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Summary

The finite element method can be viewed as a machine that automates the discretization of
differential equations, taking as input a variational problem, a finite element and a mesh,
and producing as output a system of discrete equations. However, the generality of the
framework provided by the finite element method is seldom reflected in implementations
(realizations), which are often specialized and can handle only a small set of variational
problems and finite elements (but are typically parametrized over the choice of mesh).

These notes review ongoing research in the direction of a complete automation of the
finite element method. In particular, this work discusses algorithms for the efficient and
automatic computation of a system of discrete equations from a given variational problem,
finite element and mesh. It is demonstrated that by automatically generating and compiling
efficient low-level code, it is possible to parametrize a finite element code over variational
problem and finite element in addition to the mesh.

c©2006 by Anders Logg.
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1 INTRODUCTION

The finite element method (Galerkin’s method) has emerged as a universal method for
the solution of differential equations. Much of the success of the finite element method
can be contributed to its generality and simplicity, allowing a wide range of differential
equations from all areas of science to be analyzed and solved within a common framework.
Another contributing factor to the success of the finite element method is the flexibility of
formulation, allowing the properties of the discretization to be controlled by the choice of
finite element (approximating spaces).

At the same time, the generality and flexibility of the finite element method has for a
long time prevented its automation, since any computer code attempting to automate it
must necessarily be parametrized over the choice of variational problem and finite element,
which is difficult. Consequently, much of the work must still be done by hand, which is
both tedious and error-prone, and results in long development times for simulation codes.

Automating systems for the solution of differential equations are often met with skepti-
cism, since it is believed that the generality and flexibility of such tools cannot be combined
with the efficiency of competing specialized codes that only need to handle one equation
for a single choice of finite element. However, as will be demonstrated in these notes, by
automatically generating and compiling low-level code for any given equation and finite ele-
ment, it is possible to develop systems that realize the generality and flexibility of the finite
element method, while competing with or outperforming specialized and hand-optimized
codes.

1.1 Automating the Finite Element Method

To automate the finite element method, we need to build a machine that takes as input a
discrete variational problem posed on a pair of discrete function spaces defined by a set of
finite elements on a mesh, and generates as output a system of discrete equations for the
degrees of freedom of the solution of the variational problem. In particular, given a discrete
variational problem of the form: Find U ∈ Vh such that

a(U ; v) = L(v) ∀v ∈ V̂h, (1)

where a : Vh×V̂h → R is a semilinear form which is linear in its second argument, L : V̂h → R

a linear form and (V̂h, Vh) a given pair of discrete function spaces (the test and trial spaces),
the machine should automatically generate the discrete system

F (U) = 0, (2)

where F : Vh → R
N , N = |V̂h| = |Vh| and

Fi(U) = a(U ; φ̂i) − L(φ̂i), i = 1, 2, . . . , N, (3)

for {φ̂i}
N
i=1 a given basis for V̂h.

Typically, the discrete variational problem (1) is obtained as the discrete version of a
corresponding continuous variational problem: Find u ∈ V such that

a(u; v) = L(v) ∀v ∈ V̂ , (4)

where V̂h ⊂ V̂ and Vh ⊂ V .
The machine should also automatically generate the discrete representation of the lin-

earization of the given semilinear form a, that is the matrix A ∈ R
N×N defined by

Aij(U) = a′(U ; φ̂i, φj), i, j = 1, 2, . . . , N, (5)
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where a′ : Vh × V̂h ×Vh → R is the Fréchet derivative of a with respect to its first argument
and {φ̂i}

N
i=1 and {φi}

N
i=1 are bases of V̂h and Vh respectively.

In the simplest case of a linear variational problem,

a(v, U) = L(v) ∀v ∈ V̂h, (6)

the machine should automatically generate the linear system

AU = b, (7)

where Aij = a(φ̂i, φj) and bi = L(φ̂i), and where (Ui) ∈ R
N is the vector of degrees of

freedom for the discrete solution U , that is, the expansion coefficients in the given basis for
Vh,

U =

N
∑

i=1

Uiφi. (8)

We return to this in detail below and identify the key steps towards a complete automa-
tion of the finite element method, including algorithms and prototype implementations for
each of the key steps.

1.2 The FEniCS Project and the Automation of CMM

The FEniCS project [59, 35] was initiated in 2003 with the explicit goal of developing free
software for the Automation of Computational Mathematical Modeling (CMM), including
a complete automation of the finite element method. As such, FEniCS serves as a prototype
implementation of the methods and principles put forward in these notes.

In [96], an agenda for the automation of CMM is outlined, including the automation
of (i) discretization, (ii) discrete solution, (iii) error control, (iv) modeling and (v) opti-
mization. The automation of discretization amounts to the automatic generation of the
system of discrete equations (2) or (7) from a given given differential equation or varia-
tional problem. Choosing as the foundation for the automation of discretization the finite
element method, the first step towards the Automation of CMM is thus the automation of
the finite element method. We continue the discussion on the automation of CMM below
in Section 11.

Since the initiation of the FEniCS project in 2003, much progress has been made, espe-
cially concerning the automation of discretization. In particular, two central components
that automate central aspects of the finite element method have been developed. The first
of these components is FIAT, the FInite element Automatic Tabulator [82, 81, 83], which
automates the generation of finite element basis functions for a large class of finite elements.
The second component is FFC, the FEniCS Form Compiler [98, 86, 87, 99], which automates
the evaluation of variational problems by automatically generating low-level code for the
assembly of the system of discrete equations from given input in the form of a variational
problem and a (set of) finite element(s).

In addition to FIAT and FFC, the FEniCS project develops components that wrap the
functionality of collections of other FEniCS components (middleware) to provide simple,
consistent and intuitive user interfaces for application programmers. One such example
is DOLFIN [61, 67, 62], which provides both a C++ and a Python interface (through
SWIG [15, 14]) to the basic functionality of FEniCS.

We give more details below in Section 9 on FIAT, FFC, DOLFIN and other FEniCS
components, but list here some of the key properties of the software components developed
as part of the FEniCS project, as well as the FEniCS system as a whole:
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• automatic and efficient evaluation of variational problems through FFC [98, 86, 87,
99], including support for arbitrary mixed formulations;

• automatic and efficient assembly of systems of discrete equations through DOLFIN [61,
67, 62];

• support for general families of finite elements, including continuous and discontinuous
Lagrange finite elements of arbitrary degree on simplices through FIAT [82, 81, 83];

• high-performance parallel linear algebra through PETSc [9, 8, 10];

• arbitrary order multi-adaptive mcG(q)/mdG(q) and mono-adaptive cG(q)/dG(q) ODE
solvers [94, 95, 97, 100].

1.3 Automation and Mathematics Education

By automating mathematical concepts, that is, implementing corresponding concepts in
software, it is possible to raise the level of the mathematics education. An aspect of this is
the possibility of allowing students to experiment with mathematical concepts and thereby
obtaining an increased understanding (or familiarity) for the concepts. An illustrative
example is the concept of a vector in R

n, which many students get to know very well
through experimentation and exercises in Octave [36] or MATLAB [118]. If asked which is
the true vector, the x on the blackboard or the x on the computer screen, many students
(and the author) would point towards the computer.

By automating the finite element method, much like linear algebra has been automated
before, new advances can be brought to the mathematics education. One example of this
is Puffin [69, 68], which is a minimal and educational implementation of the basic func-
tionality of FEniCS for Octave/MATLAB. Puffin has successfully been used in a number
of courses at Chalmers in Göteborg and the Royal Institute of Technology in Stockholm,
ranging from introductory undergraduate courses to advanced undergraduate/beginning
graduate courses. Using Puffin, first-year undergraduate students are able to design and
implement solvers for coupled systems of convection–diffusion–reaction equations, and thus
obtaining important understanding of mathematical modeling, differential equations, the
finite element method and programming, without reducing the students to button-pushers.

Using the computer as an integrated part of the mathematics education constitutes a
change of paradigm [66], which will have profound influence on future mathematics educa-
tion.

1.4 Outline

These notes are organized as follows. In the next section, we first present a of survey
of existing finite element software that automate particular aspects of the finite element
method. In Section 3, we then give an introduction to the finite element method with
special emphasis on the process of generating the system of discrete equations from a given
variational problem, finite element(s) and mesh. A summary of the notation can be found
at the end of these notes.

Having thus set the stage for our main topic, we next identify in Sections 4–6 the
key steps towards an automation of the finite element method and present algorithms and
systems that accomplish (in part) the automation of each of these key steps. We also discuss
a framework for generating an optimized computation from these algorithms in Section 7. In
Section 8, we then highlight a number of important concepts and techniques from software
engineering that play an important role for the automation of the finite element method.
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Prototype implementations of the algorithms are then discussed in Section 9, including
benchmark results that demonstrate the efficiency of the algorithms and their implementa-
tions. We then, in Section 10, present a number of examples to illustrate the benefits of a
system automating the finite element method. As an outlook towards further research, we
present in Section 11 an agenda for the development of an extended automating system for
the Automation of CMM, for which the automation of the finite element method plays a
central role. Finally, we summarize or findings in Section 12.
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2 SURVEY OF CURRENT FINITE ELEMENT SOFTWARE

There exist today a number of projects that seek to create systems that (in part) automate
the finite element method. In this section, we survey some of these projects. A complete
survey is difficult to make because of the large number of such projects. The survey is
instead limited to a small set of projects that have attracted the attention of the author.
In effect, this means that most proprietary systems have been excluded from this survey.

It is instructional to group the systems both by their level of automation and their
design. In particular, a number of systems provide automated generation of the system
of discrete equations from a given variational problem, which we in these notes refer to as
the automation of the finite element method or automatic assembly, while other systems
only provide the user with a basic toolkit for this purpose. Grouping the systems by their
design, we shall differentiate between systems that provide their functionality in the form of
a library in an existing language and systems that implement new domain-specific languages
for finite element computation. A summary for the surveyed systems is given in Table 1.

It is also instructional to compare the basic specification of a simple test problem such
as Poisson’s equation, −∆u = f in some domain Ω ⊂ R

d, for the surveyed systems, or more
precisely, the specification of the corresponding discrete variational problem a(v, U) = L(v)
for all v in some suitable test space, with the bilinear form a given by

a(v, U) =

∫

Ω
∇v · ∇U dx, (9)

and the linear form L given by

L(v) =

∫

Ω
v f dx. (10)

Each of the surveyed systems allow the specification of the variational problem for
Poisson’s equation with varying degree of automation. Some of the systems provide a
high level of automation and allow the variational problem to be specified in a notation
that is very close to the mathematical notation used in (9) and (10), while others require
more user-intervention. In connection to the presentation of each of the surveyed systems
below, we include as an illustration the specification of the variational problem for Poisson’s
equation in the notation employed by the system in question. In all cases, we include only
the part of the code essential to the specification of the variational problem. Since the
different systems are implemented in different languages, sometimes even providing new
domain-specific languages, and there are differences in philosophies, basic concepts and
capabilities, it is difficult to make a uniform presentation. As a result, not all the examples
specify exactly the same problem.

Project automatic assembly library / language license

Analysa yes language proprietary
deal.II no library QPL1

Diffpack no library proprietary
FEniCS yes both GPL, LGPL
FreeFEM yes language LGPL
GetDP yes language GPL
Sundance yes library LGPL

Table 1. Summary of projects seeking to automate the finite element method.
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2.1 Analysa

Analysa [6, 7] is a domain-specific language and problem-solving environment (PSE) for
partial differential equations. Analysa is based on the functional language Scheme and pro-
vides a language for the definition of variational problems and incorporates several external
libraries for linear algebra, finite elements and visualization. Analysa thus falls into the
category of domain-specific languages.

Analysa puts forward the idea that it is sometimes desirable to compute the action of
a bilinear form, rather than assembling the matrix representing the bilinear form in the
current basis. In the notation of [7], the action of a bilinear form a : V̂h × Vh → R on a
given discrete function U ∈ Vh is

w = a(V̂h, U), (11)

that is

wi = a(φ̂i, U), i = 1, 2, . . . , N. (12)

Of course, we have w = AU , where A is the matrix representing the bilinear form, with
Aij = a(φ̂i, φj), and (Ui) is the vector of expansion coefficients for U in the basis of Vh. It
follows that

w = a(V̂h, U) = a(V̂h, Vh)U. (13)

If the action only needs to be evaluated a few times for different discrete functions U
before updating a linearization (reassembling the matrix A), it might be more efficient to
compute each action directly than first assembling the matrix A and applying it to each U .

To specify the variational problem for Poisson’s equation with Analysa, one specifies a
pair of bilinear forms a and m, where a represents the bilinear form a in (9) and m represents
the bilinear form

m(v, U) =

∫

Ω
v U dx, (14)

corresponding to a mass matrix. In the language of Analysa, the linear form L in (10) is

represented as the application of the bilinear formm on the test space V̂h and the right-hand
side f ,

L(f) = m(V̂h, f), (15)

as shown in Table 2. Note that Analysa thus defers the coupling of the forms and the test
and trial spaces until the computation of the system of discrete equations.

2.2 deal.II

deal.II [12, 13, 11] is a C++ library for finite element computation. While providing
tools for finite elements, meshes and linear algebra, deal.II does not provide support for
automatic assembly. Instead, a user needs to supply the complete code for the assembly
of the system (7), including the explicit computation of the element stiffness matrix (see
Section 3 below) by quadrature, and the insertion of each element stiffness matrix into the
global matrix, as illustrated in Table 3. This is a common design for many finite element
libraries, where the ambition is not to automate the finite element method, but only to
provide a set of basic tools.

1In addition to the terms imposed by the QPL, the deal.II license imposes a form of advertising clause,
requiring the citation of certain publications. See [12] for details.
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(integral-forms
((a v U) (dot (gradient v) (gradient U)))
((m v U) (* v U))

)

(elements
(element (lagrange-simplex 1))

)

(spaces
(test-space (fe element (all mesh) r:))
(trial-space (fe element (all mesh) r:))

)

(functions
(f (interpolant test-space (...)))

)

(define A-matrix (a testspace trial-space))
(define b-vector (a testspace f))

Table 2. Specifying the variational problem for Poisson’s equation with Analysa
using piecewise linear elements on simplices (triangles or tetrahedra).

2.3 Diffpack

Diffpack [93, 91] is a C++ library for finite element and finite difference solution of partial
differential equations. Initiated in 1991, in a time when most finite element codes were
written in FORTRAN, Diffpack was one of the pioneering libraries for scientific computing
with C++. Although originally released as free software, Diffpack is now a proprietary
product.

Much like deal.II, Diffpack requires the user to supply the code for the computation
of the element stiffness matrix, but automatically handles the loop over quadrature points
and the insertion of the element stiffness matrix into the global matrix, as illustrated in
Table 4.

2.4 FEniCS

The FEniCS project [59, 35] is structured as a system of interoperable components that
automate central aspects of the finite element method. One of these components is the form
compiler FFC [98, 86, 87, 99], which takes as input a variational problem together with a set
of finite elements and generates low-level code for the automatic computation of the system
of discrete equations. In this regard, the FEniCS system implements a domain-specific
language for finite element computation, since the form is entered in a special language
interpreted by the compiler. On the other hand, the form compiler FFC is also available
as a Python module and can be used as a just-in-time (JIT) compiler, allowing variational
problems to be specified and computed with from within the Python scripting environment.
The FEniCS system thus falls into both categories of being a library and a domain-specific
language, depending on which interface is used.

To specify the variational problem for Poisson’s equation with FEniCS, one must specify
a pair of basis functions v and u, the right-hand side function f, and of course the bilinear
form a and the linear form L, as shown in Table 5.
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...
for (dof_handler.begin_active(); cell! = dof_handler.end(); ++cell)
{
...
for (unsigned int i = 0; i < dofs_per_cell; ++i)

for (unsigned int j = 0; j < dofs_per_cell; ++j)
for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)

cell_matrix(i, j) += (fe_values.shape_grad (i, q_point) *
fe_values.shape_grad (j, q_point) *
fe_values.JxW(q_point));

for (unsigned int i = 0; i < dofs_per_cell; ++i)
for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
cell_rhs(i) += (fe_values.shape_value (i, q_point) *

<value of right-hand side f> *
fe_values.JxW(q_point));

cell->get_dof_indices(local_dof_indices);

for (unsigned int i = 0; i < dofs_per_cell; ++i)
for (unsigned int j = 0; j < dofs_per_cell; ++j)
system_matrix.add(local_dof_indices[i],

local_dof_indices[j],
cell_matrix(i, j));

for (unsigned int i = 0; i < dofs_per_cell; ++i)
system_rhs(local_dof_indices[i]) += cell_rhs(i);

}
...

Table 3. Assembling the linear system (7) for Poisson’s equation with deal.II.

for (int i = 1; i <= nbf; i++)
for (int j = 1; j <= nbf; j++)

elmat.A(i, j) += (fe.dN(i, 1) * fe.dN(j, 1) +
fe.dN(i, 2) * fe.dN(j, 2) +
fe.dN(i, 3) * fe.dN(j, 3)) * detJxW;

for (int i = 1; i <= nbf; i++)
elmat.b(i) += fe.N(i)*<value of right-hand side f>*detJxW;

Table 4. Computing the element stiffness matrix and element load vector for
Poisson’s equation with Diffpack.
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element = FiniteElement(‘‘Lagrange’’, ‘‘tetrahedron’’, 1)

v = BasisFunction(element)
U = BasisFunction(element)
f = Function(element)

a = dot(grad(v), grad(U))*dx
L = v*f*dx

Table 5. Specifying the variational problem for Poisson’s equation with FEniCS
using piecewise linear elements on tetrahedra.

Note in Table 5 that the function spaces (finite elements) for the test and trial functions v
and u together with all additional functions/coefficients (in this case the right-hand side f)
are fixed at compile-time, which allows the generation of very efficient low-level code since
the code can be generated for the specific given variational problem and the specific given
finite element(s).

Just like Analysa, FEniCS (or FFC) supports the specification of actions, but while
Analysa allows the specification of a general expression that can later be treated as a
bilinear form, by applying it to a pair of function spaces, or as a linear form, by applying
it to a function space and a given fixed function, the arity of the form must be known at
the time of specification in the form language of FFC. As an example, the specification of
a linear form a representing the action of the bilinear form (9) on a function u is given in
Table 6.

element = FiniteElement(‘‘Lagrange’’, ‘‘tetrahedron’’, 1)

v = BasisFunction(element)
U = Function(element)

a = dot(grad(v), grad(U))*dx

Table 6. Specifying the linear form for the action of the bilinear form (9) with
FEniCS using piecewise linear elements on tetrahedra.

A more detailed account of the various components of the FEniCS project is given below
in Section 9.

2.5 FreeFEM

FreeFEM [108, 58] implements a domain-specific language for finite element solution of
partial differential equations. The language is based on C++, extended with a special
language that allows the specification of variational problems. In this respect, FreeFEM
is a compiler, but it also provides an integrated development environment (IDE) in which
programs can be entered, compiled (with a special compiler) and executed. Visualization
of solutions is also provided.

