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Abstract. Preparing a CAD model for Finite Element (FE) analysis
can be a time-consuming task, where shape and mesh simplifications
play an important role. It is important that the simplified model has the
same mechanical properties as the original one, and that the deviation
from the original stays within a given tolerance.
Most FE mesh simplification algorithms are either fully or partially se-
quential, and are therefore not suitable for architectures with high levels
of parallelism. Furthermore, the use of processors such as GPUs of IBMs
Cell BE requires algorithms to be adapted to benefit from their compu-
tational advantages. Here, we present an algorithm written for parallel
processors, and its implementation for the Cell BE.

1 Introduction

Simplification of triangulations is often used in computer graphics, where it is
used to reduce the complexity of 3D models before rendering. Often, the user
specifies the target number of triangles desired. The simplification software aims
at creating a triangulation with the given number of triangles that qualitatively
resembles the original model.

FE Analysis (FEA) allows engineers to analyze properties like strength and
heat conductivity in a simulated environment. The analysis can be performed on
simple components, such as beams, or on complex models, and large assemblies
such as models of entire airplanes. The components usually originate from 3D
scanning or CAD systems. Even though CAD systems are integrating FEA tools
into their tool chains, the process from a CAD model to a fully usable FE mesh
remains a manual and time consuming process. In the automotive industry it can
take up to four months to create a mesh for a car. In this text we use the terms
mesh and FE mesh for shape representations adapted for simulation purposes.

CAD models use smooth shapes such as NURBS, sphere segments and torus
segments to represent the surface of objects. Solid objects are represented by
their boundary surfaces. Transforming their shape is often time consuming and
tedious. FE meshes on the other hand are usually piecewise planar. Volume
meshes, such as tetrahedral meshes, are often used to represent solid objects in
0 Draft
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FE analysis and mesh generators are powerful when the input model is locally
compatible with the desired FE size. Model preparation brings the CAD model
to a shape that is well suited for the meshing process. Later, the prepared model
is used as a starting point for meshing. To improve and automate the model
preparation, its starting point can be shifted from CAD models to triangulations,
enabling also a larger range of shape changes. The domain (2D or 3D) being
described by a triangulation, it is then subjected to a FE mesh generation process
whose output is called the FE mesh. The target size for each finite element is
dependent of the required accuracy. In addition, there may be a number of
other important requirements for a mesh, including maximal/minimal angles,
maximal valence and relative size of neighbor elements. These requirements are
not meaningful for designers so even if a CAD model is exported into the right
format, it will not necessarily be acceptable as a FE mesh. Hence, the need for
a shape transformation process prior to a FE mesh generation.

During the last five years the trend in commodity hardware have gone from
single-core processors to homogeneous multi-core or heterogeneous many-core
processors. This evolution is driven by difficulties in developing faster cores as
well as the evolution of highly parallel processors, e.g., Graphics Processing Units
(GPUs).

The development in hardware has made research in new algorithms neces-
sary, as most algorithms are unsuited for the new massively parallel architectures.
During the past years the interest for such research has increased tremendously,
and has grown into a new discipline in computer science called “General-Purpose
Computing on GPUs” (GPGPU). Research in GPGPU has attracted the in-
terest from researchers all over the world. Due to the increase in flexibility of
GPUs more and more algorithms can be adapted to take advantage of them.
The research has led to development of new algorithms as well as new uses of
algorithms not commonly used. Bitonic sort by Baxter [2], which has been suc-
cessfully implemented on GPUs by Purcell et al. [21], is one of many examples.
For a thorough overview of the field please refer to [20].

Another trend in processor design is heterogeneous processors such as the
Cell Broadband Engine Architectures (Cell BE) from Sony, IBM and Toshiba.
The IBM Cell BE is targeting both supercomputers and the home entertainment
market. In addition to one or more traditional processor core(s), called Power
Processing Elements (PPEs), the Cell BE include a number of thin cores called
Synergistic Processing Elements (SPEs). The current Cell BE consists of one
PPE and eight SPEs. IBM are planning to release a updated version featuring
32 thin cores and two fat cores, yielding a total of one teraflop per second. In
contrast to GPUs, the thin cores of the Cell BE operate independently, and can
even execute different programs. This places the Cell BE between current GPUs
and multi-core CPUs when it comes both to flexibility and performance.

