the per-
formance of our GPU implementation with several CPU
based methods, before we conclude.

2 Previous and related work
Silhouette extraction. Silhouette extraction has been
studied extensively, both in the framework for rendering
soft shadows and for use in non-photorealistic-rendering.
Isenberg et.al. [12] provides an excellent overview of the
trade-offs involved in choosing among the various CPU-
based silhouette extraction techniques. Hartner et.al. [10]
benchmark and compare various algorithms in terms of
runtime performance and code complexity. For compar-
ison, we present runtime performance for our method
within this framework in Section 7. Card and Mitchell [5]
propose a single pass GPU assisted algorithm for render-

1

Draf
t

Draf
tFigure 1: A dynamic refinement (left) of a coarse geometry (center). Cracking between patches of different refinement

levels (top right) is eliminated using the technique described in Section 5 (bottom right).

ing silhouette edges, by degenerating all non silhouette
edges in a vertex shader.

Curved geometry. Curved point-normal triangle
patches (PN-triangles), introduced by Vlachos et.al. [22],
do not need triangle connectivity between patches, and
are therefore well suited for tessellation in hardware.
An extension allowing for finer control of the resulting
patches was presented by Boubekeur et.al. [2] and dubbed
scalar tagged PN-triangles. A similar approach is taken
by van Overveld and Wyvill [21], where subdivision was
used instead of Bézier patches. Alliez et.al. describe a
local refinement technique for subdivision surfaces [1].

Adaptivity and multi resolution meshes. Multi reso-
lution methods for adaptive rendering have a long his-
tory, a survey is given by Luebke et.al. [14]. Some ex-
amples are progressive meshes, where refinement is done
by repeated triangle splitting and deletion by Hoppe [11],
or triangle subdivision as demonstrated by Pulli and Se-
gal [16] and Kobbelt [13].

GPU techniques. Global subdivision using a GPU ker-
nel is described by Shiue et.al. [19] and an adaptive sub-

division technique using GPUs is given by Bunnel [4].
A GPU friendly technique for global mesh refinement on
GPUs was presented by Boubekeur and Schlick [3], using
pre-tessellated triangle strips stored on the GPU. Our ren-
dering method is similar, but we extend their method by
adding adaptivity to the rendered mesh.

A recent trend is to utilize the performance of GPUs
for non-rendering computations, often called GPGPU
(General-Purpose Computing on GPUs). We employ such
techniques extensively in our algorithm, but forward the
description of GPGPU programming to the introduction
by Harris [9]. An overview of various applications in
which GPGPU techniques have successfully been used
is presented in Owens et.al. [15]. For information about
OpenGL and the OpenGL Shading Language see the ref-
erence material by Shreiner et.al. [20] and Rost [17].

3 Silhouettes of triangle meshes

We consider a closed triangle mesh Ω with consistently
oriented triangles T1, . . . , TN and vertices v1, . . . ,vn in
R3. The extension to meshes with boundaries is straight-
forward and is omitted for brevity. An edge of Ω is
defined as eij = [vi,vj] where [·] denotes the con-

2

Draf
t

Draf
t

vi

vj

vk

ni

nj

nk

vi

vj

vk

cij

cji

ckj

cjk

cki

cik
F

S1[F]

S2[F]

S3[F]

Figure 2: From left to right: A triangle [vi,vj ,vk] and the associated shading normals ni, nj , and nk is used to define
three cubic Bézier curves and a corresponding cubic triangular Bézier patch F . The sampling operator Si yields
tessellations of the patch at refinement level i.

vex hull of a set. The triangle normal nt of a triangle
Tt = [vi,vj ,vk] is defined as the normalization of the
vector (vj − vi) × (vk − vi). Since our interest is in
rendering Ω, we also assume that we are given shading
normals, nti,ntj ,ntk associated with the vertices of Tt.
The viewpoint x ∈ R3 is the position of the observer and
for a point v on Ω, the view direction vector is v − x. If
n is the surface normal in v, we say that T is front facing
in v if (v − x) · n ≤ 0, otherwise it is back facing.

The silhouette of a triangle mesh is the set of edges
where one of the adjacent triangles is front facing while
the other is back facing. Let vij be the midpoint of an
edge eij shared by two triangles Ts and Tt in Ω. Defining
fij : R3 → R by

fij(x) =
(

vij − x
‖ vij − x ‖

· ns

) (
vij − x

‖ vij − x ‖
· nt

)
,

(1)
we see that eij is a silhouette edge when observed from x
in the case fij(x) ≤ 0.

Our objective is to render Ω so that it appears to have
smooth silhouettes, by adaptively refining the mesh along
the silhouettes. Since the resulting silhouette curves in
general do not lie in Ω, and since silhouette member-
ship for edges is a binary function of the viewpoint, a
naive implementation leads to transitional artifacts: The
rendered geometry depends discontinuously on the view-
point. In [7], a continuous silhouette test was proposed

to avoid such artifacts. The silhouetteness of eij as seen
from x ∈ R3 was defined as

αij(x) =

1 if fij(x) ≤ 0;
1− fij(x)

βij
if 0 < fij(x) ≤ βij ;

0 if fij(x) > βij ,

(2)

where βij > 0 is a constant. We let βij depend on the
local geometry, so that the transitional region define a
“wedge” with angle φ with the adjacent triangles, see Fig-
ure 3. This amounts to setting βij = sin φ cos φ sin θ +
sin2 φ cos θ, where θ is the angle between the normals of
the two adjacent triangles. We also found that the heuris-
tic choice of βij = 1

4 works well in practice, but this
choice gives unnecessary refinement over flatter areas.