FreeFEM comes in two flavors, the current version FreeFEM++ which only supports
2D problems and the 3D version FreeFEM3D. Support for 3D problems will be added to
FreeFEM++ in the future. [108].

To specify the variational problem for Poisson’s equation with FreeFEM++, one must
first define the test and trial spaces (which we here take to be the same space V), and then
the test and trial functions v and u, as well as the function f for the right-hand side. One
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may then define the bilinear form a and linear form L as illustrated in Table 7.

fespace V(mesh, P1);
V v, U;
func f = ...;

varform a(v, U) = int2d(mesh)(dx(v)*dx(U) + dy(v)*dy(U));
varform L(v) = int2d(mesh)(v*f);

Table 7. Specifying the variational problem for Poisson’s equation with
FreeFEM++ using piecewise linear elements on triangles (as deter-
mined by the mesh).

2.6 GetDP

GetDP [34, 33] is a finite element solver which provides a special declarative language for
the specification of variational problems. Unlike FreeFEM, GetDP is not a compiler, nor is
it a library, but it will be classified here under the category of domain-specific languages.
At start-up, it parses a problem specification from a given input file and then proceeds
according to the specification.

To specify the variational problem for Poisson’s equation with GetDP, one must first give
a definition of a function space, which may include constraints and definition of sub spaces.
A variational problem may then be specified in terms of functions from the previously
defined function spaces, as illustrated in Table 8.

FunctionSpace {
{ Name V; Type Form0;

BasisFunction {
{ ... }

}
}

}

Formulation {
{ Name Poisson; Type FemEquation;

Quantity {
{ Name v; Type Local; NameOfSpace V; }

}
Equation {
Galerkin { [Dof{Grad v}, {Grad v}];

....
}

}
}

}

Table 8. Specifying the bilinear form for Poisson’s equation with GetDP.

2.7 Sundance

Sundance [103, 101, 102] is a C++ library for finite element solution of partial differential
equations (PDEs), with special emphasis on large-scale PDE-constrained optimization.
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Sundance supports automatic generation of the system of discrete equations from a given
variational problem. Sundance has a powerful symbolic engine, which allows variational
problems to be specified and differentiated symbolically natively in C++, and thus falls
into the category of systems providing their functionality in the form of library.

To specify the variational problem for Poisson’s equation with Sundance, one must
specify a test function v, an unknown function u, the right-hand side f, the differential
operator grad and the variational problem written in the form a(v, U) − L(v) = 0, as
shown in Table 9.

Expr v = new TestFunction(new Lagrange(1));
Expr U = new UnknownFunction(new Lagrange(1));
Expr f = new DiscreteFunction(...);

Expr dx = new Derivative(0);
Expr dy = new Derivative(1);
Expr dz = new Derivative(2);
Expr grad = List(dx, dy, dz);

Expr poisson = Integral((grad*v)*(grad*U) - v*f);

Table 9. Specifying the variational problem for Poisson’s equation with Sun-
dance using piecewise linear elements on tetrahedra (as determined by
the mesh).
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3 THE FINITE ELEMENT METHOD

It once happened that a man thought he had written original
verses, and was then found to have read them word for word,
long before, in some ancient poet.

Gottfried Wilhelm Leibniz
Nouveaux essais sur l’entendement humain (1704/1764)

In this section, we give an overview of the finite element method, with special focus on
the general algorithmic aspects that form the basis for its automation. In many ways, the
material is standard [121, 117, 25, 26, 16, 70, 20, 38, 115], but it is presented here to give
a background for the continued discussion on the automation of the finite element method,
and to summarize the notation used throughout the remainder of these notes. The purpose
is also to make precise what we set out to automate, including assumptions and limitations.

3.1 Galerkin’s Method

Galerkin’s method (the weighted residual method) was originally formulated with global
polynomial subspaces [56] and goes back to the variational principles of Leibniz, Euler,
Lagrange, Dirichlet, Hamilton, Castigliano [24], Rayleigh [112] and Ritz [113]. Galerkin’s

method with piecewise polynomial subspaces (V̂h, Vh) is known as the finite element method.
The finite element method was introduced by engineers for structural analysis in the 1950s
and was independently proposed by Courant in 1943 [29]. The exploitation of the finite
element method among engineers and mathematicians exploded in the 1960s. In addition
to the references listed above, we point to the following general references: [37, 43, 44, 42,
45, 46, 48, 17].

We shall refer to the family of Galerkin methods (weighted residual methods) with
piecewise (polynomial) function spaces as the finite element method, including Petrov-
Galerkin methods (with different test and trial spaces) and Galerkin/least-squares method.

3.2 Finite Element Function Spaces

A central aspect of the finite element method is the construction of discrete function spaces
by piecing together local function spaces on the cells {K}K∈T of a mesh T of a domain
Ω = ∪K∈T ⊂ R

d, with each local function space defined by a finite element.

3.2.1 The finite element

We shall use the standard Ciarlet [26, 20] definition of a finite element, which reads as
follows. A finite element is a triple (K,PK ,NK), where

• K ⊂ R
d is a bounded closed subset of R

d with nonempty interior and piecewise
smooth boundary;

• PK is a function space on K of dimension nK <∞;

• NK = {νK
1 , ν

K
2 , . . . , ν

K
nK

} is a basis for P ′
K (the bounded linear functionals on PK).

We shall further assume that we are given a nodal basis {φK
i }nK

i=1 for PK that for each node

νK
i ∈ NK satisfies νK

i (φK
j ) = δij for j = 1, 2, . . . , nK . Note that this implies that for any

v ∈ PK , we have

v =

nK
∑

i=1

νK
i (v)φK

i . (16)
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In the simplest case, the nodes are given by evaluation of function values or directional
derivatives at a set of points {xK

i }nK

i=1, that is,

νK
i (v) = v(xK

i ), i = 1, 2, . . . , nK . (17)

3.2.2 The local-to-global mapping

Now, to define a global function space Vh = span{φi}
N
i=1 on Ω and a set of global nodes

N = {νi}
N
i=1 from a given set {(K,PK ,NK)}K∈T of finite elements, we also need to specify

how the local function spaces are pieced together. We do this by specifying for each cell
K ∈ T a local-to-global mapping,

ιK : [1, nK ] → N, (18)

that specifies how the local nodes NK are mapped to global nodes N , or more precisely,

νιK(i)(v) = νK
i (v|K), i = 1, 2, . . . , nK , (19)

for any v ∈ Vh, that is, each local node νK
i ∈ NK corresponds to a global node νιK(i) ∈ N

determined by the local-to-global mapping ιK .

3.2.3 The global function space

We now define the global function space Vh as the set of functions on Ω satisfying

v|K ∈ PK ∀K ∈ T , (20)

and furthermore satisfying the constraint that if for any pair of cells (K,K ′) ∈ T × T and
local node numbers (i, i′) ∈ [1, nK ] × [1, nK′ ], we have

ιK(i) = ιK′(i′), (21)

then
νK

i (v|K) = νK′

i′ (v|K′), (22)

where v|K denotes the continuous extension to K of the restriction of v to the interior of

K, that is, if two local nodes νK
i and νK′

i′ are mapped to the same global node, then they
must agree for each function v ∈ Vh.

Note that by this construction, the functions of Vh are undefined on cell boundaries,
unless the constraints (22) force the (restrictions of) functions of Vh to be continuous on
cell boundaries, in which case we may uniquely define the functions of Vh on the entire
domain Ω. However, this is usually not a problem, since we can perform all operations on
the restrictions of functions to the local cells.

3.2.4 Lagrange finite elements

The basic example is the family of Lagrange finite elements on simplices in R
d. A Lagrange

finite element is given by a triple (K,PK ,NK), where the K is a simplex in R
d (a line in

R, a triangle in R
2, a tetrahedron in R

3), PK is the space Pq(K) of scalar polynomials of
degree ≤ q on K and each νK

i ∈ NK is given by point evaluation at some point xK
i ∈ K, as

illustrated in Figure 1 for q = 1 and q = 2 on a triangulation of some domain Ω ⊂ R
2. Note

that by the placement of the points {xK
i }nK

i=1 at the vertices and edge midpoints of each
cell K, the global function space is the set of continuous piecewise polynomials of degree
q = 1 and q = 2 respectively.
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Figure 1. Distribution of the nodes on a triangulation of a domain Ω ⊂ R
2 for

Lagrange finite elements of degree q = 1 (left) and q = 2 (right).

3.2.5 The reference finite element

As we have seen, a global discrete function space Vh may be described by a mesh T , a set
of finite elements {(K,PK ,NK)}K∈T and a set of local-to-global mappings {ιK}K∈T . We
may simplify this description further by introducing a reference finite element (K0,P0,N0),
where N0 = {ν0

1 , ν
0
2 , . . . , ν

0
n0
}, and a set of invertible mappings {FK}K∈T that map the

reference cell K0 to the cells of the mesh,

K = FK(K0) ∀K ∈ T , (23)

as illustrated in Figure 2. Note that K0 is generally not part of the mesh. Typically,
the mappings {FK}K∈T are affine, that is, each FK can be written in the form FK(X) =
AKX + bK for some matrix AK ∈ R

d×d and some vector bK ∈ R
d, or isoparametric, in

which case the components of FK are functions in P0.
For each cell K ∈ T , the mapping FK generates a function space on FK by

PK = {v = v0 ◦ F
−1
K : v0 ∈ P0}, (24)

that is, each function v = v(x) may be written in the form v(x) = v0(F
−1
K (x)) = v0 ◦F

−1
K (x)

for some v0 ∈ P0.
Similarly, we may also generate for each K ∈ T a set of nodes NK on PK by

NK = {νK
i : νK

i (v) = ν0
i (v ◦ FK), i = 1, 2, . . . , n0}. (25)

Using the set of mappings {FK}K∈T , we may thus generate from the reference finite ele-
ment (K0,P0,N0) a set of finite elements {(K,PK ,NK)}K∈T given by

K = FK(K0),

PK = {v = v0 ◦ F
−1
K : v0 ∈ P0},

NK = {νK
i : νK

i (v) = ν0
i (v ◦ FK), i = 1, 2, . . . , n0}.

(26)

With this construction, it is also simple to generate a set of nodal basis functions {φK
i }nK

i=1 on
K from a set of nodal basis functions {Φi}

n0

i=1 on the reference element satisfying ν0
i (Φj) =

δij . Noting that if φK
i = Φi ◦ F

−1
K for i = 1, 2, . . . , nK , then

νK
i (φK

j ) = ν0
i (φK

j ◦ FK) = ν0
i (Φj) = δij , (27)

so {φK
i }nK

i=1 is a nodal basis for PK .
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Figure 2. The (affine) mapping FK from a reference cell K0 to some cell K ∈ T .

Note now that not all finite elements may be generated from a reference finite element
using this simple construction. For example, this construction fails for the family of Hermite
finite elements [25, 26, 20]. Other examples include H(div) and H(curl) conforming finite
elements (preserving the divergence and the curl respectively over cell boundaries) which
require a special mapping of the basis functions from the reference element.

However, we shall limit our current discussion to finite elements that can be generated
from a reference finite element according to (26), which includes all affine and isoparametric
finite elements with nodes given by point evaluation such as the family of Lagrange finite
elements on simplices.

We may thus define a discrete function space by specifying a mesh T , a reference finite
element (K,P0,N0), a set of local-to-global mappings {ιK}K∈T and a set of mappings
{FK}K∈T from the reference cell K0, as demonstrated in Figure 3. Note that in general,
the mappings need not be of the same type for all cells K and not all finite elements need
to be generated from the same reference finite element. In particular, one could employ a
different (higher-degree) isoparametric mapping for cells on a curved boundary.

3.3 The Variational Problem

We shall assume that we are given a set of discrete function spaces defined by a correspond-
ing set of finite elements on some triangulation T of a domain Ω ⊂ R

d. In particular, we
are given a pair of function spaces,

V̂h = span{φ̂i}
N
i=1,

Vh = span{φi}
N
i=1,

(28)

which we refer to as the test and trial spaces respectively.
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Figure 3. Piecing together local function spaces on the cells of a mesh to form
a discrete function space on Ω, generated by a reference finite element
(K0,P0,N0), a set of local-to-global mappings {ιK}K∈T and a set of
mappings {FK}K∈T .

We shall also assume that we are given a variational problem of the form: Find U ∈ Vh

such that
a(U ; v) = L(v) ∀v ∈ V̂h, (29)

where a : Vh × V̂h → R is a semilinear form which is linear in its second argument2 and
L : V̂h → R is a linear form (functional). Typically, the forms a and L of (29) are defined
in terms of integrals over the domain Ω or subsets of the boundary ∂Ω of Ω.

3.3.1 Nonlinear variational problems

The variational problem (29) gives rise to a system of discrete equations,

F (U) = 0, (31)

for the vector (Ui) of degrees of freedom of the solution U =
∑N

i=1 Uiφi ∈ Vh, where

Fi(U) = a(U ; φ̂i) − L(φ̂i), i = 1, 2, . . . , N. (32)

It may also be desirable to compute the Jacobian A = F ′ of the nonlinear system (31)
for use in a Newton’s method. We note that if the semilinear form a is differentiable in U ,

2We shall use the convention that a semilinear form is linear in each of the arguments appearing after
the semicolon. Furthermore, if a semilinear form a with two arguments is linear in both its arguments, we
shall use the notation

a(v, U) = a
′(U ; v, U) = a

′(U ; v)U, (30)

where a′ is the Fréchet derivative of a with respect to U , that is, we write the bilinear form with the test
function as its first argument.
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then the entries of the Jacobian A are given by

Aij =
∂Fi(U)

∂Uj
=

∂

∂Uj
a(U ; φ̂i) = a′(U ; φ̂i)

∂U

∂Uj
= a′(U ; φ̂i)φj = a′(U ; φ̂i, φj). (33)

As an example, consider the nonlinear Poisson’s equation

−∇ · ((1 + u)∇u) = f in Ω,

u = 0 on ∂Ω.
(34)

Multiplying (34) with a test function v and integrating by parts, we obtain
∫

Ω
∇v · ((1 + u)∇u) dx =

∫

Ω
vf dx, (35)

and thus a discrete nonlinear variational problem of the form (29), where

a(U ; v) =

∫

Ω
∇v · ((1 + U)∇U) dx,

L(v) =

∫

Ω
v f dx.

(36)

Linearizing the semilinear form a around U , we obtain

a′(U ; v, w) =

∫

Ω
∇v · (w∇U) dx+

∫

Ω
∇v · ((1 + U)∇w) dx, (37)

for any w ∈ Vh. In particular, the entries of the Jacobian matrix A are given by

Aij = a′(U ; φ̂i, φj) =

∫

Ω
∇φ̂i · (φj∇U) dx+

∫

Ω
∇φ̂i · ((1 + U)∇φj) dx. (38)

3.3.2 Linear variational problems

If the variational problem (29) is linear, the nonlinear system (31) is reduced to the linear
system

AU = b (39)

for the degrees of freedom (Ui), where

Aij = a(φ̂i, φj),

bi = L(φ̂i).
(40)

Note the relation to (33) in that Aij = a(φ̂i, φj) = a′(U ; φ̂i, φj).
In Section 2, we saw the canonical example of a linear variational problem with Poisson’s

equation,

−∆u = f in Ω,

u = 0 on ∂Ω,
(41)

corresponding to a discrete linear variational problem of the form (29), where

a(v, U) =

∫

Ω
∇v · ∇U dx,

L(v) =

∫

Ω
v f dx.

(42)
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3.4 Multilinear Forms

We find that for both nonlinear and linear problems, the system of discrete equations is
obtained from the given variational problem by evaluating a set of multilinear forms on
the set of basis functions. Noting that the semilinear form a of the nonlinear variational
problem (29) is a linear form for any given fixed U ∈ Vh and that the form a for a linear
variational problem can be expressed as a(v, U) = a′(U ; v, U), we thus need to be able to
evaluate the following multilinear forms:

a(U ; ·) : V̂h → R,

L : V̂h → R,

a′(U, ·, ·) : V̂h × Vh → R.

(43)

We shall therefore consider the evaluation of general multilinear forms of arity r > 0,

a : V 1
h × V 2

h × · · · × V r
h → R, (44)

defined on the product space V 1
h ×V 2

h ×· · ·×V r
h of a given set {V j

h }
r
j=1 of discrete function

spaces on a triangulation T of a domain Ω ⊂ R
d. In the simplest case, all function spaces

are equal but there are many important examples, such as mixed methods, where it is
important to consider arguments coming from different function spaces. We shall restrict
our attention to multilinear forms expressed as integrals over the domain Ω (or subsets of
its boundary).

Let now {φ1
i }

N1

i=1, {φ
2
i }

N2

i=1, . . . , {φ
r
i }

Nr

i=1 be bases of V 1
h , V

2
h , . . . , V

r
h and let i = (i1, i2, . . . , ir)

be a multiindex of length |i| = r. The multilinear form a then defines a rank r tensor given
by

Ai = a(φ1
i1
, φ2

i2
, . . . , φr

ir) ∀i ∈ I, (45)

where I is the index set

I =

r
∏

j=1

[1, |V j
h |] = {(1, 1, . . . , 1), (1, 1, . . . , 2), . . . , (N 1, N2, . . . , N r)}. (46)

For any given multilinear form of arity r, the tensor A is a (typically sparse) tensor of
rank r and dimension (|V 1

h |, |V
2
h |, . . . , |V

r
h |) = (N1, N2, . . . , N r).

Typically, the arity of the multilinear form a is r = 2, that is, a is a bilinear form, in
which case the corresponding tensor A is a matrix (the “stiffness matrix”), or the arity of
the multilinear form a is r = 1, that is, a is a linear form, in which case the corresponding
tensor A is a vector (“the load vector”).

Sometimes it may also be of interest to consider forms of higher arity. As an example,
consider the discrete trilinear form a : V 1

h × V 2
h × V 3

h → R associated with the weighted
Poisson’s equation −∇ · (w∇u) = f . The trilinear form a is given by

a(v, U,w) =

∫

Ω
w∇v · ∇U dx, (47)

for w =
∑N3

i=1 wiφ
3
i ∈ V 3

h a given discrete weight function. The corresponding rank three
tensor is given by

Ai =

∫

Ω
φ3

i3
∇φ1

i1
· ∇φ2

i2
dx. (48)
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Noting that for any w =
∑N3

i=1wiφ
3
i , the tensor contraction A : w =

(

∑N3

i3=1Ai1i2i3wi3

)

i1i2
is a matrix, we may thus obtain the solution U by solving the linear system

(A : w)U = b, (49)

where bi = L(φ1
i1

) =
∫

Ω φ
1
i1
f dx. Of course, if the solution is needed only for one single

weight function w, it is more efficient to consider w as a fixed function and directly compute
the matrix A associated with the bilinear form a(·, ·, w). In some cases, it may even be
desirable to consider the function U as being fixed and directly compute a vector A (the
action) associated with the linear form a(·, U, w), as discussed above in Section 2.1. It is
thus important to consider multilinear forms of general arity r.

3.5 Assembling the Discrete System

The standard algorithm [121, 70, 91] for computing the tensor A is known as assembly ; the
tensor is computed by iterating over the cells of the mesh T and adding from each cell the
local contribution to the global tensor A.