In this paper we present an algorithm and its implementation on multi-core
CPUs and the Cell BE. The goal of the algorithm is to yield high scalability
beyond the eight cores we tested it for on the Cell BE. We had the 32 core Cell
BE and GPUs in mind when developing the algorithm.
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2 Related Works

Computer models of product components often contains numerous details that
are part of the component shape “as-manufactured”. To meet the objectives and
hypotheses of component behavior simulation and reduce the time spent in the
FEA process, it is advantageous that these details are removed. Venkataraman
et al. [24] presented an algorithm for detecting and removing chains of blends,
where the radius is “small” compared to the FE size. Similar strategies can be
used also for details such as small holes and fillets, bosses, . . . Meshing algorithms
normally access surfaces through APIs, and do not fully benefit from working
directly on the NURBS representation, which is complex to modify or transform.
This led Owen et al. [19] to replace a CAD model by an adapted triangulation
before meshing.

Shape simplification is important in computer graphics as well as in prepara-
tion of models for FEA. The wide range of applications has led to many different
approaches to provide transformation operators, each useful for its applications.
Gotsman et al. [10] give a good overview of the algorithms, and we will here
describe some of the key features of selected algorithms and data structures.

Simplification algorithms are often categorized based on their restriction
to height fields or parametric surfaces, and if they change the topology of
the surface. The main focus here is methods operating on manifold surface-
triangulations, which is often encountered in CAD models.

a)

V Vd

b)

c)

A1 AT

d)

Fig. 1: Vertex removal operations, unchanged areas are marked in blue. a) original
triangulation, b) arbitrary re-triangulation, c) half-edge collapse and d) edge collapse.

Most simplification algorithms are based on removing one vertex at a time,
possibly grouping removals into passes. Before a vertex is removed, a number
of decimation criteria are tested. The most common decimation criteria either
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restrict the geometric deviation between the input and simplified models, or veri-
fies that the topology of the surface is maintained. Figure 1 illustrates commonly
used schemes for removing a single vertex V . Figure 1b) depicts a general vertex
removal where the neighborhood surrounding the vertex V is remeshed freely.
One example of this scheme is Schroeder et al. [23], where the remeshing is deter-
mined mainly by feature edges and aspect ratios. Hoppe [13] used edge collapse,
where one edge is collapsed, placing its two vertices at the same position, leaving
two triangles degenerated. This operation is illustrated in Fig. 1d).

Kobbelt et al.[16] introduced half-edge collapse, illustrated in Fig. 1c), where
an edge is collapsed by moving one of the vertices V onto the other Vd. The main
differences between edge collapse and half-edge collapse is that the latter has a
smaller affected area A1 and keeps the original vertex locations. As with edge
collapse, half-edge collapse can be extended to support non-manifold surfaces.

Edge collapse is generalized to pair contraction, allowing non-neighboring
vertices to be contracted. Isolated components can be connected, which may
improve the visual quality of the simplified version. The method provides no
guarantee regarding the topology of the resulting triangulation. Garland and
Heckbert [9] used pair contraction in what has become one of the most com-
monly used simplification algorithms, “Surface Simplification Using Quadric Er-
ror Metrics” also known as QEM. In their work, vertices connected by an edge
and vertices with a Euclidean distance less than a given tolerance are considered
pairs. A decimation cost is assigned to each pair, based on a quadric error metric.
The metric is compactly represented, using 10 scalars per vertex.

Rossignac and Borrel [22] proposed to cluster nearby vertices into a represen-
tative vertex, and remove all degenerated edges and triangles from the simplified
triangulation. The clusters are usually chosen by assigning them a uniform grid
of cells, and all vertices inside the same cell to a cluster. The representative
vertex of a cluster can either be one of the existing vertices or chosen as a
(weighted) average of the vertices inside the cluster. Lindstrom [18] showed that
QEM also could be used in a vertex clustering setting to perform out-of-core
shape simplification.