The classification (2) extends the standard binary clas-
sification by adding a transitional region. A silhouetteness
αij ∈ (0, 1) implies that eij is nearly a silhouette edge.
We use silhouetteness to control the view dependent inter-
polation between silhouette geometry and non-silhouette
geometry.

4 Curved geometry
We assume that the mesh Ω and its shading normals are
sampled from a piecewise smooth surface (it can how-
ever have sharp edges) at a sampling rate that yields non-
smooth silhouettes. In this section we use the vertices

3

Draf
t

Draf
t

and shading normals of each triangle in Ω to construct a
corresponding cubic Bézier patch. The end result of our
construction is a set of triangular patches that constitutes
a piecewise smooth surface. Our construction is a variant
of the one in [7], see also [22].

For each edge eij in Ω, we determine a cubic Bézier
curve based on the edge endpoints vi,vj and their asso-
ciated shading normals:

Cij(t) = viB
3
0(t) + cijB

3
1(t) + cjiB

3
2(t) + vjB

3
3(t),

where B3
i (t) =

(
3
i

)
ti(1 − t)3−i are the Bernstein poly-

nomials, see e.g. [8]. The inner control point cij is deter-
mined as follows. Let Ts and Tt be the two triangles adja-
cent to eij and let nsi and nti be the shading normals at vi

belonging to triangle Ts and Tt respectively. If nsi = nti,
we say that vi is a smooth edge end and we determine its
inner control point as cij = 2vi+vj

3 − (vj−vi)·nsi

3 nsi. On
the other hand, if nsi 6= nti, we say that vi is a sharp
edge end and let cij = vi + (vj−vi)·tij

3 tij , where tij is
the normalized cross product of the shading normals. We
refer to [7] for the rationale behind this construction.

Next, we use the control points of the three edge curves
belonging to a triangle [vi,vj ,vk] to define nine of the
ten control points of a cubic triangular Bézier patch of the
form

F =
∑

l+m+n=3

blmnB3
lmn. (3)

Here B3
lmn = 6

l!m!n!u
lvmwn are the Bernstein-Bézier

polynomials and u, v, w are barycentric coordinates, see
e.g. [8]. We determine the coefficients such that b300 =
vi, b210 = cij , b120 = cji and so forth. In [22] and [7]
the center control point b111 was determined as

b111 = 3
12 (cij + cji + cjk + ckj + cki + cik) (4)

− 1
6 (vi + vj + vk) .

We propose instead to optionally use the average of the
inner control points of the three edge curves,

b111 = 1
6 (cij + cji + cjk + ckj + cki + cik) . (5)

This choice allows for a significantly more efficient im-
plementation at the cost of a slightly “flatter” patch, see
Section 6.4 and Figure 4. This example is typical in that
the patches resulting from the two formulations are visu-
ally almost indistinguishable.

sn

tn
x 0f ()<ij

x 0f ()<ij

β0<f ()<ij ijxβ0<f ()<ij ijx

jviv

x βf ()>ij ij

φφ

[,]

Figure 3: Values of fij in (1) looking along the edge eij

with the transitional region φ marked gray.

5 Adaptive tessellation
In the previous section we defined a collection of cubic
Bézier patches based on the mesh Ω and its shading nor-
mals. We next propose a strategy for tessellating these
patches adaptively for rendering. We let the tessellation
level (which controls the number of triangles produced)
depend on the local silhouetteness so that silhouettes ap-
pear to be smooth, while retaining the coarse geometry
away from the silhouettes. We avoid “cracking” by en-
suring that the tessellations of neighboring patches meet
continuously, see Figure 1.

The parameter domain of a triangular Bézier patch F is
a triangle P0 ⊂ R2. We can refine P0 to form a triangle
mesh P1 by splitting each edge in half and forming four
new triangles. A further refinement P2 of P1 is formed
similarly, by splitting each triangle in P1 in four new tri-
angles, and so forth. The m’th refinement Pm is a triangle
mesh with vertices at the dyadic barycentric coordinates

Im =
{

(i, j, k)
2m

: i, j, k ∈ Z+, i+j+k = 2m

}
.

(6)
A tessellation Pm of the parameter domain P0 and a

map f : P0 → Rd, gives rise to a continuous approxima-
tion Sm[f] : P0 → Rd of f that is linear on each triangle
of Pm and agrees with f at the vertices of Pm. For exam-
ple, Sm[F] maps a triangle [pi,pj ,pk] in Pm linearly to
a triangle [F(pi),F(pj),F(pk)] in R3. It is clear that the
collection of all such triangles forms a tessellation of F .
We will in the following call both the map Sm[F] and its
image Sm[F](P0) a tessellation. A piecewise linear map
Sm[f] can be evaluated at a point p ∈ P0 as follows: Let
T = [pi,pj ,pk] be a triangle in Pm containing p and
let (ui, uj , uk) be the barycentric coordinates of p with

4

Draf
t

Draf
t

respect to T . Then p = uipi + ujpj + ukpk and

Sm[f](p) = uif(pi) + ujf(pj) + ukf(pk). (7)

