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Optimizing the computation of the element tensor
Tensor contractions as matrix–vector products
Finding an optimized computation

I Chapters 5 and 7 in lecture notes
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The assembly algorithm

A = 0
for K ∈ T

Compute the element tensor AK

(Add AK to A according to {ιK}K∈T )
end for

Need to compute the rank r element tensor AK given by

AK
i = aK(φK,1

i1
, φK,2

i2
, . . . , φK,r

ir
) ∀i ∈ IK

for any given K ∈ T
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Evaluation by quadrature

I Run-time evaluation by quadrature

I The standard approach

I Basis functions and their derivatives can be
pretabulated at the quadrature points

I Used by deal.II and DiffPack
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Basic algorithm

AK = 0
for k = 1, 2, . . . , Nq

for i ∈ IK

AK
i + = wk < integrand at xk >

end for

end for

I Quadrature points: {xk}
Nq

k=1 ⊂ K

I Quadrature weights:
∑Nq

k=1 wk = |K|
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Poisson’s equation with deal.II

...

for (dof_handler.begin_active(); cell! = dof_handler.end(); ++cell)

{

for (unsigned int i = 0; i < dofs_per_cell; ++i)

for (unsigned int j = 0; j < dofs_per_cell; ++j)

for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)

cell_matrix(i, j) += (fe_values.shape_grad (i, q_point) *

fe_values.shape_grad (j, q_point) *

fe_values.JxW(q_point));

for (unsigned int i = 0; i < dofs_per_cell; ++i)

for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)

cell_rhs(i) += (fe_values.shape_value (i, q_point) *

<value of right-hand side f> *

fe_values.JxW(q_point));

...
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Quadrature for Poisson

Bilinear form:

a(v, U) =

∫

Ω
∇v · ∇U dx

Approximate the integral by quadrature:

AK
i =

∫

K

∇φK,1
i1

· ∇φK,2
i2

dx

≈

Nq
∑

k=1

wk∇φK,1
i1

(xk) · ∇φK,2
i2

(xk)
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Computing the gradient on K

Compute gradient of φK
i on K is obtained from the gradient of Φi

on K0:

∇xφ
K
i (xk) = (F ′

K)−>(xk)∇XΦi(Xk)

∂φK
i

∂xj
(xk) =

d
∑

l=1

∂Xl

∂xj
(Xk)

∂ΦK
i

∂Xl
(Xk)

where xk = FK(Xk) and φK
i = Φi ◦ F−1

K
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Cost of quadrature for Poisson

I Computing gradients: Nqn0d
2 (multiply–add pairs)

I Approximating the integral: Nqn
2
0d

I Total cost for computing the element tensor:

Nqn0d
2 + Nqn

2
0d ∼ Nqn

2
0d

Also need to compute the mapping FK , the inverse F−1
K and

determinant detF ′
K
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Evaluation by tensor representation

I Precompute integrals on the reference element K0

I Used in specialized hand-optimized codes

I Automated by in early versions of DOLFIN for linear elements

I Automated by FFC for general elements

I Integrals automatically precomputed at compile-time
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Tensor representation for Poisson

As before we have

AK
i =

∫

K

∇φK,1
i1

· ∇φK,2
i2

dx =

∫

K

d
∑

β=1

∂φK,1
i1

∂xβ

∂φK,2
i2

∂xβ
dx

Make a change of variables:

AK
i =

∫

K0

d
∑

β=1

d
∑

α1=1

∂Xα1

∂xβ

∂Φ1
i1

∂Xα1

d
∑

α2=1

∂Xα2

∂xβ

∂Φ2
i2

∂Xα2

det F ′
K dX
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Tensor representation for Poisson

If the mapping FK is affine, the transforms ∂X/∂x and the
determinant detF ′

K are constant:

AK
i =

∫

K0

d
∑

β=1

d
∑

α1=1

∂Xα1

∂xβ

∂Φ1
i1

∂Xα1

d
∑

α2=1

∂Xα2

∂xβ

∂Φ2
i2

∂Xα2

det F ′
K dX

= detF ′
K

d
∑

α1=1

d
∑

α2=1

d
∑

β=1

∂Xα1

∂xβ

∂Xα2

∂xβ

∫

K0

∂Φ1
i1

∂Xα1

∂Φ2
i2

∂Xα2

dX
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Tensor representation for Poisson