To explain how the standard assembly algorithm applies to the computation of the
tensor A defined in (45) from a given multilinear form a, we note that if the multilinear
form a is expressed as an integral over the domain Ω, we can write the multilinear form as
a sum of element multilinear forms,

a =
∑

K∈T

aK , (50)

and thus
Ai =

∑

K∈T

aK(φ1
i1
, φ2

i2
, . . . , φr

ir
). (51)

We note that in the case of Poisson’s equation, −∆u = f , the element bilinear form aK is
given by aK(v, U) =

∫

K
∇v · ∇U dx.

We now let ιjK : [1, nj
K ] → [1, N j ] denote the local-to-global mapping introduced above

in Section 3.2 for each discrete function space V j
h , j = 1, 2, . . . , r, and define for each K ∈ T

the collective local-to-global mapping ιK : IK → I by

ιK(i) = (ι1K(i1), ι
2
K(i2), . . . , ι

3
K(i3)) ∀i ∈ IK , (52)

where IK is the index set

IK =

r
∏

j=1

[1, |Pj
K |] = {(1, 1, . . . , 1), (1, 1, . . . , 2), . . . , (n1

K , n
2
K , . . . , n

r
K)}. (53)

Furthermore, for each V j
h we let {φK,j

i }
n

j
K

i=1 denote the restriction to an element K of the

subset of the basis {φj
i}

Nj

i=1 of V j
h supported on K, and for each i ∈ I we let Ti ⊂ T denote

the subset of cells on which all of the basis functions {φj
ij
}r

j=1 are supported.

We may now compute the tensor A by summing the contributions from each local
element K,

Ai =
∑

K∈T

aK(φ1
i1
, φ2

i2
, . . . , φr

ir
) =

∑

K∈Ti

aK(φ1
i1
, φ2

i2
, . . . , φr

ir
)

=
∑

K∈Ti

aK(φK,1
(ι1

K
)−1(i1)

, φK,2
(ι2

K
)−1(i2)

, . . . , φK,r

(ιr
K

)−1(ir)
).

(54)
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This computation may be carried out efficiently by iterating once over all cells K ∈ T and
adding the contribution from each K to every entry Ai of A such that K ∈ Ti, as illustrated
in Algorithm 1. In particular, we never need to form the set Ti, which is implicit through
the set of local-to-global mappings {ιK}K∈T .

Algorithm 1 A = Assemble(a, {V j
h }

r
j=1, {ιK}K∈T , T )

A = 0
for K ∈ T

for i ∈ IK

AιK(i) = AιK(i) + aK(φK,1
i1

, φK,2
i2

, . . . , φK,r
ir

)
end for

end for

The assembly algorithm may be improved by defining the element tensor AK by

AK
i = aK(φK,1

i1
, φK,2

i2
, . . . , φK,r

ir
) ∀i ∈ IK . (55)

For any multilinear form of arity r, the element tensor is a (typically dense) tensor of rank r
and dimension (n1

K , n
2
K , . . . , n

r
K).

By computing first on each element K the element tensor AK before adding the entries
to the tensor A as in Algorithm 2, one may take advantage of optimized library routines for
performing each of the two steps. Note that Algorithm 2 is independent of the algorithm
used to compute the element tensor.

Algorithm 2 A = Assemble(a, {V j
h }

r
j=1, {ιK}K∈T , T )

A = 0
for K ∈ T

Compute AK according to (55)
Add AK to A according to {ιK}K∈T

end for

Considering first the second operation of inserting (adding) the entries of AK into the
global sparse tensor A, this may in principle be accomplished by iterating over all i ∈ IK

and adding the entry AK
i at position ιK(i) of A as illustrated in Figure 4. However, sparse

matrix libraries such as PETSc [9, 8, 10] often provide optimized routines for this type of
operation, which may significantly improve the performance compared to accessing each
entry of A individually as in Algorithm 1. Even so, the cost of adding AK to A may be
substantial even with an efficient implementation of the sparse data structure for A, see
[84].

A similar approach can be taken to the first step of computing the element tensor, that
is, an optimized library routine is called to compute the element tensor. Because of the
wide variety of multilinear forms that appear in applications, a separate implementation is
needed for any given multilinear form. Therefore, the implementation of this code is often
left to the user, as illustrated above in Section 2.2 and Section 2.3, but the code in question
may also be automatically generated and optimized for each given multilinear form. We
shall return to this question below in Section 5 and Section 9.
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Figure 4. Adding the entries of the element tensor AK to the global tensor A

using the set of local-to-global mappings {ιK}K∈T , illustrated here for
a rank two tensor (a matrix).

3.6 Summary

If we thus view the finite element method as a machine that automates the discretization
of differential equations, or more precisely, a machine that generates the system of discrete
equations (31) from a given variational problem (29), an automation of the finite element
method is straightforward up to the point of computing the element tensor for any given
multilinear form and the local-to-global mapping for any given finite element. We address
these issues in detail below and show that it is indeed possible to automate both tasks in
an efficient manner.

Assuming now that each of the discrete function spaces involved in the definition of
the variational problem (29) is generated on some mesh T of the domain Ω from some
reference finite element (K,P0,N0) by a set of local-to-global mappings {ιK}K∈T and a set
of mappings {FK}K∈T from the reference cell K0, as discussed in Section 3.2, we identify
the following key steps towards an automation of the finite element method:

• the automatic and efficient tabulation of the nodal basis functions on the reference
finite element (K0,P0,N0);

• the automatic and efficient evaluation of the element tensor AK on each cell K ∈ T ;

• the automatic and efficient assembly of the global tensor A from the set of element
tensors {AK}K∈T and the set of local-to-global mappings {ιK}K∈T .

We discuss each of these key steps below.
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4 AUTOMATING THE TABULATION OF BASIS FUNCTIONS

Given a reference finite element (K0,P0,N0), we wish to generate the unique nodal basis
{Φi}

n0

i=1 for P0 satisfying

ν0
i (Φj) = δij , i, j = 1, 2, . . . , n0. (56)

In some simple cases, these nodal basis functions can be worked out analytically by hand or
found in the literature, see for example [121, 70]. As a concrete example, consider the nodal
basis functions in the case when P0 is the set of quadratic polynomials on the reference
triangle K0 with vertices at v1 = (0, 0), v2 = (1, 0) and v3 = (0, 1) as in Figure 5 and nodes
N0 = {ν0

1 , ν
0
2 , . . . , ν

0
6} given by point evaluation at the vertices and edge midpoints. A basis

for P0 is then given by

Φ1(X) = (1 −X1 −X2)(1 − 2X1 − 2X2),

Φ2(X) = X1(2X1 − 1),

Φ3(X) = X2(2X2 − 1),

Φ4(X) = 4X1X2,

Φ5(X) = 4X2(1 −X1 −X2),

Φ6(X) = 4X1(1 −X1 −X2),

(57)

and it is easy to verify that this is the nodal basis. However, in the general case, it may be
very difficult to obtain analytical expressions for the nodal basis functions. Furthermore,
copying the often complicated analytical expressions into a computer program is prone to
errors and may even result in inefficient code.

PSfrag replacements
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Figure 5. The reference triangle (left) with vertices at v1 = (0, 0), v2 = (1, 0)
and v3 = (0, 1), and the reference tetrahedron (right) with vertices at
v1 = (0, 0, 0), v2 = (1, 0, 0), v3 = (0, 1, 0) and v4 = (0, 0, 1).

In recent work, Kirby [82, 81, 83] has proposed a solution to this problem; by expanding
the nodal basis functions for P0 as linear combinations of another (non-nodal) basis for P0
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which is easy to compute, one may translate operations on the nodal basis functions, such as
evaluation and differentiation, into linear algebra operations on the expansion coefficients.

This new linear algebraic approach to computing and representing finite element basis
functions removes the need for having explicit expressions for the nodal basis functions,
thus simplifying or enabling the implementation of complicated finite elements.

4.1 Tabulating Polynomial Spaces

To generate the set of nodal basis functions {Φi}
n0

i=1 for P0, we must first identify some
other known basis {Ψi}

n0

i=1 for P0, referred to in [81] as the prime basis. We return to the
question of how to choose the prime basis below.

Writing now each Φi as a linear combination of the prime basis functions with α ∈ R
d×d

the matrix of coefficients, we have

Φi =

n0
∑

j=1

αijΨj, i = 1, 2, . . . , n0. (58)

The conditions (56) thus translate into

δij = ν0
i (Φj) =

n0
∑

k=1

αjkν
0
i (Ψk), i, j = 1, 2, . . . , n0, (59)

or
Vα> = I, (60)

where V ∈ R
n0×n0 is the (Vandermonde) matrix with entries Vij = ν0

i (Ψj) and I is the
n0×n0 identity matrix. Thus, the nodal basis {Φi}

n0

i=1 is easily computed by first computing
the matrix V by evaluating the nodes at the prime basis functions and then solving the
linear system (60) to obtain the matrix α of coefficients.

In the simplest case, the space P0 is the set Pq(K0) of polynomials of degree q on K0.
For typical reference cells, including the reference triangle and the reference tetrahedron
shown in Figure 5, orthogonal prime bases are available with simple recurrence relations
for the evaluation of the basis functions and their derivatives, see for example [32]. If
P0 = Pq(K0), it is thus straightforward to evaluate the prime basis and thus to generate
and solve the linear system (60) that determines the nodal basis.

4.2 Tabulating Spaces with Constraints

In other cases, the space P0 may be defined as some subspace of Pq(K0), typically by
constraining certain derivatives of the functions in P0 or the functions themselves to lie
in Pq′(K0) for some q′ < q on some part of K0. Examples include the the Raviart–
Thomas [111], Brezzi–Douglas–Fortin–Marini [23] and Arnold–Winther [4] elements, which
put constraints on the derivatives of the functions in P0.

Another more obvious example, taken from [81], is the case when the functions in P0

are constrained to Pq−1(γ0) on some part γ0 of the boundary of K0 but are otherwise in
Pq(K0), which may be used to construct the function space on a p-refined cell K if the
function space on a neighboring cell K ′ with common boundary γ0 is only Pq−1(K

′). We
may then define the space P0 by

P0 = {v ∈ Pq(K0) : v|γ0
∈ Pq−1(γ0)} = {v ∈ Pq(K0) : l(v) = 0}, (61)

where the linear functional l is given by integration against the qth degree Legendre poly-
nomial along the boundary γ0.
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In general, one may define a set {li}
nc

i=1 of linear functionals (constraints) and define P0

as the intersection of the null spaces of these linear functionals on Pq(K0),

P0 = {v ∈ Pq(K0) : li(v) = 0, i = 1, 2, . . . , nc}. (62)

To find a prime basis {Ψi}
n0

i=1 for P0, we note that any function in P0 may be expressed as

a linear combination of some basis functions {Ψ̄i}
|Pq(K0)|
i=1 for Pq(K0), which we may take as

the orthogonal basis discussed above. We find that if Ψ =
∑|Pq(K0)|

i=1 βiΨ̄i, then

0 = li(Ψ) =

|Pq(K0)|
∑

j=1

βjli(Ψ̄j), (63)

or
Lβ = 0, (64)

where L is the nc × |Pq(K0)| matrix with entries

Lij = li(Ψ̄j), i = 1, 2, . . . , nc, j = 1, 2, . . . , |Pq(K0)|. (65)

A prime basis for P0 may thus be found by computing the nullspace of the matrix L, for
example by computing its singular value decomposition (see [57]). Having thus found the
prime basis {Ψi}

n0

i=1, we may proceed to compute the nodal basis as before.
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5 AUTOMATING THE COMPUTATION OF THE ELEMENT TENSOR

As we saw in Section 3.5, given a multilinear form a defined on the product space V 1
h ×

V 2
h × . . .×V r

h , we need to compute for each cell K ∈ T the rank r element tensor AK given
by

AK
i = aK(φK,1

i1
, φK,2

i2
, . . . , φK,r

ir
) ∀i ∈ IK , (66)

where aK is the local contribution to the multilinear form a from the cell K.
We investigate below two very different ways to compute the element tensor, first a

modification of the standard approach based on quadrature and then a novel approach
based on a special tensor contraction representation of the element tensor, yielding speedups
of several orders of magnitude in some cases.

5.1 Evaluation by Quadrature

The element tensor AK is typically evaluated by quadrature on the cell K. Many finite
element libraries like Diffpack [93, 91] and deal.II [12, 13, 11] provide the values of relevant
quantities like basis functions and their derivatives at the quadrature points on K by
mapping precomputed values of the corresponding basis functions on the reference cell
K0 using the mapping FK : K0 → K.

Thus, to evaluate the element tensor AK for Poisson’s equation by quadrature on K,
one computes

AK
i =

∫

K

∇φK,1
i1

· ∇φK,2
i2

dx ≈

Nq
∑

k=1

wk∇φ
K,1
i1

(xk) · ∇φK,2
i2

(xk) detF ′
K(xk), (67)

for some suitable set of quadrature points {xi}
Nq

i=1 ⊂ K with corresponding quadrature

weights {wi}
Nq

i=1, where we assume that the quadrature weights are scaled so that
∑Nq

i=1wi =
|K0|. Note that the approximation (67) can be made exact for a suitable choice of quadra-
ture points if the basis functions are polynomials.

Comparing (67) to the example codes in Table 3 and Table 4, we note the similarities
between (67) and the two codes. In both cases, the gradients of the basis functions as well
as the products of quadrature weight and the determinant of F ′

K are precomputed at the
set of quadrature points and then combined to produce the integral (67).

If we assume that the two discrete spaces V 1
h and V 2

h are equal, so that the local basis

functions {φK,1
i }

n1

K

i=1 and {φK,2
i }

n2

K

i=1 are all generated from the same basis {Φi}
n0

i=1 on the
reference cell K0, the work involved in precomputing the gradients of the basis functions at
the set of quadrature points amounts to computing for each quadrature point xk and each
basis function φK

i the matrix–vector product ∇xφ
K
i (xk) = (F ′

K)−>(xk)∇XΦi(Xk), that is,

∂φK
i

∂xj
(xk) =

d
∑

l=1

∂Xl

∂xj
(Xk)

∂ΦK
i

∂Xl

(Xk), (68)

where xk = FK(Xk) and φK
i = Φi◦F

−1
K . Note that the the gradients {∇XΦi(Xk)}

n0,Nq

i=1,k=1 of
the reference element basis functions at the set of quadrature points on the reference element
remain constant throughout the assembly process and may be pretabulated and stored.
Thus, the gradients of the basis functions on K may be computed in Nqn0d

2 multiply–
add pairs (MAPs) and the total work to compute the element tensor AK is Nqn0d

2 +
Nqn

2
0(d+ 2) ∼ Nqn

2
0d, if we ignore that we also need to compute the mapping FK , and the

determinant and inverse of F ′
K . In Section 5.2 and Section 7 below, we will see that this

operation count may be significantly reduced.
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5.2 Evaluation by Tensor Representation

It has long been known among practitioners that it is often possible to speed up the com-
putation of the element tensor by precomputing certain integrals on the reference element.
Thus, for any specific multilinear form, it is often possible to find quantities that may be
precomputed in order to optimize the code for evaluation of the element tensor. These ideas
were first put forward in a general setting in [84, 85] and later formalized and automated
in [86, 87]. A similar approach was implemented in early versions of DOLFIN [61, 67, 62],
but only for piecewise linear elements.

We first consider the case when the mapping FK from the reference cell is affine, and then
discuss possible extensions to non-affine mappings such as when FK is the isoparametric
mapping. As a first example, we consider again the computation of the element tensor AK

for Poisson’s equation. As before, we have

AK
i =

∫

K

∇φK,1
i1

· ∇φK,2
i2

dx =

∫

K

d
∑

β=1

∂φK,1
i1

∂xβ

∂φK,2
i2

∂xβ
dx, (69)

but instead of evaluating the gradients on K and then proceeding to evaluate the integral
by quadrature, we make a change of variables to write

AK
i =

∫

K0

d
∑

β=1

d
∑

α1=1

∂Xα1

∂xβ

∂Φ1
i1

∂Xα1

d
∑

α2=1

∂Xα2

∂xβ

∂Φ2
i2

∂Xα2

detF ′
K dX, (70)

and thus, if the mapping FK is affine so that the transforms ∂X/∂x and the determi-
nant detF ′

K are constant, we obtain

AK
i = detF ′

K

d
∑

α1=1

d
∑

α2=1

d
∑

β=1

∂Xα1

∂xβ

∂Xα2

∂xβ

∫

K0

∂Φ1
i1

∂Xα1

∂Φ2
i2

∂Xα2

dX =

d
∑

α1=1

d
∑

α2=1

A0
iαG

α
K , (71)

or
AK = A0 : GK , (72)

where

A0
iα =

∫

K0

∂Φ1
i1

∂Xα1

∂Φ2
i2

∂Xα2

dX,

Gα
K = detF ′

K

d
∑

β=1

∂Xα1

∂xβ

∂Xα2

∂xβ
.

(73)

We refer to the tensor A0 as the reference tensor and to the tensor GK as the geometry
tensor.

Now, since the reference tensor is constant and does not depend on the cell K, it may
be precomputed before the assembly of the global tensor A. For the current example, the
work on each cell K thus involves first computing the rank two geometry tensor GK , which
may be done in d3 multiply–add pairs, and then computing the rank two element tensor AK

as the tensor contraction (72), which may be done in n2
0d

2 multiply–add pairs. Thus, the
total operation count is d3 + n2

0d
2 ∼ n2

0d
2, which should be compared to Nqn

2
0d for the

standard quadrature-based approach. The speedup in this particular case is thus roughly
a factor Nq/d, which may be a significant speedup, in particular for higher order elements.
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As we shall see, the tensor representation (72) generalizes to other multilinear forms as
well. To see this, we need to make some assumptions about the structure of the multilinear
form (44). We shall assume that the multilinear form a is expressed as an integral over Ω as
a weighted sum of products of basis functions or derivatives of basis functions. In particular,
we shall assume that the element tensor AK can be expressed as a sum, where each term
takes the following canonical form,

AK
i =

∑

γ∈C

∫

K

m
∏

j=1

cj(γ)D
δj(γ)
x φK,j

ιj(i,γ)[κj(γ)] dx, (74)

where C is some given set of multiindices, each coefficient cj maps the multiindex γ to a
real number, ιj maps (i, γ) to a basis function index, κj maps γ to a component index
(for vector or tensor valued basis functions) and δj maps γ to a derivative multiindex.
To distinguish component indices from indices for basis functions, we use [·] to denote a
component index and subscript to denote a basis function index. In the simplest case, the
number of factors m is equal to the arity r of the multilinear form (rank of the tensor),
but in general, the canonical form (74) may contain factors that correspond to additional
functions which are not arguments of the multilinear form. This is the case for the weighted
Poisson’s equation (47), where m = 3 and r = 2. In general, we thus have m > r.