Given two tessellations Ps and Pm and two integers
s ≤ m, the set of vertices of Ps is contained in the set
of vertices of Pm and a triangle of Pm is contained in a
triangle of Ps. Since both maps are linear on each trian-
gle of Sm

[
Ss[f]

]
and agrees at the corners, the two maps

must be equal in the whole of P0. This implies that a
tessellation can be refined to a finer level without chang-
ing its geometry: Given a map f : P0 → Rd, we have a
corresponding tessellation

Sm

[
Ss[f]

]
= Ss[f]. (8)

We say that Sm

[
Ss[f]

]
has topological refinement level

m and geometric refinement level s. From the previ-
ous result we can define tessellations for a non-integer
refinement level s = m + α where m is an integer and
α ∈ [0, 1). We refine Sm[f] to refinement level m+1 and
let α control the blend between the two refinement levels,

Sm+α[f] = (1− α)Sm+1 [Sm[f]] + αSm+1[f]. (9)

See Figure 5 for an illustration of non-integer level
tessellation. The sampling operator Sm is linear, i.e.
Sm[α1f1 + α2f2] = α1Sm[f1] + α2Sm[f2] for all real
α1, α2 and maps f1, f2. As a consequence, (8) holds for
non-integer geometric refinement level s.

Our objective is to define for each triangle T =
[vi,vj ,vk] a tessellation T of the corresponding patch F
adaptively with respect to the silhouetteness of the edges
eij , ejk, eki. To that end we assign a geometric refinement
level sij ∈ R+ to each edge, based on its silhouetteness
as computed in Section 3. More precisely, we use sij =
Mαij where M is a user defined maximal refinement
level, typically M = 3. We set the topological refine-
ment level for a triangle to be m = dmax{sij , sjk, ski}e,
i.e. our tessellation T has the same topology as Pm. Now,
it only remains to determine the position of the vertices of
T . We use the sampling operator Ss with geometric re-
finement level varying over the patch and define the vertex
positions as follows. For a vertex p of Pm we let the ge-
ometric refinement level be

s(p) =

{
sqr if p ∈ (pq,pr);
max{sij , sjk, ski} otherwise,

(10)

Figure 4: The surfaces resulting from the center control
point rule (4) (left) and (5) (right), applied to a tetrahe-
dron with one normal vector per vertex. The difference is
marginal, although the surface to the right can be seen to
be slightly flatter.

where (pq,pr) is the interior of the edge of P0 corre-
sponding to eqr. Note that the patch is interpolated at the
corners vi,vj ,vk. The vertex v of T that corresponds to
p is then defined as

v = Ss(p)[F](p) = Sm

[
Ss(p)[F]

]
(p). (11)

Note that s(p) is in general a real value and so (9) is used
in the above calculation. The final tessellation is illus-
trated in Figure 6.

The topological refinement level of two neighboring
patches will in general not be equal. However, our choice
of constant geometric refinement level along an edge en-
sures that neighboring tessellations match along the com-
mon boundary. Although one could let the geometric re-
finement level s(p) vary over the interior of the patch, we
found that taking it to be constant as in (10) gives good
results.

6 Implementation
We next describe our implementation of the algorithm.
We need to distinguish between static meshes for which
the vertices are only subject to affine transformations, and
dynamic meshes with more complex vertex transforma-
tions. Examples of the latter are animated meshes and
meshes resulting from physical simulations. We assume
that the geometry of a dynamic mesh is retained in a tex-
ture on the GPU that is updated between frames. This

5

Draf
t

Draf
t

Start new
frame

Calculate
geometry

Calculate
silhouetteness

Determine
triangle

refinement

Render
unrefined
triangles

Build
histopyramids

Extract
edge data

Extract
triangle data

Issue
rendering
of refined
triangles

Render
patches

Current
Geometry Silhouetteness Triangle

refinement

Edge
histopyramid

Triangle
histopyramidEdge dataTriangle data

viewpoint

Figure 7: Flowchart of the silhouette refinement algorithm. The white boxes are executed on the CPU, the blue boxes
on the GPU, the green boxes are textures, and the red boxes are pixel buffer objects. The dashed lines and boxes are
only necessary for dynamic geometry.

S1[F]

S2

[
S1[F]

]
S2[F]

S1.5[F]

⊕0.5 0.5

Figure 5: To tessellate a patch at the non-integer refine-
ment level s = 1.5, we create the tessellations S1[F] and
S2[F], and refine S1[F] to S2

[
S1[F]

]
such that the topo-

logical refinement levels match. Then, the two surfaces
are weighted and combined to form S1.5[F].

S3

[
S0[F]

]
S3

[
S1.5[F]

]
S3[F]

s = 1.5

s
=

3

s = 0
F

Figure 6: Composing multiple refinement levels for adap-
tive tessellation. Each edge have a geometric refinement
level, and the topological refinement level is dictated by
the edge with the largest refinement level.

6

Draf
t

Draf
t

implies that our algorithm must recompute the Bézier co-
efficients accordingly. Our implementation is described
sequentially, although some steps do not require the pre-
vious step to finish. A flowchart of the implementation
can be found in Figure 7.