Lee et al.[17] presented an algorithm called MAPS for simultaneously deci-
mating and parameterizing a triangulation. MAPS removes vertices iteratively.
In each iteration, an independent set of vertices are removed and each newly re-
moved vertex is localized, i.e. parameterized, in the new triangulation. In order
to prioritize the removal of vertices over flat regions, MAPS prefers to remove
vertices with low curvature.

Cohen et al. [4] proposed to create a simplification envelope around the trian-
gulation and tests that the simplified version is inside the envelope. The envelope
is constructed in such a way that it guaranties that the topology of the model
remains unchanged and that the triangulation does not self-intersect.

Foucault et al. [7] proposed to base decimation criteria on properties with me-
chanical meaning. The general idea is to base the simplification process on prop-
erties that are known to have direct influence on the FEA process. Indeed, volume
variation is closely related to mass variation and acts as a relevant criterion when
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dynamics takes part to the FEA process. Monitoring the position of a center of
mass can be also a meaningful criterion. Other examples of mechanically-based
criteria include transformation of boundary conditions to modify a pressure dis-
tribution while preserving the same resulting force, . . . However, the diversity of
criteria is bound to mechanical parameters used as input of the FEA process,
i.e. quantities related to the solution fields (stresses, strains, . . . ) of the FEA
cannot be addressed by a strictly sequential FEA process (model preparation,
mesh generation, solving). It should be noticed also that such criteria can be-
come time consuming compared to shape simplification operators, hence they
justify parallel treatments to process large models or to keep the simplification
operations within an interactive timescale.

Shape simplification can be performed in parallel on shared memory parallel
architectures, providing the vertices being removed at the same time are not
too close to each other. A common strategy is to create a set of vertices that
can be removed simultaneously without one vertex removal being influenced by
any of the others. Such independent sets can be created in parallel. Dadoun
and Kirkpatric [5] and Karp and Wigderson [15] presented algorithms that find
independent set in polylogarithmic time (assuming a very high number of pro-
cessors).

The main challenge for parallel algorithms is to find “good” independent sets
in parallel. In a sequential setting, it is common to use greedy algorithms that
use a cost function to guide the selection of vertices, and a “good” independent
set is one where the decimation cost is low for all the vertices. Franc and Scala [8]
proposed an algorithm for finding such a set without sorting the vertices, however
their method for finding the independent set is sequential.

Botsch et al. [3], proposed to improve performance of evaluation of decimation
criteria by using the GPU. In their work, the decimation criterion is expressed
as threshold on the distance from the decimated surface to the original. The
criterion is checked by sampling a piecewise linear approximation to the signed
distance field attached to the original surface, and comparing the sampled value
to the tolerance. In their work, the approximation to the signed distance field is
computed using a CPU-based implementation of fast marching methods. This
is transferred to a 3D texture in graphics memory. Then, the triangles that are
to be checked are rendered using this texture. This is a first contribution to an
efficiency increase in a decimation operator through the use of heterogeneous
processor architectures.

Hjelmervik and Léon [12] presented an hybrid GPU-CPU simplification al-
gorithm. In their work, the GPU performs the most computationally intensive
tasks, while the CPU maintains the data structure. This means that data must
be sent between the system memory and graphics memory, which imposes over-
head. The overhead due to memory transfers makes this algorithm only feasible
when decimation criteria with high arithmetic intensities are involved.

DeCoro and Tatarchuk [6] presented the first algorithm to perform the entire
simplification on the GPU. They implemented vertex clustering using the geom-
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etry shader to discard degenerated triangles. Since the GPUs support stream out
of vertex data, the simplified version can be reused for further simplification.

Simplification algorithms often sort the vertices based on their decimation
cost. Sorting is a fundamental building block for a wide variety of applica-
tions. Parallel sorting algorithms suitable for heterogeneous architectures have
therefore attracted the attention from several research groups. GPUTeraSort by
Govindaraju et al. [11] is successfully implemented on multi-core processors and
GPUs, and AA-sort by Inoue et al. [14] has shown high speedups for multi-core
processors and the Cell BE processor.