Write as a tensor contraction:

AK
i =

d
∑

α1=1

d
∑

α2=1

A0
iαGα

K

or
AK = A0 : GK

where

A0
iα =

∫

K0

∂Φ1
i1

∂Xα1

∂Φ2
i2

∂Xα2

dX

Gα
K = detF ′

K

d
∑

β=1

∂Xα1

∂xβ

∂Xα2

∂xβ
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Cost of tensor representation for Poisson

I Computing the tensor GK : d3 (multiply–add pairs)

I Computing the tensor contraction: n2
0d

2

I Total cost for computing the element tensor:

d3 + n2
0d

2 ∼ n2
0d

2

I Compare to cost for quadrature: Nqn
2
0d

I Speedup: Nq/d
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The tensor representation A
K

= A
0

: GK

The rank r element tensor AK corresponding to a multlinear
form a can be represented as the tensor contraction

AK = A0 : GK

that is
AK

i =
∑

α∈A

A0
iαGα

K ∀i ∈ IK

I A0 is the reference tensor

I GK is the geometry tensor
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Efficient computation of the element tensor

I Compute the reference tensor A0 once at compile-time

I Generate code for efficient computation of the
geometry tensor GK

I Generate code for efficient computation of the
tensor contraction AK = A0 : GK

I Since A0 is known at compile-time, we may automatically
optimize the tensor-contraction based on the structure of A0
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A canonical form

I Need to find the tensor representation AK = A0 : GK

for a general multilinear form

I Write the element tensor in a general canonical form and find
the tensor representation for the canonical form:

AK
i =

∑

γ∈C

∫

K

m
∏

j=1

cj(γ)D
δj(γ)
x φK,j

ιj(i,γ)[κj(γ)] dx
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The canonical form for Poisson

AK
i =

∫

K

d
∑

γ=1

∂φK,1
i1

∂xγ

∂φK,2
i2

∂xγ
dx =

d
∑

γ=1

∫

K

∂φK,1
i1

∂xγ

∂φK,2
i2

∂xγ
dx

=
∑

γ∈C

∫

K

m
∏

j=1

cj(γ)D
δj(γ)
x φK,j

ιj(i,γ)[κj(γ)] dx

m = 2 ι(i, γ) = (i1, i2)
C = [1, d] κ(γ) = (∅, ∅)

c(γ) = (1, 1) δ(γ) = (γ, γ)
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The canonical form for a stabilization term

A stabilization term in a least-squares stabilized cG(1)cG(1)
method for Navier–Stokes:

a(v, U) =

∫

Ω
(w · ∇v) · (w · ∇U) dx

=

∫

Ω

d
∑

γ1,γ2,γ3=1

w[γ2]
∂v[γ1]

∂xγ2

w[γ3]
∂U [γ1]

∂xγ3

dx

where w ∈ V 3
h = V 4

h is a given approximation of the velocity
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The canonical form for a stabilization term

AK
i =

∫

K

d
∑

γ1,γ2,γ3=1

n3

K
∑

γ4=1

n4

K
∑

γ5=1

∂φK,1
i1

[γ1]

∂xγ2

∂φK,2
i2

[γ1]

∂xγ3

wK
γ4

φK,3
γ4

[γ2]w
K
γ5

φK,4
γ5

[γ3] dx

=
∑

γ∈C

∫

K

m
∏

j=1

cj(γ)Dδj(γ)
x φK,j

ιj(i,γ)[κj(γ)] dx

m = 4 ι(i, γ) = (i1, i2, γ4, γ5)
C = [1, d]3 × [1, n3

K ] × [1, n4
K ] κ(γ) = (γ1, γ1, γ2, γ3)

c(γ) = (1, 1, wK
γ4

, wK
γ5

) δ(γ) = (γ2, γ3, ∅, ∅)
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A representation theorem

AK
i =

∑

γ∈C

∫

K

m
∏

j=1

cj(γ)D
δj (γ)
x φK,j

ιj(i,γ)[κj(γ)] dx =
∑

α∈A

A0
iαGα

K

where

A0
iα =

∑

β∈B

∫

K0

m
∏

j=1

D
δ′j(α,β)