6.1 Silhouetteness calculation
Silhouetteness is well suited for computation on the GPU
since it is the same transform applied to every edge and
since there are no data dependencies. The only changing
parameter between frames is the viewpoint.

If the mesh is static we can pre-compute the edge-
midpoints and neighboring triangle normals for every
edge as a preprocessing step and store these values in a
texture on the GPU. For a dynamic mesh we store the in-
dices of the vertices of the two adjacent triangles instead
and calculate the midpoint as part of the silhouetteness
computation.

The silhouetteness of the edges is calculated by first
sending the current viewpoint to the GPU as a shader uni-
form, and then by issuing the rendering of a textured rect-
angle into an off-screen buffer with the same size as our
edge-midpoint texture.

We could alternatively store the edges and normals of
several meshes in one texture and calculate the silhouette-
ness of all in one pass. If the models have different model
space bases, such as in a scene graph, we reserve a texel
in a viewpoint-texture for each model. In the preprocess-
ing step, we additionally create a texture associating the
edges with the model’s viewpoint texel. During render-
ing we traverse the scene graph, find the viewpoint in the
model space of the model and store this in the viewpoint
texture. We then upload this texture instead of setting the
viewpoint explicitly.

6.2 Histogram pyramid construction and
extraction

The next step is to determine which triangles should be
refined, based on the silhouetteness of the edges. The
straightforward approach is to read back the silhouette-
ness texture to host memory and run sequentially through
the triangles to determine the refinement level for each of
them. This direct approach rapidly congests the graphics
bus and thus reduces performance. To minimize transfers

over the bus we use a technique called histogram pyra-
mid extraction [23] to find and compact only the data that
we need to extract for triangle refinement. As an added
benefit the process is performed in parallel on the GPU.

The first step in the histogram pyramid extraction is to
select the elements that we will extract. We first create a
binary base texture with one texel per triangle in the mesh.
A texel is set to 1 if the corresponding triangle is selected
for extraction, i.e. has at least one edge with non-zero
silhouetteness, and 0 otherwise. We create a similar base
texture for the edges, setting a texel to 1 if the correspond-
ing edge has at least one adjacent triangle that is selected
and 0 otherwise.

For each of these textures we build a histopyramid,
which is a stack of textures similar to a mipmap pyra-
mid. The texture at one level is a quarter of the size of the
previous level. Instead of storing the average of the four
corresponding texels in the layer below like for a mipmap,
we store the sum of these texels. Thus each texel in the
histopyramid contains the number of selected elements in
the sub-pyramid below and the single top element con-
tains the total number of elements selected for extraction.
Moreover, the histopyramid induces an ordering of the se-
lected elements that can be obtained by traversal of the
pyramid. If the base texture is of size 2n×2n, the histopy-
ramid is built bottom up in n passes. Note that for a static
mesh we only need a histopyramid for edge extraction and
can thus skip the triangle histopyramid.

The next step is to compact the selected elements. We
create a 2D texture with at least m texels where m is the
number of selected elements and each texel equals its in-
dex in a 1D ordering. A shader program is then used to
find for each texel i the corresponding element in the base
texture as follows. If i > m there is no corresponding se-
lected element and the texel is discarded. Otherwise, the
pyramid is traversed top-down using partial sums at the
intermediate levels to determine the position of the i’th
selected element in the base texture. Its position in the
base texture is then recorded in a pixel buffer object.

The result of the histopyramid extraction is a compact
representation of the texture positions of the elements for
which we need to extract data. The final step is to load as-
sociated data into pixel buffer objects and read them back
to host memory over the graphics bus. For static meshes
we output for each selected edge its index and silhouette-
ness. We can thus fit the data of two edges in the RGBA

7

Draf
t

Draf
t

values of one render target.
For dynamic meshes we extract data for both the se-

lected triangles and edges. The data for a triangle con-
tains the vertex positions and shading normals of the cor-
ners of the triangle. Using polar coordinates for normal
vectors, this fit into four RGBA render targets. The edge
data is the edge index, its silhouetteness and the two inner
Bézier control points of that edge, all of which fits into
two RGBA render targets.

6.3 Rendering unrefined triangles
While the histopyramid construction step finishes, we is-
sue the rendering of the unrefined geometry using a VBO
(vertex buffer object). We encode the triangle index into
the geometry stream, for example as the w-coordinates of
the vertices. In the vertex shader, we use the triangle index
to do a texture lookup in the triangle refinement texture in
order to check if the triangle is tagged for refinement. If
so, we collapse the vertex to [0, 0, 0], such that triangles
tagged for refinement are degenerate and hence produce
no fragments. This is the same approach as [5] uses to
discard geometry.

For static meshes, we pass the geometry directly from
the VBO to vertex transform, where triangles tagged for
refinement are culled. For dynamic meshes, we replace
the geometry in the VBO with indices and retrieve the ge-
ometry for the current frame using texture lookups, before
culling and applying the vertex transforms.

The net effect of this pass is the rendering of the coarse
geometry, with holes where triangles are tagged for re-
finement. Since this pass is vertex-shader only, it can be
combined with any regular fragment shader for lightning
and shading.

6.4 Rendering refined triangles
While the unrefined triangles are rendered, we wait for
the triangle data read back to the host memory to finish.
We can then issue the rendering of the refined triangles.
The geometry of the refined triangles are tessellations of
triangular cubic Bézier patches as described in Section 4
and 5.