3 Description of the Algorithm

Our main goal is to develop a flexible algorithm for shape simplification that
is suitable for many-core heterogeneous architectures. To take advantage of the
high level of parallelism, it is important that a high number of vertices are
removed simultaneously and that all steps in the algorithm can be performed in
a parallel fashion. Existing thin cores do not have the capability to allocate or
deallocate system memory, prohibiting implementation of algorithms that use
dynamic memory.

The demand for performance improvement seems most crucial either when
considering simplification of large models where computationally demanding dec-
imation criteria are in play and/or when the simplification must be performed
at an interactive rate. However, many applications use QEM or other computa-
tionally inexpensive decimation criteria. Performance may also be important for
these applications, either to improve the interactivity or to simplify assemblies
consisting of a large number of less detailed objects. Thus, low overhead is a key
feature of our algorithm. Furthermore, the algorithm should be extendable to
transfer properties attached to the faces (or edges or vertices) of the triangula-
tion to enable the implementation of mechanical criteria like the transformation
of pressure fields.

A simplified view of popular simplification algorithms is illustrated in Fig. 2a.
Typically, an independent set of vertices, ISv is created using a greedy, sequential
algorithm, which inserts vertices one by one into ISv. Such a set is used to ensure
that no neighboring vertices are removed simultaneously. Indeed, neighboring
vertices could be removed in the same pass as long as it does not occur at
the same time. Since neighboring vertices may be candidates for removal in
different threads, it becomes necessary to implement vertex removal in a thread
safe manner. This is the approach implemented and figure 2b illustrates our
algorithm. This is an alternative to the implementation a parallel algorithm for
creating ISv. With our approach, it means that multiple threads may perform
vertex removals on the same triangulation, while maintaining the integrity of
the data structure. If competing threads perform conflicting vertex removals,
this situation must be detected and resolved. In our implementation, threads
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Sort vertices

create ISv

remove vertices

done
yes
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(a)

Compute costs
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done
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(b)

Sequential

Parallel

Fig. 2: Flowchart of simplification algorithms. Figure a) illustrates a traditional simpli-
fication algorithm. By removing the vertices as they are inserted into ISv we get the
flowchart illustrated in b).

detecting a conflict will ignore the current vertex removal and continue with
another candidate vertex.

Serial simplification algorithms can iteratively remove the vertex with lowest
decimation cost. The decimation cost can be updated as the neighborhood is
modified, ensuring that the priority queue is up to date. In a parallel setting,
the use of a priority queue would be a bottleneck, since any update would require
exclusive access. Algorithms based on ISv are guided by the decimation cost,
but even the vertex with highest decimation cost can enter ISv in the first pass.
Requiring the candidate vertices to have a decimation cost less than a given
threshold can improve this situation. In our algorithm, each thread performs the
vertex removals in the order given by the decimation cost. However, the vertices
are not reordered within one simplification pass. Depending on the objective of
the decimation process, a well suited decimation criterion can prevent unwanted
vertex removals, making the application less dependent of the decimation order
and on the concept of threshold. Again, this shows what key concepts helped
get around the use of ISv.

Vertices not removed in the first simplification pass may be removed at a
later pass. We use a removable flag assigned to each vertex, indicating the status
of the vertex removal. Vertices failing the simplification criteria are marked as
“not removable”. This is not a permanent status, since further simplifications
can change their neighborhood, hence their cost and status. However, a vertex
failing the simplifications criteria once is less likely to be removed than vertices
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not yet considered. As a compromise, we reconsider all vertices marked as “not
removable” every three pass. To restrict the SPEs to only consider the removable
vertices as candidate vertices, we assign removed and not removable vertices cost
of −2 and −1 respectively. After the vertices are sorted in ascending order, the
removable vertices are located at the top of the array.