As an illustration of this notation, we consider again the bilinear form for Poisson’s
equation and write it in the notation of (74). We will also consider a more involved example
to illustrate the generality of the notation. From (69), we have

AK
i =

∫

K

d
∑

γ=1

∂φK,1
i1

∂xγ

∂φK,2
i2

∂xγ
dx =

d
∑

γ=1

∫

K

∂φK,1
i1

∂xγ

∂φK,2
i2

∂xγ
dx, (75)

and thus, in the notation of (74), we have

m = 2,

C = [1, d],

c(γ) = (1, 1),

ι(i, γ) = (i1, i2),

κ(γ) = (∅, ∅),

δ(γ) = (γ, γ),

(76)

where ∅ denotes an empty component index (the basis functions are scalar).
As another example, we consider the bilinear form for a stabilization term appearing in

a least-squares stabilized cG(1)cG(1) method for the incompressible Navier–Stokes equa-
tions [39, 64, 63, 65],

a(v, U) =

∫

Ω
(w · ∇v) · (w · ∇U) dx =

∫

Ω

d
∑

γ1,γ2,γ3=1

w[γ2]
∂v[γ1]

∂xγ2

w[γ3]
∂U [γ1]

∂xγ3

dx, (77)

where w ∈ V 3
h = V 4

h is a given approximation of the velocity, typically obtained from the
previous iteration in an iterative method for the nonlinear Navier–Stokes equations. To
write the element tensor for (77) in the canonical form (74), we expand w in the nodal
basis for P3

K and note that

AK
i =

d
∑

γ1,γ2,γ3=1

n3

K
∑

γ4=1

n4

K
∑

γ5=1

∂φK,1
i1

[γ1]

∂xγ2

∂φK,2
i2

[γ1]

∂xγ3

wK
γ4
φK,3

γ4
[γ2]w

K
γ5
φK,4

γ5
[γ3] dx, (78)
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where, for the sake of conforming to the general notation of (74), we have not assumed that
V 1

h = V 2
h = V 3

h = V 4
h , which is usually the case. We may thus write the element tensor AK

for the bilinear form (77) in the canonical form (74), with

m = 4,

C = [1, d]3 × [1, n3
K ] × [1, n4

K ],

c(γ) = (1, 1, wK
γ4
, wK

γ5
),

ι(i, γ) = (i1, i2, γ4, γ5),

κ(γ) = (γ1, γ1, γ2, γ3),

δ(γ) = (γ2, γ3, ∅, ∅),

(79)

where ∅ denotes an empty derivative multiindex (no differentiation).
In [87], it was proved that for any multilinear form that can be expressed in the general

canonical form (74), the element tensor AK can be represented as the tensor contrac-
tion AK = A0 : GK of a reference tensor A0 independent of K and a geometry tensor GK .
A similar result was given [86] but in less formal notation. The representation theorem
reads as follows.

Theorem 1 (Representation theorem) If FK is a given affine mapping from a refer-

ence cell K0 to a cell K and {Pj
K}m

j=1 is a given set of discrete function spaces on K,

each generated by a discrete function space P j
0 on the reference cell K0 through the affine

mapping, that is, for each φ ∈ P j
K there is some Φ ∈ Pj

0 such that Φ = φ ◦ FK , then the
element tensor (74) may be represented as the tensor contraction of a reference tensor A0

and a geometry tensor GK ,
AK = A0 : GK , (80)

that is,

AK
i =

∑

α∈A

A0
iαG

α
K ∀i ∈ IK , (81)

where the reference tensor A0 is independent of K. In particular, the reference tensor A0

is given by

A0
iα =

∑

β∈B

∫

K0

m
∏

j=1

D
δ′j(α,β)

X Φj
ιj(i,α,β)[κj(α, β)] dX, (82)

and the geometry tensor GK is the outer product of the coefficients of any weight functions
with a tensor that depends only on the Jacobian F ′

K ,

Gα
K =

m
∏

j=1

cj(α) detF ′
K

∑

β∈B′

m
∏

j′=1

|δj′(α,β)|
∏

k=1

∂Xδ′
j′k

(α,β)

∂xδj′k(α,β)
, (83)

for some appropriate index sets A, B and B ′. We refer to the index set IK as the set of
primary indices, the index set A as the set of secondary indices, and to the index sets B
and B′ as sets of auxiliary indices.

The ranks of the tensors A0 and GK are determined by the properties of the multilinear
form a, such as the number of coefficients and derivatives. Since the rank of the element
tensor AK is equal to the arity r of the multilinear form a, the rank of the reference tensor A0
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must be |iα| = r + |α|, where |α| is the rank of the geometry tensor. For the examples
presented above, we have |iα| = 4 and |α| = 2 in the case of Poisson’s equation and |iα| = 8
and |α| = 6 for the Navier–Stokes stabilization term.

The proof of Theorem 1 is constructive and gives an algorithm for computing the rep-
resentation (80). A number of concrete examples with explicit formulas for the reference
and geometry tensors are given in Tables 10–13. We return to these test cases below in
Section 9.2.3, when we discuss the implementation of Theorem 1 in the form compiler FFC
and present benchmark results for the test cases.

We remark that in general, a multilinear form will correspond to a sum of tensor con-
tractions, rather than a single tensor contraction as in (80), that is,

AK =
∑

k

A0,k : GK,k. (84)

One such example is the computation of the element tensor for the convection–reaction
problem −∆u + u = f , which may be computed as the sum of a tensor contraction of
a rank four reference tensor A0,1 with a rank two geometry tensor GK,1 and a rank two
reference tensor A0,2 with a rank zero geometry tensor GK,2.

a(v, U) =
∫

Ω v U dx ranks

A0
iα =

∫

K0
Φ1

i1
Φ2

i2
dX |iα| = 2

Gα
K = detF ′

K |α| = 0

Table 10. The tensor contraction representation AK = A0 : GK of the element

tensor AK for the bilinear form associated with a mass matrix (test

case 1).

a(v, U) =
∫

Ω ∇v · ∇U dx rank

A0
iα =

∫

K0

∂Φ1
i1

∂Xα1

∂Φ2
i2

∂Xα2

dX |iα| = 4

Gα
K = detF ′

K

∑d
β=1

∂Xα1

∂xβ

∂Xα2

∂xβ
|α| = 2

Table 11. The tensor contraction representation AK = A0 : GK of the element

tensor AK for the bilinear form associated with Poisson’s equation (test

case 2).

5.3 Extension to Non-Affine Mappings

The tensor contraction representation (80) of Theorem 1 assumes that the mapping FK

from the reference cell is affine, allowing the transforms ∂X/∂x and the determinant to be
pulled out of the integral. To see how to extend this result to the case when the mapping FK

is non-affine, such as in the case of an isoparametric mapping for a higher-order element
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a(v, U) =
∫

Ω v · (w · ∇)U dx rank

A0
iα =

∑d
β=1

∫

K0
Φ1

i1
[β]

∂Φ2
i2

[β]

∂Xα3

Φ3
α1

[α2] dX |iα| = 5

Gα
K = wK

α1
detF ′

K

∂Xα3

∂xα2

|α| = 3

Table 12. The tensor contraction representation AK = A0 : GK of the element

tensor AK for the bilinear form associated with a linearization of the

nonlinear term u · ∇u in the incompressible Navier–Stokes equations

(test case 3).

a(v, U) =
∫

Ω ε(v) : ε(U) dx rank

A0
iα =

∑d
β=1

∫

K0

∂Φ1
i1

[β]

∂Xα1

∂Φ2
i2

[β]

∂Xα2

dX |iα| = 4

Gα
K = 1

2 detF ′
K

∑d
β=1

∂Xα1

∂xβ

∂Xα2

∂xβ
|α| = 2

Table 13. The tensor contraction representation AK = A0 : GK of the element

tensor AK for the bilinear form
R

Ω
ε(v) : ε(U) dx =

R

Ω

1

4
(∇v +(∇v)>) :

(∇U + (∇U)>) dx associated with the strain-strain term of linear elas-

ticity (test case 4). Note that the product expands into four terms

which can be grouped in pairs of two. The representation is given only

for the first of these two terms.
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used to map the reference cell to a curvilinear cell on the boundary of Ω, we consider again
the computation of the element tensor AK for Poisson’s equation. As in Section 5.1, we
use quadrature to evaluate the integral, but take advantage of the fact that the discrete
function spaces P1

K and P2
K on K may be generated from a pair of reference finite elements

as discussed in Section 3.2. We have

AK
i =

∫

K

∇φK,1
i1

· ∇φK,2
i2

dx =

∫

K

d
∑

β=1

∂φK,1
i1

∂xβ

∂φK,2
i2

∂xβ
dx

=
d

∑

α1=1

d
∑

α2=1

d
∑

β=1

∫

K0

∂Xα1

∂xβ

∂Xα2

∂xβ

∂Φ1
i1

∂Xα1

∂Φ2
i2

∂Xα2

detF ′
K dX

≈
d

∑

α1=1

d
∑

α2=1

Nq
∑

α3=1

wα3

∂Φ1
i1

∂Xα1

(Xα3
)
∂Φ2

i2

∂Xα2

(Xα3
)

d
∑

β=1

∂Xα1

∂xβ
(Xα3

)
∂Xα2

∂xβ
(Xα3

) detF ′
K(Xα3

).

(85)

As before, we thus obtain a representation of the form

AK = A0 : GK , (86)

where the reference tensor A0 is now given by

A0
iα = wα3

∂Φ1
i1

∂Xα1

(Xα3
)
∂Φ2

i2

∂Xα2

(Xα3
), (87)

and the geometry tensor GK is given by

Gα
K = detF ′

K(Xα3
)

d
∑

β=1

∂Xα1

∂xβ
(Xα3

)
∂Xα2

∂xβ
(Xα3

). (88)

We thus note that a (slightly different) tensor contraction representation of the element
tensor AK is possible even if the mapping FK is non-affine. One may also prove a repre-
sentation theorem similar to Theorem 1 for non-affine mappings.

Comparing the representation (87)–(88) with the affine representation (73), we note
that the ranks of both A0 and GK have increased by one. As before, we may precompute
the reference tensor A0 but the number of multiply–add pairs to compute the element
tensor AK increase by a factor Nq from n2

0d
2 to Nqn

2
0d

2 (if again we ignore the cost of
computing the geometry tensor).

We also note that the cost has increased by a factor d compared to the cost of a
direct application of quadrature as described in Section 5.1. However, by expressing the
element tensor AK as a tensor contraction, the evaluation of the element tensor is more
readily optimized than if expressed as a triply nested loop over quadrature points and basis
functions as in Table 3 and Table 4.

As demonstrated below in Section 7, it may in some cases be possible to take advantage
of special structures such as dependencies between different entries in the tensor A0 to
significantly reduce the operation count. Another more straightforward approach is to use
an optimized library routine such as a BLAS call to compute the tensor contraction as we
shall see below in Section 7.1.
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5.4 A Language for Multilinear Forms

To automate the process of evaluating the element tensor AK , we must create a system that
takes as input a multilinear form a and automatically computes the corresponding element
tensor AK . We do this by defining a language for multilinear forms and automatically
translating any given string in the language to the canonical form (74). From the canonical
form, we may then compute the element tensorAK by the tensor contraction AK = A0 : GK .

When designing such a language for multilinear forms, we have two things in mind.
First, the multilinear forms specified in the language should be “close” to the corresponding
mathematical notation (taking into consideration the obvious limitations of specifying the
form as a string in the ASCII character set). Second, it should be straightforward to
translate a multilinear form specified in the language to the canonical form (74).

A language may be specified formally by defining a formal grammar that generates the
language. The grammar specifies a set of rewrite rules and all strings in the language can be
generated by repeatedly applying the rewrite rules. Thus, one may specify a language for
multilinear forms by defining a suitable grammar (such as a standard EBNF grammar [74]),
with basis functions and multiindices as the terminal symbols. One could then use an
automating tool (a compiler-compiler) to create a compiler for multilinear forms.

However, since a closed canonical form is available for the set of possible multilinear
forms, we will take a more explicit approach. We fix a small set of operations, allowing only
multilinear forms that have a corresponding canonical form (74) to be expressed through
these operations, and observe how the canonical form transforms under these operations.

5.4.1 An algebra for multilinear forms

Consider the set of local finite element spaces {P j
K}m

j=1 on a cell K corresponding to a

set of global finite element spaces {V j
h }

m
j=1. The set of local basis functions {φK,j

i }
n

j
K

,m

i,j=1

span a vector space PK and each function v in this vector space may be expressed as a
linear combination of the basis functions, that is, the set of functions PK may be generated
from the basis functions through addition v + w and multiplication with scalars αv. Since
v − w = v + (−1)w and v/α = (1/α)v, we can also easily equip the vector space with
subtraction and division by scalars. Informally, we may thus write

PK =
{

v : v =
∑

c(·)φ
K
(·)

}

. (89)

We next equip our vector space PK with multiplication between elements of the vector
space. We thus obtain an algebra (a vector space with multiplication) of linear combinations
of products of basis functions. Finally, we extend our algebra PK by differentiation ∂/∂xi

with respect to the coordinate directions on K, to obtain

PK =

{

v : v =
∑

c(·)
∏ ∂|(·)|φK

(·)

∂x(·)

}

, (90)

where (·) represents some multiindex.
To summarize, PK is the algebra of linear combinations of products of basis functions

or derivatives of basis functions that is generated from the set of basis functions through
addition (+), subtraction (−), multiplication (·), including multiplication with scalars, di-
vision by scalars (/), and differentiation ∂/∂xi. We note that the algebra is closed under
these operations, that is, applying any of the operators to an element v ∈ PK or a pair of
elements v, w ∈ PK yields a member of PK .
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If the basis functions are vector-valued (or tensor-valued), the algebra is instead gen-
erated from the set of scalar components of the basis functions. Furthermore, we may
introduce linear algebra operators, such as inner products and matrix–vector products, and
differential operators, such as the gradient, the divergence and rotation, by expressing these
compound operators in terms of the basic operators (addition, subtraction, multiplication
and differentiation).

We now note that the algebra PK corresponds precisely to the canonical form (74) in
that the element tensor AK for any multilinear form on K that can be expressed as an
integral over K of an element v ∈ PK has an immediate representation as a sum of element
tensors of the canonical form (74). We demonstrate this below.

5.4.2 Examples

As an example, consider the bilinear form

a(v, U) =

∫

Ω
v U dx, (91)

with corresponding element tensor canonical form

AK
i =

∫

K

φK,1
i1

φK,2
i2

dx. (92)

If we now let v = φK,1
i1

∈ PK and U = φK,2
i2

∈ PK , we note that v U ∈ PK and we may

thus express the element tensor as an integral over K of an element in PK ,

AK
i =

∫

K

v U dx, (93)

which is close to the notation of (91). As another example, consider the bilinear form

a(v, U) =

∫

Ω
∇v · ∇U + v U dx, (94)

with corresponding element tensor canonical form3

AK
i =

d
∑

γ=1

∫

K

∂φK,1
i1

∂xγ

∂φK,2
i2

∂xγ
dx+

∫

K

φK,1
i1

φK,2
i2

dx. (95)

As before, we let v = φK,1
i1

∈ PK and U = φK,2
i2

∈ PK and note that ∇v · ∇U + v U ∈ PK .

It thus follows that the element tensor AK for the bilinear form (93) may be expressed as
an integral over K of an element in PK ,

AK
i =

∫

K

∇v · ∇U + v U dx, (96)

which is close to the notation of (93). Thus, by a suitable definition of v and U as local
basis functions on K, the canonical form (74) for the element tensor of a given multilinear
form may be expressed in a notation that is close to the notation for the multilinear form
itself.

3To be precise, the element tensor is the sum of two element tensors, each written in the canonical
form (74) with a suitable definition of multiindices ι, δ, κ and δ.



42 Anders Logg

5.4.3 Implementation by operator-overloading

It is now straightforward to implement the algebra PK in any object-oriented language
with support for operator overloading, such as Python or C++. We first implement a class
BasisFunction, representing (derivatives of) basis functions of some given finite element
space. Each BasisFunction is associated with a particular finite element space and different
BasisFunctions may be associated with different finite element spaces. Products of scalars
and (derivatives of) basis functions are represented by the class Product, which may be
implemented as a list of BasisFunctions. Sums of such products are represented by the
class Sum, which may be implemented as a list of Products. We then define an operator
for differentiation of basis functions and overload the operators addition, subtraction and
multiplication, to generate the algebra of BasisFunctions, Products and Sums, and note
that any combination of such operators and objects ultimately yields an object of type Sum.
In particular, any object of type BasisFunction or Product may be cast to an object of
type Sum.

By associating with each object one or more indices, implemented by a class Index,
an object of type Product automatically represents a tensor expressed in the canonical
form (74). Finally, we note that we may introduce compound operators such as grad, div,
rot, dot etc. by expressing these operators in terms of the basic operators.

Thus, if v and U are objects of type BasisFunction, the integrand of the bilinear
form (94) may be given as the string

dot(grad(v), grad(U)) + v*U. (97)

In Table 5 we saw a similar example of how the bilinear form for Poisson’s equation is
specified in the language of the FEniCS Form Compiler FFC. Further examples will be
given below in Section 9.2 and Section 10.
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6 AUTOMATING THE ASSEMBLY OF THE DISCRETE SYSTEM

In Section 3, we reduced the task of automatically generating the discrete system F (U) = 0
for a given nonlinear variational problem a(U ; v) = L(v) to the automatic assembly of a
the tensor A that represents a given multilinear form a in a given finite element basis. By
Algorithm 2, this process may be automated by automating first the computation of the
element tensor AK , which we discussed in the previous section, and then automating the
addition of the element tensor AK into the global tensor A, which is the topic of the current
section.

6.1 Implementing the Local-to-Global Mapping

With {ιjK}r
j=1 the local-to-global mappings for a set of discrete function spaces, {V j

h }
r
j=1,

we evaluate for each j the local-to-global mapping ιjK on the set of local node numbers

{1, 2, . . . , nj
K}, thus obtaining for each j a tuple

ιjK([1, nj
K ]) = (ιjK(1), ιjK(2), . . . , ιjK(nj

K)). (98)

The entries of the element tensor AK may then be added to the global tensor A by an
optimized low-level library call4 that takes as input the two tensors A and AK and the list
of tuples (arrays) that determine how each dimension of AK should be distributed onto the
global tensor A. Compare Figure 4 with the two tuples given by (ι1K(1), ι1K(2), ι1K(3)) and
(ι2K(1), ι2K(2), ι2K(3)) respectively.

Now, to compute the set of tuples {ιjK([1, nj
K ])}r

j=1, we may consider implementing for
each j a function that takes as input the current cell K and returns the corresponding tuple

ιjK([1, nK ]). Since the local-to-global mapping may look very different for different function
spaces, in particular for different degree Lagrange elements, a different implementation is
needed for each different function space. Another option is to implement a general purpose
function that handles a range of function spaces, but this quickly becomes inefficient. From
the example implementations given in Table 14 and Table 15 for continuous linear and
quadratic Lagrange finite elements on tetrahedra, it is further clear that if the local-to-global
mappings are implemented individually for each different function space, the mappings can
be implemented very efficiently, with minimal need for arithmetic or branching.