To allow for high frame-rates, the transfer of geome-
try to the GPU, as well as the evaluation of the surface,
must be handled carefully. Transfer of vertex data over

the graphics bus is a major bottleneck when rendering
geometry. Boubekeur et.al. [3] have an efficient strat-
egy for rendering uniformly sampled patches. The idea
is that the parameter positions and triangle strip set-up are
the same for any patch with the same topological refine-
ment level. Thus, it is enough to store a small number
of pre-tessellated patches Pi with parameter positions Ii

as VBOs on the GPU. The coefficients of each patch are
uploaded and the vertex shader is used to evaluate the sur-
face at the given parameter positions. We use a similar
set-up, extended to our adaptive watertight tessellations.

The algorithm is similar for static and dynamic meshes,
the only difference is the place from which we read the
coefficients. For static meshes, the coefficients are pre-
generated and read directly from host memory. The co-
efficients for a dynamic mesh are obtained from the edge
and triangle read-back pixel pack buffers. Note that this
pass is vertex-shader only and we can therefore use the
same fragment shader as for the rendering of the unre-
fined triangles.

The tessellation strategy described in Section 5 requires
the evaluation of (11) at the vertices of the tessellation
Pm of the parameter domain of F , i.e. at the dyadic pa-
rameter points (6) at refinement level m. Since the max-
imal refinement level M over all patches is usually quite
small, we can save computations by pre-evaluating the ba-
sis functions at these points and store these values in a
texture.

A texture lookup gives four channels of data, and since
a cubic Bézier patch has ten basis functions, we need
three texture lookups to get the values of all of them at
a point. If we define the center control point b111 to be
the average of six other control points, as in (5), we can
eliminate it by distributing the associated basis function
B111 = uvw/6 = µ/6 among the six corresponding ba-
sis functions,

B̂3
300 = u3, B̂3

201 = 3wu2+µ, B̂3
102 = 3uw2+µ,

B̂3
030 = v3, B̂3

120 = 3uv2+µ, B̂3
210 = 3vu2+µ,

B̂3
003 = w3, B̂3

012 = 3vw2+µ, B̂3
021 = 3wv2+µ.

(12)
We thus obtain a simplified expression

F =
∑

bijkBijk =
∑

(i,j,k) 6=(1,1,1)

bijkB̂ijk (13)

8

Draf
t

Draf
t

involving only nine basis functions. Since they form a
partition of unity, we can obtain one of them from the
remaining eight. Therefore, it suffices to store the val-
ues of eight basis functions, and we need only two tex-
ture lookups for evaluation per point. Note that if we
choose the center coefficient as in (4) we need three tex-
ture lookups for retrieving the basis functions, but the re-
mainder of the shader is essentially the same.

Due to the linearity of the sampling operator, we may
express (11) for a vertex p of PM with s(p) = m + α as

v = Ss(p)[F](p) =
∑
i,j,k

bijkSs(p)[B̂ijk](p) (14)

=
∑
i,j,k

bijk

(
(1− α)Sm[B̂ijk](p) + αSm+1[B̂ijk](p)

)
.

Thus, for every vertex p of PM , we pre-evaluate
Sm[B̂3

300](p), . . . ,Sm[B̂3
021](p) for every refinement

level m = 1, . . . ,M and store this in a M × 2 block
in the texture. We organize the texture such that four ba-
sis functions are located next to the four corresponding
basis functions of the adjacent refinement level. This lay-
out optimizes spatial coherency of texture accesses since
two adjacent refinement levels are always accessed when
a vertex is calculated. Also, if vertex shaders on future
graphics hardware will support filtered texture lookups,
we could increase performance by carrying out the linear
interpolation between refinement levels by sampling be-
tween texel centers.

Since the values of our basis function are always in in
the interval [0, 1], we can trade precision for performance
and pack two basis functions into one channel of data,
letting one basis function have the integer part while the
other has the fractional part of a channel. This reduces the
precision to about 12 bits, but increases the speed of the
algorithm by 20% without adding visual artifacts.

6.5 Normal and displacement mapping
Our algorithm can be adjusted to accommodate most reg-
ular rendering techniques. Pure fragment level techniques
can be applied directly, but vertex-level techniques may
need some adjustment.

An example of a pure fragment-level technique is nor-
mal mapping. The idea is to store a dense sampling of
the object’s normal field in a texture, and in the fragment

shader use the normal from this texture instead of the in-
terpolated normal for lighting calculations. The result of
using normal mapping on a coarse mesh is depicted in the
left of Figure 8.

Normal mapping only modulates the lighting calcula-
tions, it does not alter the geometry. Thus, silhouettes are
still piecewise linear. In addition, the flat geometry is dis-
tinctively visible at gracing angles, which is the case for
the sea surface in Figure 8.

The displacement mapping technique attacks this prob-
lem by perturbing the vertices of a mesh. The drawback
is that displacement mapping requires the geometry in
problem areas to be densely tessellated. The brute force
strategy of tessellating the whole mesh increase the com-
plexity significantly and is best suited for off-line render-
ing. However, a ray-tracing like approach using GPUs has
been demonstrated by Donnelly [6].