X Φj
ιj(i,α,β)[κj(α, β)] dX

and the geometry tensor GK is the outer product of the
coefficients of any weight functions with a tensor that depends
only on the Jacobian F ′

K :

Gα
K =

m
∏

j=1

cj(α) detF ′
K

∑

β∈B′

m
∏

j′=1

|δj′ (α,β)|
∏

k=1

∂Xδ′
j′k

(α,β)

∂xδj′k(α,β)
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A representation thereom (cont’d)

I Proof same as for Poisson

I Make a change of variables to the reference cell K0

I Interchange order of product of summation

I Constructive proof, repeated every time FFC compiles a form

Note that in general, we have a sum of tensor contractions:

AK =
∑

k

A0,k : GK,k
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Test case 1: the mass matrix

Bilinear form:

a(v, U) =

∫

Ω
v U dx

Tensor representation:

A0
iα =

∫

K0

Φ1
i1

Φ2
i2

dX

Gα
K = detF ′

K

Ranks:

|iα| = 2

|α| = 0
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Test case 2: Poisson’s equation

Bilinear form:

a(v, U) =

∫

Ω
∇v · ∇U dx

Tensor representation:

A0
iα =

∫

K0

∂Φ1
i1

∂Xα1

∂Φ2
i2

∂Xα2

dX

Gα
K = detF ′

K

d
∑

β=1

∂Xα1

∂xβ

∂Xα2

∂xβ

Ranks:

|iα| = 4

|α| = 2
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Test case 3: nonlinear term in Navier–Stokes

Bilinear form:

a(v, U) =

∫

Ω
v · (w · ∇)U dx

Tensor representation:

A0
iα =

d
∑

β=1

∫

K0

Φ1
i1

[β]
∂Φ2

i2
[β]

∂Xα3

Φ3
α1

[α2] dX

Gα
K = wK

α1
detF ′

K

∂Xα3

∂xα2

Ranks:

|iα| = 5

|α| = 3
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Test case 4: strain-strain term of linear elasticity

Bilinear form:

a(v, U) =

∫

Ω
ε(v) : ε(U) dx

Tensor representation (first term):

A0
iα =

d
∑

β=1

∫

K0

∂Φ1
i1

[β]

∂Xα1

∂Φ2
i2

[β]

∂Xα2

dX

Gα
K =

1

2
det F ′

K

d
∑

β=1

∂Xα1

∂xβ

∂Xα2

∂xβ

Ranks:

|iα| = 4

|α| = 2
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Extension to non-affine mappings

Consider Poisson again:

AK
i =

∫

K

∇φK,1
i1

· ∇φK,2
i2

dx =

∫

K

d
∑

β=1

∂φK,1
i1

∂xβ

∂φK,2
i2

∂xβ
dx

=
d

∑

α1=1

d
∑

α2=1

d
∑

β=1

∫

K0

∂Xα1

∂xβ

∂Xα2

∂xβ

∂Φ1
i1

∂Xα1

∂Φ2
i2

∂Xα2

detF ′
K dX

≈
d

∑

α1=1

d
∑

α2=1

Nq
∑

α3=1

wα3

∂Φ1
i1

∂Xα1

(Xα3
)

∂Φ2
i2

∂Xα2

(Xα3
) ×

×
d

∑

β=1

∂Xα1

∂xβ

(Xα3
)
∂Xα2

∂xβ

(Xα3
) det F ′

K(Xα3
)
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Extension to non-affine mappings

We obtain a representation of the form

AK = A0 : GK

where the reference tensor A0 is now given by

A0
iα = wα3

∂Φ1
i1

∂Xα1

(Xα3
)

∂Φ2
i2

∂Xα2

(Xα3
)

and the geometry tensor GK is given by

Gα
K = detF ′

K(Xα3
)

d
∑

β=1

∂Xα1

∂xβ
(Xα3

)
∂Xα2

∂xβ
(Xα3

)
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A language for multilinear forms

I Language should be close to mathematical notation

I Should be easy to obtain the canonical form from
a string in the language

I The tensor representation follows from the canonical form

I Language implemented by FFC
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An algebra for multilinear forms