6.2 Generating the Local-to-Global Mapping

We thus seek a way to automatically generate the code for the local-to-global mapping
from a simple description of the distribution of nodes on the mesh. As before, we restrict
our attention to elements with nodes given by point evaluation. In that case, each node
can be associated with a geometric entity, such as a vertex, an edge, a face or a cell.
More generally, we may order the geometric entities by their topological dimension to
make the description independent of dimension-specific notation (compare [79]); for a two-
dimensional triangular mesh, we may refer to a (topologically two-dimensional) triangle as
a cell, whereas for a three-dimensional tetrahedral mesh, we would refer to a (topologically
two-dimensional) triangle as a face. We may thus for each topological dimension list the
nodes associated with the geometric entities within that dimension. More specifically, we
may list for each topological dimension and each geometric entity within that dimension a
tuple of nodes associated with that geometric entity. This approach is used by the FInite
element Automatic Tabulator FIAT [82, 81, 83].

4If PETSc [9, 8, 10] is used as the linear algebra backend, such a library call is available with the call
VecSetValues() for a rank one tensor (a vector) and MatSetValues() for a rank two tensor (a matrix).
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void nodemap(int nodes[, const Cell& cell, const Mesh& mesh)

{

nodes[0] = cell.vertexID(0);

nodes[1] = cell.vertexID(1);

nodes[2] = cell.vertexID(2);

nodes[3] = cell.vertexID(3);

}

Table 14. A C++ implementation of the mapping from local to global node num-

bers for continuous linear Lagrange finite elements on tetrahedra. One

node is associated with each vertex of a local cell and the local node

number for each of the four nodes is mapped to the global number of

the associated vertex.

void nodemap(int nodes[], const Cell& cell, const Mesh& mesh)

{

nodes[0] = cell.vertexID(0);

nodes[1] = cell.vertexID(1);

nodes[2] = cell.vertexID(2);

nodes[3] = cell.vertexID(3);

int offset = mesh.numVertices();

nodes[4] = offset + cell.edgeID(0);

nodes[5] = offset + cell.edgeID(1);

nodes[6] = offset + cell.edgeID(2);

nodes[7] = offset + cell.edgeID(3);

nodes[8] = offset + cell.edgeID(4);

nodes[9] = offset + cell.edgeID(5);

}

Table 15. A C++ implementation of the mapping from local to global node num-

bers for continuous quadratic Lagrange finite elements on tetrahedra.

One node is associated with each vertex and also each edge of a local

cell. As for linear Lagrange elements, local vertex nodes are mapped to

the global number of the associated vertex, and the remaining six edge

nodes are given global numbers by adding to the global edge number

an offset given by the total number of vertices in the mesh.
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As an example, consider the local-to-global mapping for the linear tetrahedral element
of Table 14. Each cell has four nodes, one associated with each vertex. We may then
describe the nodes by specifying for each geometric entity of dimension zero (the vertices)
a tuple containing one local node number, as demonstrated in Table 16. Note that we may
specify the nodes for a discontinuous Lagrange finite element on a tetrahedron similarly by
associating all for nodes with topological dimension three, that is, with the cell itself, so
that no nodes are shared between neighboring cells.

As a further illustration, we may describe the nodes for the quadratic tetrahedral ele-
ment of Table 15 by associating the first four nodes with topological dimension zero (ver-
tices) and the remaining six nodes with topological dimension one (edges), as demonstrated
in Table 17.

Finally, we present in Table 18 the specification of nodes for fifth-degree Lagrange finite
elements on tetrahedra. Since there are now multiple nodes associated with some entities,
the ordering of nodes becomes important. In particular, two neighboring tetrahedra sharing
a common edge (face) must agree on the global node numbering of edge (face) nodes. This
can be accomplished by checking the orientation of geometric entities with respect to some
given convention.5 For each edge, there are two possible orientations and for each face of a
tetrahedron, there are six possible orientations. In Table 19, we present the local-to-global
mapping for continuous fifth-degree Lagrange finite elements, generated automatically from
the description of Table 18 by the FEniCS Form Compiler FFC [98, 86, 87, 99].

d = 0 (1) – (2) – (3) – (4)

Table 16. Specifying the nodes for continuous linear Lagrange finite elements on

tetrahedra.

d = 0 (1) – (2) – (3) – (4)

d = 1 (5) – (6) – (7) – (8) – (9) – (10)

Table 17. Specifying the nodes for continuous quadratic Lagrange finite elements

on tetrahedra.

We may thus think of the local-to-global mapping as a function that takes as input the
current cell K (cell) together with the mesh T (mesh) and generates a tuple (nodes) that
maps the local node numbers on K to global node numbers. For finite elements with nodes
given by point evaluation, we may similarly generate a function that interpolates any given
function to the current cell K by evaluating it at the nodes.

5For an example of such a convention, see [62] or [99].
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d = 0 (1) – (2) – (3) – (4)

d = 1 (5, 6, 7, 8) – (9, 10, 11, 12) – (13, 14, 15, 16) –
(17, 18, 19, 20) – (21, 22, 23, 24) – (25, 26, 27, 28)

d = 2 (29, 30, 31, 32, 33, 34) – (35, 36, 37, 38, 39, 40) –
(41, 42, 43, 44, 45, 46) – (47, 48, 49, 50, 51, 52)

d = 3 (53, 54, 55, 56)

Table 18. Specifying the nodes for continuous fifth-degree Lagrange finite ele-

ments on tetrahedra.

void nodemap(int nodes[], const Cell& cell, const Mesh& mesh)

{

static unsigned int edge_reordering[2][4] = {{0, 1, 2, 3}, {3, 2, 1, 0}};

static unsigned int face_reordering[6][6] = {{0, 1, 2, 3, 4, 5},

{0, 3, 5, 1, 4, 2},

{5, 3, 0, 4, 1, 2},

{2, 1, 0, 4, 3, 5},

{2, 4, 5, 1, 3, 0},

{5, 4, 2, 3, 1, 0}};

nodes[0] = cell.vertexID(0);

nodes[1] = cell.vertexID(1);

nodes[2] = cell.vertexID(2);

nodes[3] = cell.vertexID(3);

int alignment = cell.edgeAlignment(0);

int offset = mesh.numVertices();

nodes[4] = offset + 4*cell.edgeID(0) + edge_reordering[alignment][0];

nodes[5] = offset + 4*cell.edgeID(0) + edge_reordering[alignment][1];

nodes[6] = offset + 4*cell.edgeID(0) + edge_reordering[alignment][2];

nodes[7] = offset + 4*cell.edgeID(0) + edge_reordering[alignment][3];

...

alignment = cell.faceAlignment(0);

offset = offset + 4*mesh.numEdges();

nodes[28] = offset + 6*cell.faceID(0) + face_reordering[alignment][0];

nodes[29] = offset + 6*cell.faceID(0) + face_reordering[alignment][1];

nodes[30] = offset + 6*cell.faceID(0) + face_reordering[alignment][2];

nodes[31] = offset + 6*cell.faceID(0) + face_reordering[alignment][3];

nodes[32] = offset + 6*cell.faceID(0) + face_reordering[alignment][4];

nodes[33] = offset + 6*cell.faceID(0) + face_reordering[alignment][5];

...

offset = offset + 6*mesh.numFaces();

nodes[52] = offset + 4*cell.id() + 0;

nodes[53] = offset + 4*cell.id() + 1;

nodes[54] = offset + 4*cell.id() + 2;

nodes[55] = offset + 4*cell.id() + 3;

}

Table 19. A C++ implementation (excerpt) of the mapping from local to global

node numbers for continuous fifth-degree Lagrange finite elements on

tetrahedra. One node is associated with each vertex, four nodes with

each edge, six nodes with each face and four nodes with the tetrahedron

itself.
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7 OPTIMIZATIONS

As we saw in Section 5, the (affine) tensor contraction representation of the element tensor
for Poisson’s equation may significantly reduce the operation count in the computation of
the element tensor. This is true for a wide range of multilinear forms, in particular test
cases 1–4 presented in Tables 10–13.

In some cases however, it may be more efficient to compute the element tensor by
quadrature, either using the direct approach of Section 5.1 or by a tensor contraction
representation of the quadrature evaluation as in Section 5.3. Which approach is more
efficient depends on the multilinear form and the function spaces on which it is defined. In
particular, the relative efficiency of a quadrature-based approach increases as the number
of coefficients in the multilinear form increases, since then the rank of the reference tensor
increases. On the other hand, the relative efficiency of the (affine) tensor contraction
representation increases when the polynomial degree of the basis functions and thus the
number of quadrature points increases. See [86] for a more detailed account.

7.1 Tensor Contractions as Matrix–Vector Products

As demonstrated above, the representation of the element tensor AK as a tensor contrac-
tion AK = A0 : GK may be generated automatically from a given multilinear form. To
evaluate the element tensor AK , it thus remains to evaluate the tensor contraction. A sim-
ple approach would be to iterate over the entries {AK

i }i∈IK
of AK and for each entry AK

i
compute the value of the entry by summing over the set of secondary indices as outlined in
Algorithm 3.

Algorithm 3 AK = ComputeElementTensor()

for i ∈ IK

AK
i = 0

for α ∈ A
AK

i = AK
i +A0

iαG
α
K

end for
end for

Examining Algorithm 3, we note that by an appropriate ordering of the entries in AK ,
A0 and GK , one may rephrase the tensor contraction (80) as a matrix–vector product and
call an optimized library routine6 for the computation of the matrix–vector product.

To see how to write the tensor contraction (80) as a matrix–vector product, we let

{ij}
|IK |
j=1 be an enumeration of the set of primary multiindices IK and let {αj}

|A|
j=1 be an

enumeration of the set of secondary multiindices A. As an example, for the computation
of the 6× 6 element tensor for Poisson’s equation with quadratic elements on triangles, we
may enumerate the primary and secondary multiindices by

{ij}
|IK |
j=1 = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (6, 6)},

{αj}
|A|
j=1 = {(1, 1), (1, 2), (2, 1), (2, 2)}.

(99)

By similarly enumerating the 36 entries of the 6×6 element tensor AK and the four entries

6Such a library call is available with the standard level 2 BLAS [18] routine DGEMV, with optimized
implementations provided for different architectures by ATLAS [109, 119, 120].
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of the 2 × 2 geometry tensor GK , one may define two vectors aK ∈ R
36 and gK ∈ R

4

corresponding to the two tensors AK and GK respectively.
In general, the element tensor AK and the geometry tensor GK may thus be flattened

to create the corresponding vectors aK ↔ AK and gK ↔ GK , defined by

aK = (AK
i1 , A

K
i2 , . . . , A

K
i|IK |)

>,

gK = (Gα1

K , Gα2

K , . . . , Gα|A|

K )>.
(100)

Similarly, we define the |IK | × |A| matrix Ā0 by

Ā0
jk = A0

ijαk , j = 1, 2, . . . , |IK |, k = 1, 2, . . . , |A|. (101)

Since now

aK
j = AK

ij =
∑

α∈A

A0
ijαG

α
K =

|A|
∑

k=1

A0
ijαkG

αk

K =

|A|
∑

k=1

Ā0
jk(gK)k, (102)

it follows that the tensor contraction AK = A0 : GK corresponds to the matrix–vector
product

aK = Ā0gK . (103)

As noted earlier, the element tensor AK may generally be expressed as a sum of tensor
contractions, rather than as a single tensor contraction, that is,

AK =
∑

k

A0,k : GK,k. (104)

In that case, we may still compute the (flattened) element tensor AK by a single matrix–
vector product,

aK =
∑

k

Ā0,kgK,k =
[

Ā0,1 Ā0,2 · · ·
]









gK,1

gK,2
...









= Ā0gK . (105)

Having thus phrased the general tensor contraction (104) as a matrix–vector product,
we note that by grouping the cells of T into subsets, one may compute the set of element
tensors for all cells in a subset by one matrix-matrix product (corresponding to a level 3
BLAS call) instead of by a sequence of matrix–vector products (each corresponding to a
level 2 BLAS call), which will typically lead to improved floating-point performance. This
is possible since the (flattened) reference tensor Ā0 remains constant over the mesh. Thus,
if {Kk}k ⊂ T is a subset of the cells in the mesh, we have

[

aK1 aK2 · · ·
]

=
[

Ā0gK1
Ā0gK2

. . .
]

= Ā0 [gK1
gK2

. . .] . (106)

The optimal size of each subset is problem and architecture dependent. Since the reference
tensor may sometimes contain a large number of entries, the size of the subset may be
limited by the available memory.
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7.2 Finding an Optimized Computation

Although the techniques discussed in the previous section may often lead to good floating-
point performance, they do not take full advantage of the fact that the reference tensor is
generated automatically. In [84] and later in [88], it was noted that by knowing the size
and structure of the reference tensor at compile-time, one may generate very efficient code
for the computation of the reference tensor.

Letting gK ∈ R
|A| be the vector obtained by flattening the geometry tensor GK as in

the previous section, we note that each entry AK
i of the element tensor AK is given by the

inner product

AK
i = a0

i · gK , (107)

where a0
i is the vector defined by

a0
i = (A0

iα1 , A
0
iα2 , . . . , A

0
iα|A|)

>. (108)

To optimize the evaluation of the element tensor, we look for dependencies between the
vectors {a0

i }i∈IK
and use the dependencies to reduce the operation count. There are many

such dependencies to explore. Below, we consider collinearity and closeness in Hamming
distance between pairs of vectors a0

i and a0
i′ .

7.2.1 Collinearity

We first consider the case when two vectors a0
i and a0

i′ are collinear, that is,

a0
i′ = αa0

i , (109)

for some α ∈ R. If a0
i and a0

i′ are collinear, it follows that

AK
i′ = a0

i′ · gK = (αa0
i ) · gK = αAK

i . (110)

We may thus compute the entry AK
i′ in a single multiplication, if the entry AK

i has already
been computed.

7.2.2 Closeness in Hamming distance

Another possibility is to look for closeness between pairs of vectors a0
i and a0

i′ in Hamming
distance (see [28]), which is the defined as the number entries in which two vectors differ.
If the Hamming distance between a0

i and a0
i′ is ρ, then the entry A0

i′ may be computed from
the entry A0

i in at most ρ multiply–add pairs. To see this, we assume that a0
i and a0

i′ differ
only in the first ρ entries. It then follows that

AK
i′ = a0

i′ · gK = a0
i · gK +

ρ
∑

k=1

(A0
i′αk −A0

iαk)Gαk

K = AK
i +

ρ
∑

k=1

(A0
i′αk −A0

iαk)Gαk

K , (111)

where we note that the vector (A0
i′α1 − A0

iα1 , A
0
i′α2 − A0

iα2 , . . . , A
0
i′αρ − A0

iαρ)> may be pre-

computed at compile-time. We note that the maximum Hamming distance between a0
i

and a0
i′ is ρ = |A|, that is, the length of the vectors, which is also the cost for the direct

computation of an entry by the inner product (107). We also note that if a0
i = a0

i′ and

consequently AK
i = AK

i′ , then the Hamming distance and the cost of obtaining AK
i′ from

AK
i are both zero.
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7.2.3 Complexity-reducing relations

In [88], dependencies between pairs of vectors, such as collinearity and closeness in Hamming
distance, that can be used to reduce the operation count in computing one entry from
another, are referred to as complexity-reducing relations. In general, one may define for any
pair of vectors a0

i and a0
i′ the complexity-reducing relation ρ(a0

i , a
0
i′) ≤ |A| as the minimum

of all complexity complexity reducing relations found between a0
i and a0

i′ . Thus, if we look
for collinearity and closeness in Hamming distance, we may say that ρ(a0

i , a
0
i′) is in general

given by the Hamming distance between a0
i and a0

i′ unless the two vectors are collinear, in
which case ρ(a0

i , a
0
i′) ≤ 1.

7.2.4 Finding a minimum spanning tree

Given the set of vector {a0
i }i∈IK

and a complexity-reducing relation ρ, the problem is now
to find an optimized computation of the element tensor AK by systematically exploring
the complexity-reducing relation ρ. In [88], it was found that this problem has a simple
solution. By constructing a weighted undirected graph G = (V,E) with vertices given by
the vectors {a0

i }i∈IK
and the weight at each edge given by the value of the complexity-

reducing relation ρ evaluated at the pair of end-points, one may find an optimized (but not
necessarily optimal) evaluation of the element tensor by computing the minimum spanning
tree7 G′ = (V,E′) for the graph G.

The minimum spanning tree directly provides an algorithm for the evaluation of the
element tensor AK . If one first computes the entry of AK corresponding to the root vertex
of the minimum spanning tree, which may be done in |A| multiply–add pairs, the remaining
entries may then be computed by traversing the tree (following the edges), either breadth-
first or depth-first, and at each vertex computing the corresponding entry of AK from the
parent vertex at a cost given by the weight of the connecting edge. The total cost of
computing the element tensor AK is thus given by

|A| + |E′|, (112)

where |E′| denotes the weight of the minimum spanning tree. As we shall see, computing
the minimum spanning tree may significantly reduce the operation count, compared to the
straight-forward approach of Algorithm 3 for which the operation count is given by |IK | |A|.

7.2.5 A concrete example

To demonstrate these ideas, we compute the minimum spanning tree for the computation
of the 36 entries of the 6× 6 element tensor for Poisson’s equation with quadratic elements
on triangles and obtain a reduction in the operation count from from a total of |IK | |A| =
36 × 4 = 144 multiply–add pairs to less than 17 multiply–add pairs. Since there are 36
entries in the element tensor, this means that we are be able to compute the element tensor
in less than one operation per entry (ignoring the cost of computing the geometry tensor).

As we saw above in Section 5.2, the rank four reference tensor is A0 is given by

A0
iα =

∫

K0

∂Φ1
i1

∂Xα1

∂Φ2
i2

∂Xα2

dX ∀i ∈ IK ∀α ∈ A, (113)

7A spanning tree for a graph G = (V, E) is any connected acyclic subgraph (V, E ′) of (V, E), that is,
each vertex in V is connected to an edge in E′ ⊂ E and there are no cycles. The (generally non-unique)
minimum spanning tree of a weighted graph G is a spanning tree G′ = (V, E′) that minimizes the sum
of edge weights for E′. The minimum spanning tree may be computed using standard algorithms such as
Kruskal’s and Prim’s algorithms, see [28].
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where now IK = [1, 6]2 and A = [1, 2]2. To compute the 62 × 22 = 144 entries of the
reference tensor, we evaluate the set of integrals (113) for the basis defined in (57). In
Table 20, we give the corresponding set of (scaled) vectors {a0

i }i∈IK
displayed as a 6 × 6

matrix of vectors with rows corresponding to the first component i1 of the multiindex i
and columns corresponding to the second component i2 of the multiindex i. Note that the
entries in Table 20 have been scaled with a factor 6 for ease of notation (corresponding to
the bilinear form a(v, U) = 6

∫

Ω ∇v · ∇U dx). Thus, the entries of the reference tensor are

given by A0
1111 = A0

1112 = A0
1121 = A0

1122 = 3/6 = 1/2, A0
1211 = 1/6, A0

1212 = 0, etc.