A wide variety of data structures can be used to described and store triangu-
lations. Due to its simplicity and efficiency, vertex incidence lists are often used
for simplifications. In its simplest form, each vertex contains a list of pointers
(or indices) to its neighboring vertices. A vertex removal operation performed
on this data structure modifies not only the removed vertex V , but also to the
vertices in its one-ring neighborhood because the adjacency relations must be
updated. Thus, no other vertex in its two-ring neighborhood can be removed at
the same time. Thread safe vertex removal operations using such a data struc-
ture has an increased risk of failing, especially when the number of vertices gets
small, which is often the case when a fair proportion of vertices are removed.

V

Vertex

Half edge

Pointer

Non-modifiable pointer

Fig. 3: Illustration of the half-edge data structure. Pointers belonging to boundary edges
and therefore not modifiable are marked in red.

Another popular data structure for triangulations is based on half-edges.
Figure 3 illustrates the data elements involved in a vertex removal. The edges
surrounding the one-ring neighborhood of a vertex V stay unchanged during its
removal. Therefore, we only read and modify the half-edges on the “inside” of
this area during a vertex removal. These half-edges are only relevant for vertex
removals of any vertex inside this one-ring neighborhood. Therefore, the half-
edge data structure does not increase the radius of influence beyond where the
triangles change.

Vertex removal operators can result in a locally topologically illegal config-
uration, such as two faces being mapped on top of each other. Before removing
V it must be verified that no edge is added between already connected vertices.
To perform this test, the area of interest is expanded from the one-ring neigh-
borhood of V to the two-ring. For the (half-)edge collapse the area of interest
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Listing 1: Thread safe vertex removal
Lock the potential vertex V
Check for conflicts

Verify that the half -edges ‘‘return ’’ to the center vertex V
Verify that none of the neighboring vertices are locked

Check geometrical (and mechanical) criteria
Check topological criteria
Update data structure

Update pointer to half -edges
Update the pointers to the vertex V

unlock the potential vertex V

is expanded from the one-ring neighborhood of the V to also include the one-
ring neighborhood of the destination vertex Vd. In Fig. 1c) the original area of
interest is labeled A1 and the added area labeled AT . Due to the small area of
interest and simple implementation, half-edge collapse is used in this work.

A thread safe vertex removal operation must detect if either the vertex itself
or one of its neighbors is being removed by another thread. Thread safe locking
mechanisms are available for most parallel architectures, and we added a lock
for each vertex to the data structure to implement such a mechanism. As shown
in Listing 1, we lock the potential vertex V as the first step of a vertex removal..
During the update of the data structure, we update the pointers to V as the last
step, to ensure that competing vertices removal threads see that V is locked.
During a vertex removal with the half-edge collapse operator, the data structure
is locally inconsistent within the one-ring neighborhood of V . The inconsistencies
take form either as three consecutive half-edges not forming a loop, i.e. a triangle
is modified or collapses, or half-edges pointing at the incorrect vertex, i.e. the
pointer to the half-edges are updated but not the pointer to the vertex. These
inconsistencies can easily be detected, by verifying that there is no vertex locked
and that three consecutive vertices form a triangle. If neither inconsistency or
locked vertices are found, the vertex removal process can safely continue.

4 Cell BE Implementation

From a programming point of view, memory management related issues con-
stitute the main differences between traditional homogeneous architectures and
heterogeneous processors such as GPUs and the Cell BE. So far, we have de-
scribed vertex removal operations using shared memory architectures with co-
herent caches. Traditional homogeneous multi-processor and multi-core systems
fit this description. However, heterogeneous architectures such as GPUs and the
Cell BE are not equipped with coherent caches. Therefore, algorithms imple-
mented on such architectures should not rely on memory transfers being per-
formed in the order they are issued. In this section we present our Cell BE
implementation of thread safe vertex removal.