The vector space of linear combinations of basis functions:

PK =
{

v : v =
∑

c(·)φ
K
(·)

}

The algebra of linear combinations of products of basis functions
and their derivatives:

PK =

{

v : v =
∑

c(·)

∏ ∂|(·)|φK
(·)

∂x(·)

}

The elements of the algebra PK correspond to the integrands of
the canonical form
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An example

Consider the bilinear form

a(v, U) =

∫

Ω
∇v · ∇U + v U dx

with corresponding element tensor canonical form

AK
i =

d
∑

γ=1

∫

K

∂φK,1
i1

∂xγ

∂φK,2
i2

∂xγ
dx +

∫

K

φK,1
i1

φK,2
i2

dx

If we let v = φK,1
i1

∈ PK and U = φK,2
i2

∈ PK then

∇v · ∇U + v U ∈ PK

Anders Logg logg@tti-c.org 4. Computing the Element Tensor



Automating the computation of the element tensor
Optimizing the computation of the element tensor

Evaluation by quadrature
Evaluation by tensor representation
A language for multilinear forms

Implementation by operator-overloading

I Implement by operator-overloading in Python or C++

I Basic types:
I BasisFunction, Product, Sum
I Index
I FiniteElement

I Basic operators:
I +, -, * (note absence of /)
I D
I dot, mult, trace, transp
I grad, div, rot
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An example

Bilinear form:

a(v, U) =

∫

Ω
∇v · ∇U + v U dx

Implementation:

element = FiniteElement(...)

v = BasisFunction(element)

U = BasisFunction(element)

a = (dot(grad(v), grad(U)) + v*U)*dx
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Computing the tensor contraction

Need to compute the tensor contraction

AK = A0 : GK

where
AK

i =
∑

α∈A

A0
iαGα

K

for all i ∈ IK

Two different ways to efficiently compute the tensor contraction:

I Phrase as matrix–vector products and call BLAS

I Use the structure of the reference tensor to find an
optimized computation

Anders Logg logg@tti-c.org 4. Computing the Element Tensor



Automating the computation of the element tensor
Optimizing the computation of the element tensor

Tensor contractions as matrix–vector products
Finding an optimized computation

The naive algorithm

for i ∈ IK

AK
i = 0

for α ∈ A
AK

i = AK
i + A0

iαGα
K

end for

end for

I Flatten tensors to vectors and matrices

I Express the tensor contraction AK = A0 : GK as a
matrix–vector product
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Flattening the tensors

Enumerate IK and A:

I Let {ij}
|IK |
j=1 be an enumeration the primary multiindices

I Let {αj}
|A|
j=1 be an enumeration of the secondary multiindices

For Poisson with quadratic elements on triangles, we may take

{ij}
|IK |
j=1 = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (6, 6)}

{αj}
|A|
j=1 = {(1, 1), (1, 2), (2, 1), (2, 2)}
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Flattening the tensors

Define the flattened element and geometry tensors (vectors)
aK ↔ AK and gK ↔ GK by

aK = (AK
i1 , AK

i2 , . . . , AK
i|IK |)

>

gK = (Gα1

K , Gα2

K , . . . , Gα|A|

K )>

Define the flattened reference tensor (matrix) Ā0 by

Ā0
jk = A0

ijαk , j = 1, 2, . . . , |IK |, k = 1, 2, . . . , |A|
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Write as a matrix–vector product

We note that

aK
j = AK

ij =
∑

α∈A

A0
ijαGα

K =

|A|
∑

k=1

A0
ijαkGαk

K =

|A|
∑

k=1

Ā0
jk(gK)k

It follows that the tensor contraction

AK = A0 : GK

corresponds to the matrix–vector product

aK = Ā0gK
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The general case

In general the element tensor is a sum of tensor contractions:

AK =
∑

k

A0,k : GK,k

We may still compute the element tensor by a matrix–vector
product:

aK =
∑

k

Ā0,kgK,k =
[

Ā0,1 Ā0,2 · · ·
]











gK,1

gK,2
...