1 2 3 4 5 6

1

2

3

4

5

6

(3, 3, 3, 3)> (1, 0, 1, 0)> (0, 1, 0, 1)> (0, 0, 0, 0)> −(0, 4, 0, 4)> −(4, 0, 4, 0)>

(1, 1, 0, 0)> (3, 0, 0, 0)> −(0, 1, 0, 0)>, (0, 4, 0, 0)> (0, 0, 0, 0)> −(4, 4, 0, 0)>

(0, 0, 1, 1)> −(0, 0, 1, 0)> (0, 0, 0, 3)> (0, 0, 4, 0)> −(0, 0, 4, 4)> (0, 0, 0, 0)>

(0, 0, 0, 0)> (0, 0, 4, 0)> (0, 4, 0, 0)> (8, 4, 4, 8)> −(8, 4, 4, 0)> −(0, 4, 4, 8)>

−(0, 0, 4, 4)> (0, 0, 0, 0)> −(0, 4, 0, 4)> −(8, 4, 4, 0)> (8, 4, 4, 8)> (0, 4, 4, 0)>

−(4, 4, 0, 0)> −(4, 0, 4, 0)> (0, 0, 0, 0)> −(0, 4, 4, 8)> (0, 4, 4, 0)> (8, 4, 4, 8)>

Table 20. The 6 × 6 × 2 × 2 reference tensor A0 for Poisson’s equation with

quadratic elements on triangles, displayed here as the set of vec-

tors {a0
i }i∈IK

.

Before proceeding to compute the minimum spanning tree for the 36 vectors in Ta-
ble 20, we note that the element tensor AK for Poisson’s equation is symmetric, and as
a consequence we only need to compute 21 of the 36 entries of the element tensor. The
remaining 15 entries are given by symmetry. Furthermore, since the geometry tensor GK

is symmetric (see Table 11), it follows that

AK
i = a0

i · gK = A0
i11G

11
K +A0

i12G
12
K +A0

i21G
21
K +A0

i22G
22
K

= A0
i11G

11
K + (A0

i12 +A0
i21)G

12
K +A0

i22G
22
K = ā0

i · ḡK ,
(114)

where

ā0
i = (A0

i11, A
0
i12 +A0

i21, A
0
i22)

>,

ḡK = (G11
K , G

12
K , G

22
K )>.

(115)

As a consequence, each of the 36 entries of the element tensor AK may be obtained in at
most 3 multiply–add pairs, and since only 21 of the entries need to be computed, the total
operation count is directly reduced from 144 to 21 × 3 = 63.

The set of symmetry-reduced vectors {ā0
11, ā

0
12, . . . , ā

0
66} are given in Table 21. We

immediately note a number of complexity-reducing relations between the vectors. Entries
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ā0
12 = (1, 1, 0)>, ā0

16 = (−4,−4, 0)>, ā0
26 = (−4,−4, 0)> and ā0

45 = (−8,−8, 0)> are collinear,
entries ā0

44 = (8, 8, 8)> and ā0
45 = (−8,−8, 0)> are close in Hamming distance8 etc.

1 2 3 4 5 6

1

2

3

4

5

6

(3, 6, 3)> (1, 1, 0)> (0, 1, 1)> (0, 0, 0)> −(0, 4, 4)> −(4, 4, 0)>

(3, 0, 0)> −(0, 1, 0)>, (0, 4, 0)> (0, 0, 0)> −(4, 4, 0)>

(0, 0, 3)> (0, 4, 0)> −(0, 4, 4)> (0, 0, 0)>

(8, 8, 8)> −(8, 8, 0)> −(0, 8, 8)>

(8, 8, 8)> (0, 8, 0)>

(8, 8, 8)>

Table 21. The upper triangular part of the symmetry-reduced reference tensor A0

for Poisson’s equation with quadratic elements on triangles.

.

To systematically explore these dependencies, we form a weighted graph G = (V,E) and
compute minimum spanning tree. We let the vertices V be the set of symmetry-reduced
vectors, V = {ā0

11, ā
0
12, . . . , ā

0
66}, and form the set of edges E by adding between each pair

of vertices an edge with weight given by the minimum of all complexity-reducing relations
between the two vertices. The resulting minimum spanning tree is shown in Figure 6. We
note that the total edge weight of the minimum spanning tree is 14. This means that once
the value of the entry in the element tensor corresponding to the root vertex is known,
the remaining entries may be computed in at most 14 multiply–add pairs. Adding the 3
multiply–add pairs needed to compute the root entry, we thus find that all 36 entries of the
element tensor AK may be computed in at most 17 multiply–add pairs.

An optimized algorithm for the computation of the element tensor AK may then be
found by starting at the root vertex and computing the remaining entries by traversing the
minimum spanning tree, as demonstrated in Algorithm 4. Note that there are several ways
to traverse the tree. In particular, it is possible to pick any vertex as the root vertex and
start from there. Furthermore, there are many ways to traverse the tree given the root
vertex. Algorithm 4 is generated by traversing the tree breadth-first, starting at the root
vertex ā0

44 = (8, 8, 8)>. Finally, we note that the operation count may be further reduced
by not counting multiplications with zeros and ones.

7.2.6 Extensions

By use of symmetry and relations between subsets of the reference tensor A0 we have seen
that it is possible to significantly reduce the operation count for the computation of the
tensor contraction AK = A0 : GK . We have here only discussed the use of binary relations
(collinearity and Hamming distance) but further reductions may be made by considering
ternary relations, such as coplanarity, and higher-arity relations between the vectors.

8We use an extended concept of Hamming distance by allowing an optional negation of vectors (which
is cheap to compute).
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ā0

11
= (3, 6, 3)>

ā0

12 = (1, 1, 0)>

ā0

13
= (0, 1, 1)> ā0

14 = (0, 0, 0)>

ā0

15
= −(0, 4, 4)>

ā0

16
= −(4, 4, 0)>

ā0
22 = (3, 0, 0)>

ā0

23
= −(0, 1, 0)> ā0

24
= (0, 4, 0)>

ā0

25 = (0, 0, 0)>
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= −(4, 4, 0)>

ā0
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Figure 6. The minimum spanning tree for the optimized computation of the upper

triangular part (Table 21) of the element tensor for Poisson’s equation

with quadratic elements on triangles. Solid (blue) lines indicate zero

Hamming distance (equality), dashed (blue) lines indicate a small but

nonzero Hamming distance and dotted (red) lines indicate collinearity.



54 Anders Logg

Algorithm 4 An optimized (but not optimal) algorithm for computing the upper triangular
part of the element tensor AK for Poisson’s equation with quadratic elements on triangles
in 17 multiply–add pairs.

AK
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= A0

4411
G11
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+ (A0

4412
+A0
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8 AUTOMATION AND SOFTWARE ENGINEERING

In this section, we comment briefly on some topics of software engineering relevant to the
automation of the finite element method. A number of books and papers have been written
on the subject of software engineering for the implementation of finite element methods,
see for example [91, 92, 3, 104, 105]. In particular these works point out the importance of
object-oriented, or concept-oriented, design in developing mathematical software; since the
mathematical concepts have already been hammered out, it may be advantageous to reuse
these concepts in the system design, thus providing abstractions for important concepts,
including Vector, Matrix, Mesh, Function, BilinearForm, LinearForm, FiniteElement
etc.

We shall not repeat these arguments, but instead point out a couple of issues that might
be less obvious. In particular, a straight-forward implementation of all the mathematical
concepts discussed in the previous sections may be difficult or even impossible to attain.
Therefore, we will argue below that a level of automation is needed also in the implemen-
tation or realization of an automation of the finite element method, that is, the automatic
generation of computer code for the specific mathematical concepts involved in the speci-
fication of any particular finite element method and differential equation, as illustrated in
Figure 7.

Figure 7. A machine (computer program) that automates the finite element

method by automatically generating a particular machine (computer

program) for a suitable subset of the given input data.

We also point out that the automation of the finite element method is not only a software
engineering problem. In addition to identifying and implementing the proper mathematical
concepts, one must develop new mathematical tools and ideas that make it possible for the
automating system to realize the full generality of the finite element method. In addition,
new insights are needed to build an efficient automating system that can compete with or
outperform hand-coded specialized systems for any given input.

8.1 Code Generation

As in all types of engineering, software for scientific computing must try to find a suitable
trade-off between generality and efficiency; a software system that is general in nature, that
is, it accepts a wide range of inputs, is often less efficient than another software system that
performs the same job on a more limited set of inputs. As a result, most codes used by
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practitioners for the solution of differential equations are very specific, often specialized to
a specific method for a specific differential equation.

However, by using a compiler approach, it is possible to combine generality and efficiency
without loss of generality and without loss of efficiency. Instead of developing a potentially
inefficient general-purpose program that accepts a wide range of inputs, a suitable subset of
the input is given to an optimizing compiler that generates a specialized program that takes
a more limited set of inputs. In particular, one may automatically generate a specialized
simulation code for any given method and differential equation.

An important task is to identify a suitable subset of the input to move to a precompi-
lation phase. In the case of a system automating the solution of differential equations by
the finite element method, a suitable subset of input includes the variational problem (29)
and the choice of approximating finite element spaces. We thus develop a domain-specific
compiler that accepts as input a variational problem and a set of finite elements and gen-
erates optimized low-level code (in some general-purpose language such as C or C++).
Since the compiler may thus work on only a small family of inputs (multilinear forms),
domain-specific knowledge allows the compiler to generate very efficient code, using the
optimizations discussed in the previous section. We return to this in more detail below in
Section 9.2 when we discuss the FEniCS Form Compiler FFC.

We note that to limit the complexity of the automating system, it is important to
identify a minimal set of code to be generated at a precompilation stage, and implement
the remaining code in a general-purpose language. It makes less sense to generate the code
for administrative tasks such as reading and writing data to file, special algorithms like
adaptive mesh refinement etc. These tasks can be implemented as a library in a general-
purpose language.

8.2 Just-In-Time Compilation

To make an automating system for the solution of differential equations truly useful, the
generation and precompilation of code according to the above discussion must also be
automated. Thus, a user should ultimately be presented with a single user-interface and
the code should automatically and transparently be generated and compiled just-in-time
for a given problem specification.

Achieving just-in-time compilation of variational problems is challenging, not only to
construct the exact mechanism by which code is generated, compiled and linked back in at
run-time, but also to reduce the precompilation phase to a minimum so that the overhead
of code generation and compilation is acceptable. To compile and generate the code for the
evaluation of a multilinear form as discussed in Section 5, we need to compute the tensor
representation (80), including the evaluation of the reference tensor. Even with an optimized
algorithm for the computation of the reference tensor as discussed in [87], the computation of
the reference tensor may be very costly, especially for high-order elements and complicated
forms. To improve the situation, one may consider caching previously computed reference
tensors (similarly to how LATEX generates and caches fonts in different resolutions) and
reuse previously computed reference tensors. As discussed in [87], a reference tensor may
be uniquely identified by a (short) string referred to as a signature. Thus, one may store
reference tensors along with their signatures to speed up the precomputation and allow
run-time just-in-time compilation of variational problems with little overhead.
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9 A PROTOTYPE IMPLEMENTATION (FEniCS)

An algorithm must be seen to be believed, and the best way
to learn what an algorithm is all about is to try it.

Donald E. Knuth
The Art of Computer Programming (1968)

The automation of the finite element method includes its own realization, that is, a
software system that implements the algorithms discussed in Sections 3–6. Such a system
is provided by the FEniCS project [59, 35]. We present below some of the key components
of FEniCS, including FIAT, FFC and DOLFIN, and point out how they relate to the
various aspects of the automation of the finite element method. In particular, the automatic
tabulation of finite element basis functions discussed in Section 4 is provided by FIAT [82,
81, 83], the automatic evaluation of the element tensor as discussed in Section 5 is provided
by FFC [98, 86, 87, 99] and the automatic assembly as discussed in Section 6 of the discrete
system is provided by DOLFIN [61, 67, 62]. The FEniCS project thus serves as a testbed
for development of new ideas for automatic and efficient implementation of finite element
methods. At the same it, it provides a reference implementation of these ideas.

FEniCS software is free software [54]. In particular, the components of FEniCS are
licensed under the GNU General Public License [52].9. The source code is freely available
on the FEniCS web site [59] and the development is discussed openly on public mailing
lists.

9.1 FIAT

The FInite element Automatic Tabulator FIAT [82] was first introduced in [81] and imple-
ments the ideas discussed above in Section 4 for the automatic tabulation of finite element
basis functions based on a linear algebraic representation of function spaces and constraints.

FIAT provides functionality for defining finite element function spaces as constrained
subsets of polynomials on the simplices in one, two and three spaces dimensions, as well
as a library of predefined finite elements, including arbitrary degree Lagrange [26, 20],
Hermite [26, 20], Raviart–Thomas [111], Brezzi–Douglas–Marini [22] and Nedelec [106]
elements, as well as the (first degree) Crouzeix–Raviart [30] element. Furthermore, the
plan is to support Brezzi–Douglas–Fortin–Marini [23] and Arnold–Winther [4] elements in
future versions.

In addition to tabulating finite element nodal basis functions (as linear combinations of
a reference basis), FIAT generates quadrature points of any given order on the reference
simplex and provides functionality for efficient tabulation of the basis functions and their
derivatives at any given set of points. In Figure 8 and Figure 9, we present some examples
of basis functions generated by FIAT.

Although FIAT is implemented in Python, the interpretive overhead of Python com-
pared to compiled languages is small, since the operations involved may be phrased in terms
of standard linear algebra operations, such as the solution of linear systems and singular
value decomposition, see [83]. FIAT may thus make use of optimized Python linear algebra
libraries such Python Numeric [107]. Recently, a C++ version of FIAT called FIAT++ has
also been developed with run-time bindings for Sundance [103, 101, 102].

9.2 FFC

The FEniCS Form Compiler FFC [98], first introduced in [86], automates the evaluation of
multilinear forms as outlined in Section 5 by automatically generating code for the efficient

9FIAT is licensed under the Lesser General Public License [53].
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Figure 8. The first three basis functions for a fifth-degree Lagrange finite ele-

ment on a triangle, associated with the three vertices of the triangle.

(Courtesy of Robert C. Kirby.)

Figure 9. A basis function associated with an interior point for a fifth-degree

Lagrange finite element on a triangle. (Courtesy of Robert C. Kirby.)
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computation of the element tensor corresponding to a given multilinear form. FFC thus
functions as domain-specific compiler for multilinear forms, taking as input a set of discrete
function spaces together with a multilinear form defined on these function spaces, and
produces as output optimized low-level code, as illustrated in Figure 10. In its simplest
form, FFC generates code in the form of a single C++ header file that can be included in
a C++ program, but FFC can also be used as a just-in-time compiler within a scripting
environment like Python, for seamless definition and evaluation of multilinear forms.

Figure 10. The form compiler FFC takes as input a multilinear form together with

a set of function spaces and generates optimized low-level (C++) code

for the evaluation of the associated element tensor.

9.2.1 Form language

The FFC form language is generated from a small set of basic data types and operators that
allow a user to define a wide range of multilinear forms, in accordance with the discussion
of Section 5.4.3. As an illustration, we include below the complete definition in the FFC
form language of the bilinear forms for the test cases considered above in Tables 10–13.
We refer to the FFC user manual [99] for a detailed discussion of the form language, but
note here that in addition to a set of standard operators, including the inner product dot,
the partial derivative D, the gradient grad, the divergence div and the rotation rot, FFC
supports Einstein tensor-notation (Table 24) and user-defined operators (operator epsilon
in Table 25).

element = FiniteElement("Lagrange", "tetrahedron", 1)

v = BasisFunction(element)

U = BasisFunction(element)

a = v*U*dx

Table 22. The complete definition of the bilinear form a(v,U) =
R

Ω
v U dx in the

FFC form language (test case 1).

9.2.2 Implementation

The FFC form language is implemented in Python as a collection of Python classes (in-
cluding BasisFunction, Function, FiniteElement etc.) and operators on theses classes.
Although FFC is implemented in Python, the interpretive overhead of Python has been
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element = FiniteElement("Lagrange", "tetrahedron", 1)

v = BasisFunction(element)

U = BasisFunction(element)

a = dot(grad(v), grad(U))*dx

Table 23. The complete definition of the bilinear form a(v,U) =
R

Ω
∇v · ∇U dx

in the FFC form language (test case 2).

element = FiniteElement("Vector Lagrange", "tetrahedron", 1)

v = BasisFunction(element)

U = BasisFunction(element)

w = Function(element)

a = v[i]*w[j]*D(U[i],j)*dx

Table 24. The complete definition of the bilinear form a(v,U) =
R

Ω
v ·(w ·∇)U dx

in the FFC form language (test case 3).

element = FiniteElement("Vector Lagrange", "tetrahedron", 1)

v = BasisFunction(element)

U = BasisFunction(element)

def epsilon(v):

return 0.5*(grad(v) + transp(grad(v)))

a = dot(epsilon(v), epsilon(U))*dx

Table 25. The complete definition of the bilinear form a(v, U) =
R

Ω
ε(v) : ε(U) dx

in the FFC form language (test case 4).
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minimized by judicious use of optimized numerical libraries such as Python Numeric [107].
The computationally most expensive part of the compilation of a multilinear form is the
precomputation of the reference tensor. As demonstrated in [87], by suitably pretabulating
basis functions and their derivatives at a set of quadrature points (using FIAT), the ref-
erence tensor can be computed by assembling a set of outer products, which may each be
efficiently computed by a call to Python Numeric.

Currently, the only optimization FFC makes is to avoid multiplications with any zeros of
the reference tensor A0 when generating code for the tensor contraction AK = A0 : GK . As
part of the FEniCS project, an optimizing backend, FErari (Finite Element Re-arrangement
Algorithm to Reduce Instructions), is currently being developed. Ultimately, FFC will
call FErari at compile-time to find an optimized computation of the tensor contraction,
according to the discussion in Section 7.

9.2.3 Benchmark results

As a demonstration of the efficiency of the code generated by FFC, we include in Table 26
a comparison taken from [86] between a standard implementation, based on computing
the element tensor AK on each element K by a loop over quadrature points, with the
code automatically generated by FFC, based on precomputing the reference tensor A0 and
computing the element tensor AK by the tensor contraction AK = A0 : GK on each element.

Form q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8

Mass 2D 12 31 50 78 108 147 183 232
Mass 3D 21 81 189 355 616 881 1442 1475
Poisson 2D 8 29 56 86 129 144 189 236
Poisson 3D 9 56 143 259 427 341 285 356
Navier–Stokes 2D 32 33 53 37 — — — —
Navier–Stokes 3D 77 100 61 42 — — — —
Elasticity 2D 10 43 67 97 — — — —
Elasticity 3D 14 87 103 134 — — — —

Table 26. Speedups for test cases 1–4 (Tables 10–13 and Tables 22–25) in two

and three space dimensions.

As seen in Table 26, the speedup ranges between one and three orders of magnitude,
with larger speedups for higher degree elements. In Figure 11 and Figure 12, we also plot
the dependence of the speedup on the polynomial degree for test cases 1 and 2 respectively.