Instead of a hardware controlled cache, each SPE has 256KB of local memory
called local store, used to store both code and data. A program running on a SPE
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Listing 2: Simplified view of thread safe vertex removal on Cell BE
Lock the potential vertex V
While looping around the vertex V to collect neighbors

Verify that the half -edges ‘‘return ’’ to the center vertex V
Verify that none of the neighboring vertices are locked

Check geometrical (and mechanical) criteria
Check topological criteria
Update data structure
Update the status of V

does not access system memory directly, but uses Direct Memory Access (DMA)
instructions to copy data to and from system memory. DMA transfers are asyn-
chronous, allowing the SPE to continue execution while data is being transfered.
One way of managing the data transfers is by creating a software managed cache,
using DMA transfers to and from local store. Such a cache normally contains
functions to read/write data, initiate reading of a memory location (touching),
and notifying to the cache that the content may be outdated (dirtying). In ad-
dition to DMA instructions, each SPE has an atomic unit. The main purpose of
this unit is to allow atomic operations such as locking mechanisms. The atomic
unit can also be used to create a software-based coherent cache. However, one
should try to avoid the use of the atomic unit, as it easily can become a bot-
tleneck in the application. Instead, we use a software-based cache for reading
half-edges and vertices, and perform the corresponding write operations without
using the software-based cache. Our modified algorithm uses the atomic unit
for maintaining the status of a vertex. A vertex can have the following states:
locked, removed, not removable, or removable, covering the needs for both the
current decimation pass and the process between the passes.

An implication of lacking coherent cache is that we have no guarantee that
memory transfers are performed in the order they are issued. The Cell BE has
an option to obey the order of the issued commands, but this postpones each
memory operation, causing unnecessary stalls. The basic data element in a SPE
is a quadword, and data transfers of naturally aligned quadwords are performed
as atomic operations. Based on the concept of atomic operations, we therefore
store vertices and half-edges in quadwords to guarantee that we never read a
partly updated vertex or half-edge. An half-edge is represented as three indices
(four if face attributes are explicitly represented), while a vertex is represented as
three floating point numbers and one index. Vertices and half-edges can therefore
be stored in a quadword each, with no or little overhead. The updated algorithm
is given in Listing 2.

Only pointers pointing towards deleted elements are modified, thus all partly
updated triangles will have references to deleted elements (see figure 3). There-
fore, partly updated triangles will either include a reference to a vertex marked
for removal, a half-edge marked for removal or the half-edges will not form a
loop. If any of these cases are detected, the vertex removal process ignores V ,
otherwise no conflict is present and the vertex removal continues. Since our cache
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is not coherent, data may remain in a SPEs cache after its value is updated. Our
data structure consistency tests will detect the cases where the data is partly up-
dated and can either ignore the candidate vertex, or dirty the cache and re-read
the inconsistent data.

In our test cases, the overall cache-hit ratio is 80–90%. The high cache-hit
ratio is due to the fact that geometrically near data elements are likely to be
located near each other in memory. In our test cases each triangle is initially
defined by three subsequent half-edges. However, for the first vertex and half-
edge read for a given candidate vertex V the cache-hit ratio is very low. This is
because the candidate vertices are not treated in their natural order, but rather
in a sorted order. Thus, the cache-hit ratio is almost unaffected by dirtying the
cache at the beginning of each vertex removal operation.

The cost of a cache-miss is reduced if the processor is busy while the memory
transfer takes place. This can be achieved by touching the cache before the data
is needed. This strategy is only feasible if the program can continue execution
before the data is transferred. In our algorithm this is not the case. Bader et
al. [1] presented an alternative latency-hiding technique for the Cell BE. They
use software-managed threads to let the SPE continue working after a memory
request is issued. The SPEs do not have hardware support for quickly switch-
ing between threads. Therefore, the program itself is responsible for switching
between the software-managed threads. We applied this strategy in our applica-
tion, manually switching threads after a cache miss. To facilitate this behavior,
we implemented two different cache touching functions in our software-based
cache. One function only starts the required data transfer, while the other func-
tion also reports if the data element is already in cache. This allows us to only
swap threads when an actual cache-miss is encountered. However, with the high
cache-hit ratio in our algorithm this only gave us 2% speedup.