We can use our strategy to establish the problem areas
of the current frame and use our variable-level of detail re-
finement strategy to tessellate these areas. First, we aug-
ment the silhouetteness test, tagging edges that are large
in the current projection and part of planar regions at grac-
ing angles for refinement. Then we incorporate displace-
ment mapping in the vertex shader of Section 6.4. How-
ever, care must be taken to avoid cracks and maintain a
watertight surface.

For a point p at integer refinement level s, we find the
triangle T = [pi,pj ,pk] of Ps that contains p. We then
find the displacement vectors at pi, pj , and pk. The dis-
placement vector at pi is found by first doing a texture
lookup in the displacement map using the texture coordi-
nates at pi and then multiplying this displacement with
the interpolated shading normal at pi. In the same fash-
ion we find the displacement vectors at pj and pk. The
three displacement vectors are then combined using the
barycentric weights of p with respect to T , resulting in
a displacement vector at p. If s is not an integer, we in-
terpolate the displacement vectors of two adjacent levels
similarly to (9).

The result of this approach is depicted to the right in
Figure 8, where the cliff ridges are appropriately jagged
and the water surface is displaced according to the waves.

9

Draf
t

Draf
tFigure 8: The left image depicts a coarse mesh using normal mapping to increase the perceived detail, and the right

image depicts the same scene using the displacement mapping technique described in Section 6.5.

10

100

1k

10k

100k

100 1k 10k 100k

Si
lh

ou
et

te
ex

tr
ac

tio
ns

pr
.s

ec

Number of triangles

7800 GT

6600 GT

Brute

Hierarchal

(a) The measured performance for brute force CPU sil-
houette extraction, hierarchical CPU silhouette extraction,
and the GPU silhouette extraction on the Nvidia GeForce
6600GT and 7800GT GPUs.

1

10

100

1k

10k

100 1k 10k 100k

Fr
am

es
pr

.s
ec

Number of triangles

Static mesh

Uniform

Static VBO

Dynamic
mesh

24

(b) The measured performance on an Nvidia GeForce
7800GT for rendering refined meshes using one single static
VBO, the uniform refinement method of [3], and our algo-
rithm for static and dynamic meshes.

Figure 9: Performance measurements of our algorithm.

10

Draf
t

Draf
t

7 Performance analysis

In this section we compare our algorithms to alternative
methods. We have measured both the speedup gained by
moving the silhouetteness test calculation to the GPU, as
well as the performance of the full algorithm (silhouette
extraction + adaptive tessellation) with a rapidly chang-
ing viewpoint. We have executed our benchmarks on two
different GPUs to get an impression of how the algorithm
scales with advances in GPU technology.

For all tests, the CPU is an AMD Athlon 64 running at
2.2GHz with PCI-E graphics bus, running Linux 2.6.16
and using GCC 4.0.3. The Nvidia graphics driver is
version 87.74. All programs have been compiled with
full optimization settings. We have used two different
Nvidia GPUs, a 6600 GT running at 500MHz with 8 frag-
ment and 5 vertex pipelines and a memory clockspeed
of 900MHz, and a 7800 GT running at 400MHz with 20
fragment and 7 vertex pipelines and a memory clockspeed
of 1000Mhz. Both GPUs use the PCI-E interface for com-
munication with the host CPU.

Our adaptive refinement relies heavily on texture
lookups in the vertex shader. Hence, we have not been
able to perform tests on ATI GPUs, since these just re-
cently got this ability. However, we expect similar perfor-
mance on ATI hardware.

We benchmarked using various meshes ranging from
200 to 100k triangles. In general, we have found that
the size of a mesh is more important than its complexity
and topology, an observation shared by Hartner et.al. [10].
However, for adaptive refinement it is clear that a mesh
with many internal silhouettes will lead to more refine-
ment, and hence lower frame-rates.

7.1 Silhouette Extraction on the GPU

To compare the performance of silhouette extraction on
the GPU versus traditional CPU approaches, we im-
plemented our method in the framework of Hartner
et.al. [10]. This allowed us to benchmark our method
against the hierarchical method described by Sander
et.al. [18], as well as against standard brute force sil-
houette extraction. Figure 9(a) shows the average perfor-
mance over a large number of frames with random view-
points for an asteroid model of [10] at various levels of

detail. The GPU measurements include time spent read-
ing back the data to host memory.

Our observations for the CPU based methods (hierar-
chical and brute force) agree with [10]. For small meshes
that fit into the CPU’s cache, the brute force method is the
fastest. However, as the mesh size increases, we see the
expected linear decrease in performance. The hierarchi-
cal approach scales much better with regard to mesh size,
but at around 5k triangles the GPU based method begins
to outperform this method as well.

The GPU based method has a different performance
characteristic than the CPU based methods. There is vir-
tually no decline in performance for meshes up to about
10k triangles. This is probably due to the dominance of
set-up and tear-down operations for data transfer across
the bus. At around 10k triangles we suddenly see a differ-
ence in performance between the 8-pipeline 6600GT GPU
and the 20-pipeline 7800GT GPU, indicating that the in-
creased floating point performance of the 7800GT GPU
starts to pay off. We also see clear performance plateaus,
which is probably due to the fact that geometry textures
for several consecutive mesh sizes are padded to the same
size during histopyramid construction.

It could be argued that coarse meshes in need of refine-
ment along the silhouette typically contains less than 5000
triangles and thus silhouetteness should be computed on
the CPU. However, since the test can be carried out for
any number of objects at the same time, the above result
applies to the total number of triangles in the scene, and
not in a single mesh.