It should be noted that the total work in a simulation also includes the assembly of the
local element tensors {AK}K∈T into the global tensor A, solving the linear system, iterating
on the nonlinear problem etc. Therefore, the overall speedup may be significantly less than
the speedups reported in Table 26. We note that if the computation of the local element
tensors normally accounts for a fraction θ ∈ (0, 1) of the total run-time, then the overall
speedup gained by a speedup of size s > 1 for the computation of the element tensors will
be

1 <
1

1 − θ + θ/s
≤

1

1 − θ
, (116)

which is significant only if θ is significant. As noted in [84], θ may be significant in many
cases, in particular for nonlinear problems where a nonlinear system (or the action of a
linear operator) needs to be repeatedly reassembled as part of an iterative method.
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Figure 11. Benchmark results for test case 1, the mass matrix, specified in FFC

by a = v*U*dx.
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Figure 12. Benchmark results for test case 2, Poisson’s equation, specified in FFC

by a = dot(grad(v), grad(U))*dx.



Automating the Finite Element Method 63

9.2.4 User interfaces

FFC can be used either as a stand-alone compiler on the command-line, or as a Python
module from within a Python script. In the first case, a multilinear form (or a pair of
bilinear and linear forms) is entered in a text file with suffix .form and then compiled by
calling the command ffc with the form file on the command-line.

By default, FFC generates C++ code for inclusion in a DOLFIN C++ program (see
Section 9.3 below) but FFC can also compile code for other backends (by an appropriate
compiler flag), including the ASE (ANL SIDL Environment) format [90], XML format, and
LATEX format (for inclusion of the tensor representation in reports and presentations). The
format of the generated code is separated from the parsing of forms and the generation of
the tensor contraction, and new formats for alternative backends may be added with little
effort, see Figure 13.

Figure 13. Component diagram for FFC.

Alternatively, FFC can be used directly from within Python as a Python module, al-
lowing definition and compilation of multilinear forms from within a Python script. If used
together with the recently developed Python interface of DOLFIN (PyDOLFIN), FFC
functions as a just-in-time compiler for multilinear forms, allowing forms to be defined and
evaluated from within Python.

9.3 DOLFIN

DOLFIN [61, 67, 62], Dynamic Object-oriented Library for FINite element computation,
functions as a general programming interface to DOLFIN and provides a problem-solving
environment (PSE) for differential equations in the form of a C++/Python class library.

Initially, DOLFIN was developed as a self-contained (but modularized) C++ code for
finite element simulation, providing basic functionality for definition and automatic eval-
uation of multilinear forms, assembly, linear algebra, mesh data structures and adaptive
mesh refinement, but as a consequence of the development of focused components for each
of these tasks as part of the FEniCS project, a large part (but not all) of the functionality
of DOLFIN has been delegated to these other components while maintaining a consistent
programming interface. Thus, DOLFIN relies on FIAT for the automatic tabulation of fi-
nite element basis functions and on FFC for the automatic evaluation of multilinear forms.
We discuss below some of the key aspects of DOLFIN and its role as a component of the
FEniCS project.
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9.3.1 Automatic assembly of the discrete system

DOLFIN implements the automatic assembly of the discrete system associated with a given
variational problem as outlined in Section 6. DOLFIN iterates over the cells {K}K∈T of
a given mesh T and calls the code generated by FFC on each element K to evaluate the
element tensor AK . FFC also generates the code for the local-to-global mapping which
DOLFIN calls to obtain a rule for the addition of each element tensor AK to the global
tensor A.

Since FFC generates the code for both the evaluation of the element tensor and for
the local-to-global mapping, DOLFIN needs to know very little about the finite element
method. It only follows the instructions generated by FFC and operates abstractly on the
level of Algorithm 2.

9.3.2 Meshes

DOLFIN provides basic data structures and algorithms for simplicial meshes in two and
three space dimensions (triangular and tetrahedral meshes) in the form of a class Mesh,
including adaptive mesh refinement. As part of PETSc [9, 8, 10] and the FEniCS project,
the new component Sieve [80, 79] is currently being developed. Sieve generalizes the mesh
concept and provides powerful abstractions for dimension-independent operations on mesh
entities and will function as a backend for the mesh data structures in DOLFIN.

9.3.3 Linear algebra

Previously, DOLFIN provided a stand-alone basic linear algebra library in the form of a
class Matrix, a class Vector and a collection of iterative and direct solvers. This imple-
mentation has recently been replaced by a set of simple wrappers for the sparse linear
algebra library provided by PETSc [9, 8, 10]. As a consequence, DOLFIN is able to provide
sophisticated high-performance parallel linear algebra with an easy-to-use object-oriented
interface suitable for finite element computation.

9.3.4 ODE solvers

DOLFIN also provides a set of general order mono-adaptive and multi-adaptive [94, 95, 100,
97, 49] ODE-solvers, automating the solution of ordinary differential equations. Although
the ODE-solvers may be used in connection with the automated assembly of discrete sys-
tems, DOLFIN does currently not provide any level of automation for the discretization of
time-dependent PDEs. Future versions of DOLFIN (and FFC) will allow time-dependent
PDEs to be defined directly in the FFC form language with automatic discretization and
adaptive time-integration.

9.3.5 PDE solvers

In addition to providing a class library of basic tools that automate the implementation
of adaptive finite element methods, DOLFIN provides a collection of ready-made solvers
for a number of standard equations. The current version of DOLFIN provides solvers for
Poisson’s equation, the heat equation, the convection–diffusion equation, linear elasticity,
updated large-deformation elasticity, the Stokes equations and the incompressible Navier–
Stokes equations.

9.3.6 Pre- and post-processing

DOLFIN relies on interaction with external tools for pre-processing (mesh generation) and
post-processing (visualization). A number of output formats are provided for visualization,
including DOLFIN XML [62], VTK [89] (for use in ParaView [116] or MayaVi [110]),
Octave [36], MATLAB [118], OpenDX [1], GiD [27] and Tecplot [2]. DOLFIN may also be
easily extended with new output formats.
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9.3.7 User interfaces

DOLFIN can be accessed either as a C++ class library or as a Python module, with the
Python interface generated semi-automatically from the C++ class library using SWIG [15,
14]. In both cases, the user is presented with a simple and consistent but powerful pro-
gramming interface.

As discussed in Section 9.3.5, DOLFIN provides a set of ready-made solvers for standard
differential equations. In the simplest case, a user thus only needs to supply a mesh, a set
of boundary conditions and any parameters and variable coefficients to solve a differential
equation, by calling one of the existing solvers. For other differential equations, a solver
may be implemented with minimal effort using the set of tools provided by the DOLFIN
class library, including variational problems, meshes and linear algebra as discussed above.

9.4 Related Components

We also mention two other projects developed as part of FEniCS. One of these is Puffin[69,
68], a light-weight educational implementation of the basic functionality of FEniCS for
Octave/MATLAB, including automatic assembly of the linear system from a given vari-
ational problem. Puffin has been used with great success in introductory undergraduate
mathematics courses and is accompanied by a set of exercises [78] developed as part of the
Body and Soul reform project [47, 40, 41, 39] for applied mathematics education.

The other project is the Ko mechanical simulator [75]. Ko uses DOLFIN as the com-
putational backend and provides a specialized interface to the simulation of mechanical
systems, including large-deformation elasticity and collision detection. Ko provides two
different modes of simulation: either a simple mass–spring model solved as a system of
ODEs, or a large-deformation updated elasticity model [77] solved as a system of time-
dependent PDEs. As a consequence of the efficient assembly provided by DOLFIN, based
on efficient code being generated by FFC, the overhead of the more complex PDE model
compared to the simple ODE model is relatively small.
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10 EXAMPLES

In this section, we present a number of examples chosen to illustrate various aspects of
the implementation of finite element methods for a number of standard partial differential
equations with the FEniCS framework. We already saw in Section 2 the specification of the
variational problem for Poisson’s equation in the FFC form language. The examples below
include static linear elasticity, two different formulations for the Stokes equations and the
time-dependent convection–diffusion equations with the velocity field given by the solution
of the Stokes equations. For simplicity, we consider only linear problems but note that the
framework allows for implementation of methods for general nonlinear problems. See in
particular [77] and [64, 63, 65].

10.1 Static Linear Elasticity

As a first example, consider the equation of static linear elasticity [20] for the displacement
u = u(x) of an elastic shape Ω ∈ R

d,

−∇ · σ(u) = f in Ω,
u = u0 on Γ0 ⊂ ∂Ω,

σ(u)n̂ = 0 on ∂Ω \ Γ0,
(117)

where n̂ denotes a unit vector normal to the boundary ∂Ω. The stress tensor σ(u) is given
by

σ(v) = 2µ ε(v) + λ trace(ε(v))I, (118)

where I is the d× d identity matrix and where the strain tensor ε(u) is given by

ε(v) =
1

2

(

∇v + (∇v)>
)

, (119)

that is, εij(v) = 1
2 ( ∂vi

∂xj
+

∂vj

∂xi
) for i, j = 1, . . . , d. The Lamé constants µ and λ are given by

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1 − 2ν)
, (120)

with E the Young’s modulus of elasticity and ν the Poisson ratio, see [121]. In the example
below, we take E = 10 and ν = 0.3.

To obtain the discrete variational problem corresponding to (117), we multiply with a

test function v in a suitable discrete test space V̂h and integrate by parts to obtain

∫

Ω
∇v : σ(U) dx =

∫

Ω
v · f dx ∀v ∈ V̂h. (121)

The corresponding formulation in the FFC form language is shown in Table 27 for an
approximation with linear Lagrange elements on tetrahedra. Note that by defining the
operators σ and ε, it is possible to obtain a very compact notation that corresponds well
with the mathematical notation of (121).

Computing the solution of the variational problem for a domain Ω given by a gear,
we obtain the solution in Figure 14. The gear is clamped at two of its ends and twisted
30 degrees, as specified by a suitable choice of Dirichlet boundary conditions on Γ0.
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Figure 14. The original domain Ω of the gear (above) and the twisted gear (below),

obtained by displacing Ω at each point x ∈ Ω by the value of the solution

u of (117) at the point x.



Automating the Finite Element Method 69

element = FiniteElement("Vector Lagrange", "tetrahedron", 1)

v = BasisFunction(element)

U = BasisFunction(element)

f = Function(element)

E = 10.0

nu = 0.3

mu = E / (2*(1 + nu))

lmbda = E*nu / ((1 + nu)*(1 - 2*nu))

def epsilon(v):

return 0.5*(grad(v) + transp(grad(v)))

def sigma(v):

return 2*mu*epsilon(v) + lmbda*mult(trace(epsilon(v)), Identity(len(v)))

a = dot(grad(v), sigma(U))*dx

L = dot(v, f)*dx

Table 27. The complete specification of the variational problem (121) for static

linear elasticity in the FFC form language.

10.2 The Stokes Equations

Next, we consider the Stokes equations,

−∆u+ ∇p = f in Ω,
∇ · u = 0 in Ω,

u = u0 on ∂Ω,
(122)

for the velocity field u = u(x) and the pressure p = p(x) in a highly viscous medium. By
multiplying the two equations with a pair of test functions (v, q) chosen from a suitable

discrete test space V̂h = V̂ u
h × V̂ p

h , we obtain the discrete variational problem

∫

Ω
∇v : ∇U − (∇ · v)P + q∇ · U dx =

∫

Ω
v · f dx ∀(v, q) ∈ V̂h. (123)

for the discrete approximation solution (U,P ) ∈ Vh = V u
h ×V p

h . To guarantee the existence
of a unique solution of the discrete variational problem (123), the discrete function spaces

V̂h and Vh must be chosen appropriately. The Babuška–Brezzi [5, 21] inf–sup condition
gives a precise condition for the selection of the approximating spaces.

10.2.1 Taylor–Hood elements

One way to fulfill the Babuška–Brezzi condition is to use different order approximations for
the velocity and the pressure, such as degree q polynomials for the velocity and degree q−1
for the pressure, commonly referred to as Taylor–Hood elements, see [19, 20]. The resulting
mixed formulation may be specified in the FFC form language by defining a Taylor–Hood
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element as the direct sum of a degree q vector-valued Lagrange element and a degree q− 1
scalar Lagrange element, as shown in Table 28. Figure 15 shows the velocity field for the
flow around a two-dimensional dolphin computed with a P2–P1 Taylor-Hood approximation.

P2 = FiniteElement("Vector Lagrange", "triangle", 2)

P1 = FiniteElement("Lagrange", "triangle", 1)

TH = P2 + P1

(v, q) = BasisFunctions(TH)

(U, P) = BasisFunctions(TH)

f = Function(P2)

a = (dot(grad(v), grad(U)) - div(v)*P + q*div(U))*dx

L = dot(v, f)*dx

Table 28. The complete specification of the variational problem (123) for the

Stokes equations with P2–P1 Taylor–Hood elements.

10.2.2 A stabilized equal-order formulation

Alternatively, the Babuška–Brezzi condition may be circumvented by an appropriate modi-
fication (stabilization) of the variational problem (123). In general, an appropriate modifica-
tion may be obtained by a Galerkin/least-squares (GLS) stabilization, that is, by modifying
the test function w = (v, q) according to w → w + δAw, where A is the operator of the
differential equation and δ = δ(x) is suitable stabilization parameter. Here, we a choose
simple pressure-stabilization obtained by modifying the test function w = (v, q) according
to

(v, q) → (v, q) + (δ∇q, 0). (124)

The stabilization (124) is sometimes referred to as a pressure-stabilizing/Petrov-Galerkin
(PSPG) method, see [71, 55]. Note that the stabilization (124) may also be viewed as a
reduced GLS stabilization.

We thus obtain the following modified variational problem: Find (U,P ) ∈ Vh such that

∫

Ω
∇v : ∇U − (∇ · v)P + q∇ · U + δ∇q · ∇P dx =

∫

Ω
v · f dx ∀(v, q) ∈ V̂h. (125)

Table 29 shows the stabilized equal-order method in the FFC form language, with the
stabilization parameter given by

δ = βh2, (126)

where β = 0.2 and h = h(x) is the local mesh size (cell diameter).
In Figure 16, we illustrate the importance of stabilizing the equal-order method by

plotting the solution for the pressure with and without stabilization. Without stabilization,
the solution oscillates heavily. Note that the scaling is chosen differently in the two images,
with the oscillations scaled down by a factor ten in the unstabilized solution. The situation
without stabilization is thus even worse than what the figure indicates.
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Figure 15. The velocity field for the flow around a two-dimensional dolphin, ob-

tained by solving the Stokes equations (122) by a (P2–P1 Taylor-Hood

approximation.

vector = FiniteElement("Vector Lagrange", "triangle", 1)

scalar = FiniteElement("Lagrange", "triangle", 1)

system = vector + scalar

(v, q) = BasisFunctions(system)

(U, P) = BasisFunctions(system)

f = Function(vector)

h = Function(scalar)

d = 0.2*h*h

a = (dot(grad(v), grad(U)) - div(v)*P + q*div(U) + d*dot(grad(q), grad(P)))*dx

L = dot(v + mult(d, grad(q)), f)*dx

Table 29. The complete specification of the variational problem (125) for the

Stokes equations with an equal-order P1–P1 stabilized method.
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Figure 16. The pressure for the flow around a two-dimensional dolphin, obtained

by solving the Stokes equations (122) by an unstabilized P1–P1 approx-

imation (above) and a stabilized P1–P1 approximation (below).
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10.3 Convection–diffusion

As a final example, we compute the temperature u = u(x, t) (Figure 17) around the dolphin
from the previous example by solving the time-dependent convection–diffusion equations,

u̇+ b · ∇u−∇ · (c∇u) = f in Ω × (0, T ],
u = u∂ on ∂Ω × (0, T ],
u = u0 at Ω × {0},

(127)

with velocity field b = b(x) obtained by solving the Stokes equations.

Figure 17. The temperature around a hot dolphin in surrounding cold water with

a hot inflow, obtained by solving the convection–diffusion equation with

the velocity field obtained from a solution of the Stokes equations with

a P2–P1 Taylor–Hood approximation.

We discretize (127) with the cG(1)cG(1) method, that is, with continuous piecewise
linear functions in space and time (omitting stabilization for simplicity). The interval [0, T ]
is partitioned into a set of time intervals 0 = t0 < t1 < · · · < tn−1 < tn < · · · < tM = T and
on each time interval (tn−1, tn], we pose the variational problem

∫ tn

tn−1

∫

Ω
(v, U̇ ) + v b · ∇U + c∇v · ∇U dxdt =

∫ tn

tn−1

∫

Ω
v f dxdt ∀v ∈ V̂h, (128)

with V̂h the space of all continuous piecewise linear functions in space. Note that the
cG(1) method in time uses piecewise constant test functions, see [73, 72, 50, 38, 94]. As a

consequence, we obtain the following variational problem for U n ∈ Vh = V̂h, the piecewise
linear in space solution at time t = tn,

1

kn

∫

Ω
v (Un − Un−1) + v b · ∇(Un + Un−1)/2 + c∇v · ∇(Un + Un−1)/2 dx

=

∫ tn

tn−1

∫

Ω
v f dxdt ∀v ∈ V̂h,

(129)
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where kn = tn − tn−1 is the size of the time step. We thus obtain a variational problem of
the form

a(v, Un) = L(v) ∀v ∈ V̂h, (130)

where

a(v, Un) =

∫

Ω
v Un dx+

kn

2
(v b · ∇Un + c∇v · ∇Un) dx,

L(v) =

∫

Ω
v Un−1 dx−

kn

2

(

v b · ∇Un−1 + c∇v · ∇Un−1
)

dx+

∫ tn

tn−1

∫

Ω
v f dxdt.

(131)

The corresponding specification in the FFC form language is presented in Table 30,
where for simplicity we approximate the right-hand side with its value at the right end-
point.

scalar = FiniteElement("Lagrange", "triangle", 1)

vector = FiniteElement("Vector Lagrange", "triangle", 2)

v = BasisFunction(scalar)

U1 = BasisFunction(scalar)

U0 = Function(scalar)

b = Function(vector)

f = Function(scalar)

c = 0.005

k = 0.05

a = v*U1*dx + 0.5*k*(v*dot(b, grad(U1)) + c*dot(grad(v), grad(U1)))*dx

L = v*U0*dx - 0.5*k*(v*dot(b, grad(U0)) + c*dot(grad(v), grad(U0)))*dx + k*v*f*dx

Table 30. The complete specification of the variational problem (130) for cG(1)

time-stepping of the convection–diffusion equation.
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11 OUTLOOK: THE AUTOMATION OF CMM

The automation of the finite element method, as described above, constitutes an impor-
tant step towards the Automation of Computational Mathematical Modeling (ACMM), as
outlined in [96]. In this context, the automation of the finite element method amounts to
the automation of discretization, that is, the automatic translation of a given continuous
model to a system of discrete equations. Other key steps include the automation of discrete
solution, the automation of error control, the automation of modeling and the automation
of optimization. We discuss these steps below and also make some comments concerning
automation in general.