= Ā0gK
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Processing batches of elements

I Matrix–vector product computed by a level 2 BLAS call

I More efficient to compute a matrix–matrix product with a
level 3 BLAS call than a set of matrix–vector products with
level 2 BLAS calls

Compute the element tensors for a batch {Kk}k ⊂ T :

[

aK1 aK2 · · ·
]

=
[

Ā0gK1
Ā0gK2

. . .
]

= Ā0 [gK1
gK2

. . .]
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Finding an optimized computation

I Use the structure of the reference tensor A0 to find an
optimized computation

I The reference tensor may contain zeros

I Take advantage of symmetries

I Look for “complexity-reducing” relations

Will discuss two different symmetry-reducing relations:

I Collinearity

I Closeness in Hamming distance
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Collinearity

Note that
AK

i =
∑

α∈A

A0
iαGα

K = a0
i · gK

where the vector a0
i is defined by

a0
i = (A0

iα1 , A
0
iα2 , . . . , A

0
iα|A|)

>

If a0
i and a0

i′ are collinear:

a0
i′ = αa0

i

for some α ∈ R it follows that

AK
i′ = a0

i′ · gK = (αa0
i ) · gK = αAK

i

Anders Logg logg@tti-c.org 4. Computing the Element Tensor



Automating the computation of the element tensor
Optimizing the computation of the element tensor

Tensor contractions as matrix–vector products
Finding an optimized computation

Collinearity

I If a0
i and a0

i′ are collinear then AK
i′ can be computed from AK

i

in just one multiplication

I Cost of direct computatation is |A|

I For Poisson the cost is reduced from |A| = d2 to 1

I Look for pairs (a0
i , a

0
i′) that are collinear
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Closeness in Hamming distance

I Find pairs (a0
i , a

0
i′) that are close in Hamming distance

I Hamming distance is number of entries that differ

I If the Hamming distance between a0
i and a0

i′ is ρ then the cost
of computing AK

i from AK
i′ is ρ

I Maximum Hamming distance is ρ = |A|
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Closeness in Hamming distance

If a0
i and a0

i′ differ only in the first ρ entries then

AK
i′ = a0

i′ · gK = a0
i · gK +

ρ
∑

k=1

(A0
i′αk − A0

iαk)Gαk

K

= AK
i +

ρ
∑

k=1

(A0
i′αk − A0

iαk)Gαk

K

I The vector (A0
i′α1 − A0

iα1 , A
0
i′α2 − A0

iα2 , . . . , A
0
i′αρ − A0

iαρ)>

can be computed at compile-time

I The cost is reduced from |A| to ρ
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Complexity-reducing relations

I We refer to collinearity and closeness in Hamming distance as
complexity-reducing relations

I Define the complexity-reducing relation ρ(a0
i , a

0
i′) ≤ |A| as the

minimum of all complexity-reducing relations

How do we systematically explore a complexity-reducing relation

to find an optimized computation?
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Minimum spanning trees (MST)

I Let G = (V,E) be a graph with vertices V and edges E
I A tree is any connected acyclic subgraph G′ = (V,E′) of G

with E′ ⊂ E
I A minimum spanning tree for a weighted graph is a tree with

minimal edge weight
I Standard algorithms: Prim’s algorith, Kruskal’s algorithm
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Finding an optimized computation of A
K

I Let the vertices V correspond to the entries {AK
i }i∈IK

of the element tensor AK

I Put edges between all pairs of vertices (AK
i , AK

i′ )

I Put a weight on each edge (AK
i , AK

i′ ) given by ρ(a0
i , a

0
i′)

I Compute the minimum spanning tree

I Compute the entries {AK
i }i∈IK

by traversing the
minimum spanning tree
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The minimum spanning tree for Poisson

Reference tensor:

A0
iα =

∫

K0

∂Φ1
i1

∂Xα1

∂Φ2
i2

∂Xα2

dX ∀i ∈ IK ∀α ∈ A

Quadratic elements on triangles:

I IK = [1, 6]2 and A = [1, 2]2

I The rank two element tensor AK has 36 entries

I The rank four reference tensor A0 has 144 entries

I Reduce operation count from 144 to less than
17 multiply-add pairs

I Compute AK by less than one operation per entry!
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The Poisson reference tensor for quadratics on triangles