For the hierarchical approach, there is a significant pre-
processing step that is not reflected in Figure 9(a), which
makes it unsuitable for dynamic meshes. Also, in real-
time rendering applications, the CPU will typically be
used for other calculations such as physics and AI, and
can not be fully utilized to perform silhouetteness calcu-
lations. It should also be emphasized that it is possible
to do other per-edge calculations, such as visibility test-
ing and culling, in the same render pass as the silhouette
extraction, at little performance overhead.

7.2 Benchmarks of the complete algorithm
Using variable level of detail instead of uniform refine-
ment should increase rendering performance since less
geometry needs to be sent through the pipeline. However,

11

Draf
t

Draf
t

the added complexity balances out the performance of the
two approaches to some extent.

We have tested against two methods of uniform refine-
ment. The first method is to render the entire refined
mesh as a static VBO stored in graphics memory. The
rendering of such a mesh is fast, as there is no transfer
of geometry across the graphics bus. However, the mesh
is static and the VBO consumes a significant amount of
graphics memory. The second approach is the method of
Boubekeur and Schlick [3], where each triangle triggers
the rendering of a pre-tessellated patch stored as triangle
strips in a static VBO in graphics memory.

Figure 9(b) shows these two methods against our adap-
tive method. It is clear from the graph that using static
VBOs is extremely fast and outperforms the other meth-
ods for meshes up to 20k triangles. At around 80k trian-
gles, the VBO grows too big for graphics memory, and
is stored in host memory, with a dramatic drop in per-
formance. The method of [3] has a linear performance
degradation, but the added cost of triggering the render-
ing of many small VBOs is outperformed by our adaptive
method at around 1k triangles. The performance of our
method also degrades linearly, but at a slower rate than
uniform refinement. Using our method, we are at 24 FPS
able to adaptively refine meshes up to 60k for dynamic
meshes, and 100k triangles for static meshes, which is sig-
nificantly better than the other methods. The other GPUs
show the same performance profile as the 7800 in Figure
9(b), just shifted downward as expected by the number of
pipelines and lower clock speed.

Finally, to get an idea of the performance impact of var-
ious parts of our algorithm, we ran the same tests with
various features enabled or disabled. We found that using
uniformly distributed random refinement level for each
edge (to avoid the silhouetteness test), the performance
is 30–50% faster than uniform refinement. This is as ex-
pected since the vertex shader is only marginally more
complex, and the total number of vertices processed is re-
duced. In a real world scenario, where there is often a high
degree of frame coherency, this can be utilized by not cal-
culating the silhouetteness for every frame. Further, if we
disable blending of consecutive refinement levels (which
can lead to some popping, but no cracking), we remove
half of the texture lookups in the vertex shader for refined
geometry and gain a 10% performance increase.

8 Conclusion and future work
We have proposed a technique for performing adaptive
refinement of triangle meshes using graphics hardware,
requiring just a small amount of preprocessing, and with
no changes to the way the underlying geometry is stored.
Our criterion for adaptive refinement is based on improv-
ing the visual appearance of the silhouettes of the mesh.
However, our method is general in the sense that it can
easily be adapted to other refinement criteria, as shown in
Section 6.5.

We execute the silhouetteness computations on a GPU.
Our performance analysis shows that our implementation
using histogram pyramid extraction outperforms other sil-
houette extraction algorithms as the mesh size increases.

Our technique for adaptive level of detail automatically
avoids cracking between adjacent patches with arbitrary
refinement levels. Thus, there is no need to “grow” re-
finement levels from patch to patch, making sure two ad-
jacent patches differ only by one level of detail. Our
rendering technique is applicable to dynamic and static
meshes and creates continuous level of detail for both uni-
form and adaptive refinement algorithms. It is transparent
for fragment-level techniques such as texturing, advanced
lighting calculations, and normal mapping, and the tech-
nique can be augmented with vertex-level techniques such
as displacement mapping.

Our performance analysis shows that our technique
gives interactive frame-rates for meshes with up to 100k
triangles. We believe this makes the method attractive
since it allows complex scenes with a high number of
coarse meshes to be rendered with smooth silhouettes.
The analysis also indicates that the performance of the
technique is limited by the bandwidth between host and
graphics memory. Since the CPU is available for other
computations while waiting for results from the GPU, the
technique is particularly suited for CPU-bound applica-
tions. This also shows that if one could somehow elim-
inate the read-back of silhouetteness and trigger the re-
finement directly on the graphics hardware, the perfor-
mance is likely to increase significantly. To our knowl-
edge there are no such methods using current versions of
the OpenGL and Direct3D APIs. However, considering
the recent evolution of both APIs, we expect such func-
tionality in the near future.

A major contribution of this work is an extension of

12

Draf
t

Draf
t

the technique described in [3]. We address three issues:
evaluation of PN-triangle type patches on vertex shaders,
adaptive level of detail refinement and elimination of pop-
ping artifacts. We have proposed a simplified PN-triangle
type patch which allows the use of pre-evaluated basis-
functions requiring only one single texture lookup (if we
pack the pre-evaluated basis functions into the fractional
and rational parts of a texel). Further, the use of a geomet-
ric refinement level different from the topological refine-
ment level comes at no cost since this is achieved simply
by adjusting a texture coordinate. Thus, adaptive level of
detail comes at a very low price.