5 Results

To verify correctness, we implemented a multi-core version, without dynamic
load balancing. Since we have not put any effort into optimizing the implemen-
tation, we do not include runtimes from this implementation. The main purpose
here, is to highlight how the speedup scales up when the number of cell is in-
creasing. For each parallelizable stage of our algorithm, we uniformly divide
the vertices among the threads. The computation time seems to be sufficiently
uniform to justify this choice. The same strategy is used for the Cell BE imple-
mentation, where the vertices are partitioned, and each SPE is responsible for a
subset of the vertices.

Figure 4 shows the two test models before and after simplification. The
vertex-cost is set to its discrete Gaussian curvature. The 90% vertices with low-
est costs are considered as potential for removal. Potential vertices are removed
if the maximal angular deviation from the previous model is less than 25 degrees
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Fig. 4: Turbine blade (top) and fandisk model (bottom) before and after simplification.

and all interior angles in the resulting triangles are larger than 10 degrees. This
yields good visual quality of the resulting triangulations. However, they do not
provide any guaranteed error estimates. These criteria were chosen because of
their balance between computations and memory operations. In addition, we
include benchmark results where only topology tests are performed. Obviously,
the resulting models are not usable, since the geometry is ignored. However,
it shows that our algorithm performs well also for less computational intensive
decimation criteria.

In the current Cell BE implementation the sorting is performed by the PPE.
Parallel sorting algorithms are becoming a standard component for parallel archi-
tectures, and is a part of software development kits for GPUs and the standard
C++ library distributed with the gcc compiler now contains parallel sorting.
However, sorting is not yet a part of the API we used for the Cell BE. Im-
plementing parallel sorting algorithms such as AA-sort by Inoue et al. [14] is
outside the scope of our work. We therefore performed the benchmarks using a
single-threaded sorting algorithm. For the turbine blade model in Fig. 4, sorting
and other sequential parts of the code represents less than one percent of the
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total runtime when using one SPE. The lack of parallel sorting implementation
does not notably affect this benchmark, but must be remedied if the number of
cores are to increase greatly.

Figure 5 illustrates the speedups achieved using a varying number of SPEs.
The corresponding runtimes using one SPE is listed in Table 1. For the blade
model, the speedup is almost linear for both benchmarks. The much smaller
fandisk model does not achieve the same speedup when only topology is tested.
This is due to the overhead caused by starting and stopping SPE threads.

Table 1: Runtimes of simplification, using one SPE on IBM QS21.

model #vertices runtime geometric runtime topology

blade 882954 53.7s 9.0s
fandisk 6475 0.37s 0.05s
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Fig. 5: Speedup of simplification of the turbine blade model (left) and the fandisk model
(right). Benchmark of geometry-based simplification criteria and purely topological
ones are presented.

6 Concluding Remarks

We have developed a flexible framework for shape simplification, suitable for
heterogeneous many-core systems. The vertex removal is performed in a thread
safe manner, allowing each thread to operate independently and eliminating the
need of an independent set of vertices. The flexibility of the framework allows
the inclusion of any decimation criterion based on information located inside the
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one-ring neighborhood. Furthermore, properties associated to the faces can be
propagated throughout the simplification process, thus allowing simplification
criteria with guaranteed error estimates such as error spheres used by Véron
and Léon [25].

Our benchmarks have shown that our framework performs well both for
arithmetically intensive and memory intensive decimation criteria. Furthermore,
it has sufficiently low overhead to be used in applications treating a large num-
ber of smaller models. The use of software-managed threads did not give us
the expected performance increase. This may change if the software related to
software-managed threads is optimized.

The strategy presented here can be used also for other operations performed
on triangulations. Operations such as edge-flip and the Bowyer Watson algorithm
for vertex insertion are candidates for this framework.

GPUs supporting the CUDA API perform data transfers of naturally aligned
quadwords as atomic operations. Locking mechanisms are now also available
on commodity GPUs. This opens up the possibility to develop a GPU-based
implementation of our framework. Whether or not such an implementation is
feasible is an open question, as the execution units of current GPUs operate in
a synchronous manner. We will investigate this in a future article.
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