(3, 3, 3, 3) (1, 0, 1, 0) (0, 1, 0, 1) (0, 0, 0, 0) −(0, 4, 0, 4) −(4, 0, 4, 0)

(1, 1, 0, 0) (3, 0, 0, 0) −(0, 1, 0, 0) (0, 4, 0, 0) (0, 0, 0, 0) −(4, 4, 0, 0)

(0, 0, 1, 1) −(0, 0, 1, 0) (0, 0, 0, 3) (0, 0, 4, 0) −(0, 0, 4, 4) (0, 0, 0, 0)

(0, 0, 0, 0) (0, 0, 4, 0) (0, 4, 0, 0) (8, 4, 4, 8) −(8, 4, 4, 0) −(0, 4, 4, 8)

−(0, 0, 4, 4) (0, 0, 0, 0) −(0, 4, 0, 4) −(8, 4, 4, 0) (8, 4, 4, 8) (0, 4, 4, 0)

−(4, 4, 0, 0) −(4, 0, 4, 0) (0, 0, 0, 0) −(0, 4, 4, 8) (0, 4, 4, 0) (8, 4, 4, 8)

I Scaled by a factor 6
I A0

1111 = A0
1112 = A0

1121 = A0
1122 = 3/6 = 1/2

I A0
1211 = 1/6, A0

1212 = 0 etc.
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Use symmetry

I The element tensor AK is symmetric so we only need to
compute 21 of the 36 entries

I The geometry tensor GK is symmetric so we may reduce
the vectors:

AK
i = a0

i · gK = A0
i11G

11
K + A0

i12G
12
K + A0

i21G
21
K + A0

i22G
22
K

= A0
i11G

11
K + (A0

i12 + A0
i21)G

12
K + A0

i22G
22
K = ā0

i · ḡK

where

ā0
i = (A0

i11, A
0
i12 + A0

i21, A
0
i22)

>

ḡK = (G11
K , G12

K , G22
K )>

I We directly obtain a reduction from 144 multiply–add pairs to
21 × 3 = 63 multiply–add pairs
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The symmmetry-reduced reference tensor

(3, 6, 3)> (1, 1, 0)> (0, 1, 1)> (0, 0, 0)> −(0, 4, 4)> −(4, 4, 0)>

(3, 0, 0)> −(0, 1, 0)>, (0, 4, 0)> (0, 0, 0)> −(4, 4, 0)>

(0, 0, 3)> (0, 4, 0)> −(0, 4, 4)> (0, 0, 0)>

(8, 8, 8)> −(8, 8, 0)> −(0, 8, 8)>

(8, 8, 8)> (0, 8, 0)>

(8, 8, 8)>

I ā0
12, ā0

16, ā0
26 and ā0

45 collinear

I ā0
44 and ā0

45 close in Hamming distance

I Can you spot any other complexity-reducing relations?
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The minimum spanning tree (upper part)
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The optimized computation

AK
44 = A0

4411G
11
K + (A0

4412 + A0
4421)G

12
K + A0

4422G
22
K

AK
46 = −AK

44 + 8G11
K

AK
45 = −AK

44 + 8G22
K

AK
55 = AK

44

AK
66 = AK

44

AK
56 = −AK

45 − 8G11
K

AK
12 = − 1

8AK
45

AK
16 = 1

2AK
45

AK
23 = −AK

12 + 1G11
K

AK
24 = −AK

16 − 4G11
K

AK
26 = AK

16

AK
13 = −AK

23 + 1GK
22

AK
14 = 0AK

23

AK
34 = AK

24

AK
15 = −4AK

13

AK
25 = AK

14

AK
22 = AK

14 + 3GK
11

AK
33 = AK

14 + 3GK
22

AK
36 = AK

14

AK
35 = AK

15

AK
11 = AK

22 + 6GK
12 + 3GK

22

I 17 multiply-add pairs
I Can be reduced further
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Upcoming lectures

0. Automating the Finite Element Method

1. Survey of Current Finite Element Software

2. The Finite Element Method

3. Automating Basis Functions and Assembly

4. Automating and Optimizing the
Computation of the Element Tensor

5. FEniCS and the Automation of CMM

6. FEniCS Demo Session
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