11.1 The Principles of Automation

An automatic system carries out a well-defined task without intervention from the person or
system actuating the automatic process. The task of the automating system may be formu-
lated as follows: For given input satisfying a fixed set of conditions (the input conditions),
produce output satisfying a given set of conditions (the output conditions).

An automatic process is defined by an algorithm, consisting of a sequential list of instruc-
tions (like a computer program). In automated manufacturing, each step of the algorithm
operates on and transforms physical material. Correspondingly, an algorithm for the Au-
tomation of CMM operates on digits and consists of the automated transformation of digital
information.

A key problem of automation is the design of a feed-back control, allowing the given
output conditions to be satisfied under variable input and external conditions, ideally at a
minimal cost. Feed-back control is realized through measurement, evaluation, and action;
a quantity relating to the given set of conditions to be satisfied by the output is measured,
the measured quantity is evaluated to determine if the output conditions are satisfied or
if an adjustment is necessary, in which case some action is taken to make the necessary
adjustments. In the context of an algorithm for feed-back control, we refer to the evaluation
of the set of output conditions as the stopping criterion, and to the action as the modification
strategy.

A key step in the automation of a complex process is modularization, that is, the hier-
archical organization of the complex process into components or sub processes. Each sub
process may then itself be automated, including feed-back control. We may also express this
as abstraction, that is, the distinction between the properties of a component (its purpose)
and the internal workings of the component (its realization).

Modularization (or abstraction) is central in all engineering and makes it possible to
build complex systems by connecting together components or subsystems without concern
for the internal workings of each subsystem. The exact partition of a system into compo-
nents is not unique. Thus, there are many ways to partition a system into components. In
particular, there are many ways to design a system for the Automation of Computational
Mathematical Modeling.

We thus identify the following basic principles of automation: algorithms, feed-back
control, and modularization.

11.2 Computational Mathematical Modeling

In automated manufacturing, the task of the automating system is to produce a certain
product (the output) from a given piece of material (the input), with the product satisfying
some measure of quality (the output conditions).

For the Automation of CMM, the input is a given model of the form

A(u) = f, (132)
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U ≈ u

Figure 18. The Automation of Computational Mathematical Modeling.

for the solution u on a given domain Ω× (0, T ] in space-time, where A is a given differential
operator and where f is a given source term. The output is a discrete solution U ≈ u
satisfying some measure of quality. Typically, the measure of quality is given in the form
of a tolerance TOL > 0 for the size of the error e = U − u in a suitable norm, ‖e‖ ≤ TOL,
or, alternatively, the error in some given functional M ,

|M(U) −M(u)| ≤ TOL. (133)

In addition to controlling the quality of the computed solution, one may also want to de-
termine a parameter that optimizes some given cost functional depending on the computed
solution (optimization). We refer to the overall process, including optimization, as the
Automation of CMM.

The key problem for the Automation of CMM is thus the design of a feed-back control
for the automatic construction of a discrete solution U , satisfying the output condition
(133) at minimal cost. The design of this feed-back control is based on the solution of
an associated dual problem, connecting the size of the residual R(U) = A(U) − f of the
computed discrete solution to the size of the error e, and thus to the output condition (133).

11.3 An Agenda for the Automation of CMM

Following our previous discussion on modularization as a basic principle of automation, we
identify the following key steps in the Automation of CMM:

(i) the automation of discretization, that is, the automatic translation of a continuous
model of the form (132) to a system of discrete equations;

(ii) the automation of discrete solution, that is, the automatic solution of the system of
discrete equations obtained from the automatic discretization of (132),

(iii) the automation of error control, that is, the automatic selection of an appropriate
resolution of the discrete model to produce a discrete solution satisfying the given
accuracy requirement with minimal work;

(iv) the automation of modeling, that is, the automatic selection of the model (132), either
by constructing a model from a given set of data, or by constructing from a given
model a reduced model for the variation of the solution on resolvable scales;

(v) the automation of optimization, that is, the automatic selection of a parameter in the
model (132) to optimize a given goal functional.



Automating the Finite Element Method 77

In Figure 19, we demonstrate how (i)–(iv) connect to solve the overall task of the
Automation of CMM (excluding optimization) in accordance with Figure 18. We discuss
(i)–(v) in some detail below. In all cases, feed-back control, or adaptivity, plays a key role.

(i)

(iii)

(iv)

(ii)PSfrag replacements

A(u) = f

TOL

U ≈ u

U ≈ u

U ≈ u

tol > 0

A(ū) = f̄ + ḡ(u)

(V̂h, Vh)

F (x) = 0 X ≈ x

Figure 19. A modularized view of the Automation of Computational Mathematical

Modeling.

11.4 The Automation of Discretization

The automation of discretization amounts to automatically generating a system of discrete
equations for the degrees of freedom of a discrete solution U approximating the solution u
of the given model (132), or alternatively, the solution u ∈ V of a corresponding variational
problem

a(u; v) = L(v) ∀v ∈ V̂ , (134)

where as before a : V × V̂ → R is a semilinear form which is linear in its second argument
and L : V̂ → R is a linear form. As we saw in Section 3, this process may be automated
by the finite element method, by replacing the function spaces (V̂ , V ) with a suitable pair

(V̂h, Vh) of discrete function spaces, and an approach to its automation was discussed in
Sections 4–6. As we shall discuss further below, the pair of discrete function spaces may be
automatically chosen by feed-back control to compute the discrete solution U both reliably
and efficiently.

11.5 The Automation of Discrete Solution

Depending on the model (132) and the method used to automatically discretize the model,
the resulting system of discrete equations may require more or less work to solve. Typically,
the discrete system is solved by some iterative method such as the conjugate gradient
method (CG) or GMRES, in combination with an appropriate choice of preconditioner, see
for example [114, 31].
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The resolution of the automatic discretization of (132) may be chosen automatically
by feed-back control from the computed solution, with the target of minimizing the com-
putational work while satisfying a given accuracy requirement. As a consequence, see for
example [94], one obtains an accuracy requirement on the solution of the system of discrete
equations. Thus, the system of discrete equations does not need to be solved to within
machine precision, but only to within some discrete tolerance tol > 0 for some error in a
functional of the solution of the discrete system. We shall not pursue this question further
here, but remark that the feed-back control from the computed solution to the iterative
algorithm for the solution of the system of discrete equations is often weak, and the prob-
lem of designing efficient adaptive iterative algorithms for the system of discrete equations
remains open.

11.6 The Automation of Error Control

As stated above, the overall task is to produce a solution of (132) that satisfies a given
accuracy requirement with minimal work. This includes an aspect of reliability, that is, the
error in an output quantity of interest depending on the computed solution should be less
than a given tolerance, and an aspect of efficiency, that is, the solution should be computed
with minimal work. Ideally, an algorithm for the solution of (132) should thus have the
following properties: Given a tolerance TOL > 0 and a functional M , the algorithm shall
produce a discrete solution U approximating the exact solution u of (132), such that

(A) |M(U) −M(u)| ≤ TOL;

(B) the computational cost of obtaining the approximation U is minimal.

Conditions (A) and (B) can be satisfied by an adaptive algorithm, with the construction of

the discrete representation (V̂h, Vh) based on feed-back from the computed solution.
An adaptive algorithm typically involves a stopping criterion, indicating that the size

of the error is less than the given tolerance, and a modification strategy to be applied if
the stopping criterion is not satisfied. Often, the stopping criterion and the modification
strategy are based on an a posteriori error estimate E ≥ |M(U) −M(u)|, estimating the
error in terms of the residual R(U) = A(U) − f and the solution ϕ of a dual problem
connecting to the stability of (132).

11.6.1 The dual problem

The dual problem of (132) for the given output functional M is given by

A′∗ϕ = ψ, (135)

on Ω × [0, T ), where A′∗ denotes the adjoint10 of the Fréchet derivative A′ of A evaluated
at a suitable mean value of the exact solution u and the computed solution U ,

A′ =

∫ 1

0
A′ (sU + (1 − s)u) ds, (136)

and where ψ is the Riesz representer of a similar mean value of the Fréchet derivative M ′

of M ,

(v, ψ) = M ′v ∀v ∈ V. (137)

10The adjoint is defined by (Av,w) = (v, A∗w) for all v, w ∈ V such that v = w = 0 at t = 0 and t = T .
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By the dual problem (135), we directly obtain the error representation

M(U) −M(u) = M ′(U − u) = (U − u, ψ) = (U − u,A′∗ϕ) = (A′(U − u), ϕ)

= (A(U) −A(u), ϕ) = (A(U) − f, ϕ) = (R(U), ϕ).
(138)

Noting now that if the solution U is computed by a Galerkin method and thus (R(U), v) = 0

for any v ∈ V̂h, we obtain

M(U) −M(u) = (R(U), ϕ− πhϕ), (139)

where πhϕ is a suitable approximation of ϕ in V̂h. One may now proceed to estimate the
error M(U) −M(u) in various ways, either by estimating the interpolation error πhϕ − ϕ
or by directly evaluating the quantity (R(U), ϕ − πhϕ). The residual R(U) and the dual

solution ϕ give precise information about the influence of the discrete representation (V̂h, Vh)
on the size of the error, which can be used in an adaptive feed-back control to choose a
suitable discrete representation for the given output quantity M of interest and the given
tolerance TOL for the error, see [37, 17, 51, 94].

11.6.2 The weak dual problem

We may estimate the error similarly for the variational problem (134) by considering the

following weak (variational) dual problem: Find ϕ ∈ V̂ such that

a′
∗
(U, u; v, ϕ) = M ′(U, u; v) ∀v ∈ V, (140)

where a′
∗

denotes the adjoint of the bilinear form a′, given as above by an appropriate
mean value of the Fréchet derivative of the semilinear form a. We now obtain the error
representation

M(U) −M(u) = M ′(U, u; U − u) = a′
∗
(U, u; U − u, ϕ) = a′(U, u; ϕ,U − u)

= a(U ; ϕ) − a(u; ϕ) = a(U ; ϕ) − L(ϕ).
(141)

As before, we use the Galerkin orthogonality to subtract a(U, πϕ) − L(πϕ) = 0 for some

πhϕ ∈ V̂h ⊂ V̂ and obtain

M(U) −M(u) = a(U ;ϕ − πϕ) − L(ϕ− πϕ). (142)

To automate the process of error control, we thus need to automatically generate and
solve the dual problem (135) or (140) from a given primal problem (132) or (134). We
investigate this question further in [60].

11.7 The Automation of Modeling

The automation of modeling concerns both the problem of finding the parameters describing
the model (132) from a given set of data (inverse modeling), and the automatic construction
of a reduced model for the variation of the solution on resolvable scales (model reduction).
We here discuss briefly the automation of model reduction.

In situations where the solution u of (132) varies on scales of different magnitudes,
and these scales are not localized in space and time, computation of the solution may be
very expensive, even with an adaptive method. To make computation feasible, one may
instead seek to compute an average ū of the solution u of (132) on resolvable scales. Typical
examples include meteorological models for weather prediction, with fast time scales on the
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range of seconds and slow time scales on the range of years, or protein folding represented
by a molecular dynamics model, with fast time scales on the range of femtoseconds and
slow time scales on the range of microseconds.

Model reduction typically involves extrapolation from resolvable scales, or the construc-
tion of a large-scale model from local resolution of fine scales in time and space. In both
cases, a large-scale model

A(ū) = f̄ + ḡ(u), (143)

for the average ū is constructed from the given model (132) with a suitable modeling term
ḡ(u) ≈ A(ū) − Ā(u).

Replacing a given model with a computable reduced model by taking averages in space
and time is often referred to as subgrid modeling. Subgrid modeling has received much
attention in recent years, in particular for the incompressible Navier–Stokes equations,
where the subgrid modeling problem takes the form of determining the Reynolds stresses
corresponding to ḡ. Many subgrid models have been proposed for the averaged Navier–
Stokes equations, but no clear answer has been given. Alternatively, the subgrid model
may take the form of a least-squares stabilization, as suggested in [64, 63, 65]. In either
case, the validity of a proposed subgrid model may be verified computationally by solving an
appropriate dual problem and computing the relevant residuals to obtain an error estimate
for the modeling error, see [76].

11.8 The Automation of Optimization

The automation of optimization relies on the automation of (i)–(iv), with the solution
of the primal problem (132) and an associated dual problem being the key steps in the
minimization of a given cost functional. In particular, the automation of optimization
relies on the automatic generation of the dual problem.

The optimization of a given cost functional J = J (u, p), subject to the constraint (132),
with p a function (the control variables) to be determined, can be formulated as the problem
of finding a stationary point of the associated Lagrangian,

L(u, p, ϕ) = J (u, p) + (A(u, p) − f(p), ϕ), (144)

which takes the form of a system of differential equations, involving the primal and dual
problems, as well as an equation expressing stationarity with respect to the control vari-
ables p,

A(u, p) = f(p),

(A′)∗(u, p)ϕ = −∂J /∂u,

∂J /∂p = (∂f/∂p)∗ϕ− (∂A/∂p)∗ϕ.

(145)

It follows that the optimization problem may be solved by the solution of a system of
differential equations. Note that the first equation is the given model (132), the second
equation is the dual problem and the third equation gives a direction for the update of the
control variables. The automation of optimization thus relies on the automated solution
of both the primal problem (132) and the dual problem (135), including the automatic
generation of the dual problem.
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12 CONCLUDING REMARKS

With the FEniCS project [59], we have the beginnings of a working system automating
(in part) the finite element method, which is the first step towards the Automation of
Computational Mathematical Modeling, as outlined in [96]. As part of this work, a number
of key components, FIAT, FFC and DOLFIN, have been developed. These components
provide reference implementations of the algorithms discussed in Sections 3–6.

As the current toolset, focused mainly on an automation of the finite element method
(the automation of discretization), is becoming more mature, important new areas of re-
search and development emerge, including the remaining key steps towards the Automation
of CMM. In particular, we plan to explore the possibility of automatically generating dual
problems and error estimates in an effort to automate error control.
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Press, 1997, pp. 163–202.

11 W. Bangerth, Using modern features of C++ for adaptive finite element methods:
Dimension-independent programming in deal.II, in Proceedings of the 16th IMACS World
Congress 2000, Lausanne, Switzerland, 2000, M. Deville and R. Owens, eds., 2000. Docu-
ment Sessions/118-1.

12 W. Bangerth, R. Hartmann, and G. Kanschat, deal.II Differential Equations Analysis
Library, 2006. URL: http://www.dealii.org.

13 W. Bangerth and G. Kanschat, Concepts for object-oriented finite element software – the
deal.II library, Preprint 99-43 (SFB 359), IWR Heidelberg, Oct. 1999.

14 D. M. Beazley, SWIG : An easy to use tool for integrating scripting languages with C and
C++, presented at the 4th Annual Tcl/Tk Workshop, Monterey, CA, (2006).

15 D. M. Beazley et al., Simplified wrapper and interface generator, 2006. URL: http://www.
swig.org.

16 E. B. Becker, G. F. Carey, and J. T. Oden, Finite Elements: An Introduction, Prentice–
Hall, Englewood–Cliffs, 1981.

17 R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation
in finite element methods, Acta Numerica, 10 (2001), pp. 1–102.

18 L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry,

M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and

R. C. Whaley, An updated set of Basic Linear Algebra Subprograms (BLAS), ACM Trans-
actions on Mathematical Software, 28 (2002), pp. 135–151.



84 Anders Logg

19 D. Boffi, Three-dimensional finite element methods for the Stokes problem, SIAM J. Numer.
Anal., 34 (1997), pp. 664–670.

20 S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
Springer-Verlag, 1994.

21 F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising
from lagrangian multipliers, RAIRO Anal. Numér., R–2 (1974), pp. 129–151.

22 F. Brezzi, J. Douglas, Jr., and L. D. Marini, Two families of mixed finite elements for
second order elliptic problems, Numer. Math., 47 (1985), pp. 217–235.

23 F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, vol. 15 of Springer Series
in Computational Mathematics, Springer-Verlag, New York, 1991.
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NOTATION

A – the differential operator of the model A(u) = f

A – the global tensor with entries {Ai}i∈I

A0 – the reference tensor with entries {A0
iα}i∈IK ,α∈A

Ā0 – the matrix representation of the (flattened) reference tensor A0

AK – the element tensor with entries {AK
i }i∈IK

a – the semilinear, multilinear or bilinear form

aK – the local contribution to a multilinear form a from K

aK – the vector representation of the (flattened) element tensor AK

A – the set of secondary indices

B – the set of auxiliary indices

e – the error, e = U − u

FK – the mapping from K0 to K

GK – the geometry tensor with entries {Gα
K}α∈A

gK – the vector representation of the (flattened) geometry tensor GK

I – the set
∏r

j=1[1, N
j ] of indices for the global tensor A

IK – the set
∏r

j=1[1, n
j
K ] of indices for the element tensor AK (primary indices)

ιK – the local-to-global mapping from NK to N

ι̂K – the local-to-global mapping from N̂K to N̂

ιjK – the local-to-global mapping from N j
K to N j

K – a cell in the mesh T

K0 – the reference cell

L – the linear form (functional) on V̂ or V̂h

m – the number of discrete function spaces used in the definition of a

N – the dimension of V̂h and Vh

N j – the dimension V j
h

Nq – the number of quadrature points on a cell

n0 – the dimension of P0

nK – the dimension of PK

n̂K – the dimension of P̂K

nj
K – the dimension of Pj

K

N – the set of global nodes on Vh

N̂ – the set of global nodes on V̂h

N j – the set of global nodes on V j
h

N0 – the set of local nodes on P0

NK – the set of local nodes on PK

N̂K – the set of local nodes on P̂K

N j
K – the set of local nodes on P j

K
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ν0
i – a node on P0

νK
i – a node on PK

ν̂K
i – a node on P̂K

νK,j
i – a node on Pj

K

P0 – the function space on K0 for Vh

P̂0 – the function space on K0 for V̂h

Pj
0 – the function space on K0 for V j

h

PK – the local function space on K for Vh

P̂K – the local function space on K for V̂h

Pj
K – the local function space on K for V j

h

Pq(K) – the space of polynomials of degree ≤ q on K

PK – the local function space on K generated by {P j
K}m

j=1

R – the residual, R(U) = A(U) − f

r – the arity of the multilinear form a (the rank of AK)

U – the discrete approximate solution, U ≈ u

(Ui) – the vector of expansion coefficients for U =
∑N

i=1 Uiφi

u – the exact solution of the given model A(u) = f

V – the space of trial functions on Ω (the trial space)

V̂ – the space of test functions on Ω (the test space)

Vh – the space of discrete trial functions on Ω (the discrete trial space)

V̂h – the space of discrete test functions on Ω (the discrete test space)

V j
h – a discrete function space on Ω

|V | – the dimension of a vector space V

Φi – a basis function in P0

Φ̂i – a basis function in P̂0

Φj
i – a basis function in Pj

0

φi – a basis function in Vh

φ̂i – a basis function in V̂h

φj
i – a basis function in V j

h

φK
i – a basis function in PK

φ̂K
i – a basis function in P̂K

φK,j
i – a basis function in Pj

K

ϕ – the dual solution

T – the mesh

Ω – a bounded domain in R
d