We have shown that our method is efficient and we ex-
pect it to be even faster when texture lookups in the vertex
shader become more mainstream and the hardware man-
ufacturers answer with increased efficiency for this oper-
ation. Future GPUs use a unified shader approach, which
could also boost the performance of our algorithm since it
is primarily vertex bound and current GPUs perform the
best for fragment processing.

Acknowledgments
We would like to thank Gernot Ziegler for introducing us
to the histogram pyramid algorithm. Furthermore, we are
grateful to Mark Hartner for giving us access to the source
code of the various silhouette extraction algorithms. Fi-
nally, Marie Rognes has provided many helpful comments
after reading an early draft of this manuscript. This work
was funded, in part, by contract number 158911/I30 of
The Research Council of Norway.

References
[1] P. Alliez, N. Laurent, and H. S. F. Schmitt. Effi-

cient view-dependent refinement of 3D meshes us-
ing

√
3-subdivision. The Visual Computer, 19:205–

221, 2003.

[2] T. Boubekeur, P. Reuter, and C. Schlick. Scalar
tagged PN triangles. In Eurographics 2005 (Short
Papers), 2005.

[3] T. Boubekeur and C. Schlick. Generic mesh refine-
ment on GPU. In ACM SIGGRAPH/EUROGRAPH-

ICS conf. on Graphics hardware, pages 99–104,
2005.

[4] M. Bunnell. GPU Gems 2, chapter 7 Adaptive Tes-
sellation of Subdivision Surfaces with Displacement
Mapping. Addison-Wesley Professional, 2005.

[5] D. Card and J. L.Mitchell. ShaderX, chapter
Non-Photorealistic Rendering with Pixel and Vertex
Shaders. Wordware, 2002.

[6] W. Donnelly. GPU Gems 2, chapter 8 Per-Pixel Dis-
placement Mapping with Distance Functions. Addi-
son Wesley Professional, 2005.

[7] C. Dyken and M. Reimers. Real-time linear sil-
houette enhancement. In Mathematical Methods for
Curves and Surfaces: Tromsø 2004, pages 135–144.
Nashboro Press, 2004.

[8] G. Farin. Curves and surfaces for CAGD. Morgan
Kaufmann Publishers Inc., 2002.

[9] M. Harris. GPU Gems 2, chapter 31 Mapping Com-
putational Concepts to GPUs. Addison Wesley Pro-
fessional, 2005.

[10] A. Hartner, M. Hartner, E. Cohen, and B. Gooch.
Object space silhouette algorithims. In Theory
and Practice of Non-Photorealistic Graphics: Al-
gorithms, Methods, and Production System SIG-
GRAPH 2003 Course Notes, 2003.

[11] H. Hoppe. Progressive meshes. In ACM SIGGRAPH
1996, pages 99–108, 1996.

[12] T. Isenberg, B. Freudenberg, N. Halper,
S. Schlechtweg, and T. Strothotte. A developer’s
guide to silhouette algorithms for polygonal mod-
els. IEEE Computer Graphics and Applications,
23(4):28–37, July-Aug 2003.

[13] L. Kobbelt.
√

3-subdivision. In ACM SIGGRAPH
2000, pages 103–112, 2000.

[14] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and
A. Varshney. Level of Detail for 3D Graphics. Else-
vier Science Inc., 2002.

13

Draf
t

Draf
t

[15] J. D. Owens, D. Luebke, N. Govindaraju, M. Har-
ris, J. Krüger, A. E. Lefohn, and T. J. Purcell. A
survey of general-purpose computation on graphics
hardware. In Eurographics 2005, State of the Art
Reports, pages 21–51, Aug. 2005.

[16] K. Pulli and M. Segal. Fast rendering of subdivision
surfaces. In ACM SIGGRAPH 1996 Visual Proceed-
ings: The art and interdisciplinary programs, 1996.

[17] R. J. Rost. OpenGL(R) Shading Language. Addison
Wesley Longman Publishing Co., Inc., 2006.

[18] P. V. Sander, X. Gu, S. J. Gortler, H. Hoppe, and
J. Snyder. Silhouette clipping. In SIGGRAPH 2000,
pages 327–334, 2000.

[19] L.-J. Shiue, I. Jones, and J. Peters. A realtime
GPU subdivision kernel. ACM Trans. Graph.,
24(3):1010–1015, 2005.

[20] D. Shreiner, M. Woo, J. Neider, and T. Davis.
OpenGL(R) Programming Guide. Addison Wesley
Longman Publishing Co., Inc., 2006.

[21] K. van Overveld and B. Wyvill. An algorithm for
polygon subdivision based on vertex normals. In
Computer Graphics International, 1997. Proceed-
ings, pages 3–12, 1997.

[22] A. Vlachos, J. Peters, C. Boyd, and J. L. Mitchell.
Curved PN triangles. In ACM Symposium on Inter-
active 3D 2001 graphics, 2001.

[23] G. Ziegler, A. Tevs, C. Tehobalt, and H.-P. Seidel.
Gpu point list generation through histogram pyra-
mids. Technical Report MPI-I-2006-4-002, Max-
Planck-Institut für Informatik, 2006.

14

