# 4. Automating and Optimizing the Computation of the Element Tensor

Anders Logg logg@tti-c.org

Toyota Technological Institute at Chicago

Sixth Winter School in Computational Mathematics Geilo, March 5-10 2006

・ロン ・回と ・ヨン・

#### Automating the computation of the element tensor

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

#### Optimizing the computation of the element tensor

Tensor contractions as matrix-vector products Finding an optimized computation

#### Chapters 5 and 7 in lecture notes

- 4 回 ト 4 ヨ ト 4 ヨ ト

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

イロト イポト イヨト イヨト

# The assembly algorithm

$$\begin{split} A &= 0\\ \text{for } K \in \mathcal{T}\\ & \text{Compute the element tensor } A^K\\ & (\text{Add } A^K \text{ to } A \text{ according to } \{\iota_K\}_{K \in \mathcal{T}})\\ \text{end for} \end{split}$$

Need to compute the rank r element tensor  $A^K$  given by

$$A_i^K = a_K(\phi_{i_1}^{K,1}, \phi_{i_2}^{K,2}, \dots, \phi_{i_r}^{K,r}) \quad \forall i \in \mathcal{I}_K$$

for any given  $K \in \mathcal{T}$ 

**Evaluation by quadrature** Evaluation by tensor representation A language for multilinear forms

イロト イヨト イヨト イヨト

## Evaluation by quadrature

- Run-time evaluation by quadrature
- The standard approach
- Basis functions and their derivatives can be pretabulated at the quadrature points
- Used by deal.II and DiffPack

**Evaluation by quadrature** Evaluation by tensor representation A language for multilinear forms

< □ > < □ > < □ > < □ > < □ > .

4

# Basic algorithm

$$\begin{array}{l} A^K = 0 \\ \text{for } k = 1, 2, \ldots, N_q \\ \quad \text{for } i \in \mathcal{I}_K \\ A_i^K + = w_k < \text{integrand at } x_k > \\ \quad \text{end for} \\ \text{end for} \end{array}$$

• Quadrature points: 
$$\{x_k\}_{k=1}^{N_q} \subset K$$

• Quadrature weights: 
$$\sum_{k=1}^{N_q} w_k = |K|$$

**Evaluation by quadrature** Evaluation by tensor representation A language for multilinear forms

イロト イポト イヨト イヨト

## Poisson's equation with deal.II

```
for (dof_handler.begin_active(); cell! = dof_handler.end(); ++cell)
 for (unsigned int i = 0; i < dofs_per_cell; ++i)
   for (unsigned int j = 0; j < dofs_per_cell; ++j)</pre>
      for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
        cell_matrix(i, j) += (fe_values.shape_grad (i, q_point) *
                               fe_values.shape_grad (j, q_point) *
                               fe_values.JxW(q_point));
 for (unsigned int i = 0; i < dofs_per_cell; ++i)</pre>
   for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)</pre>
      cell_rhs(i) += (fe_values.shape_value (i, q_point) *
                       <value of right-hand side f> *
                      fe_values.JxW(q_point));
  . . .
```

**Evaluation by quadrature** Evaluation by tensor representation A language for multilinear forms

イロト イヨト イヨト イヨト

## Quadrature for Poisson

Bilinear form:

$$a(v,U) = \int_{\Omega} \nabla v \cdot \nabla U \, \mathrm{d}x$$

Approximate the integral by quadrature:

$$A_i^K = \int_K \nabla \phi_{i_1}^{K,1} \cdot \nabla \phi_{i_2}^{K,2} \,\mathrm{d}x$$
$$\approx \sum_{k=1}^{N_q} w_k \nabla \phi_{i_1}^{K,1}(x^k) \cdot \nabla \phi_{i_2}^{K,2}(x^k)$$

**Evaluation by quadrature** Evaluation by tensor representation A language for multilinear forms

(日) (同) (E) (E) (E)

# Computing the gradient on K

Compute gradient of  $\phi_i^K$  on K is obtained from the gradient of  $\Phi_i$  on  $K_0$ :

$$\nabla_x \phi_i^K(x_k) = (F'_K)^{-\top}(x_k) \nabla_X \Phi_i(X_k)$$
$$\frac{\partial \phi_i^K}{\partial x_j}(x^k) = \sum_{l=1}^d \frac{\partial X_l}{\partial x_j}(X^k) \frac{\partial \Phi_i^K}{\partial X_l}(X^k)$$

where  $x^k = F_K(X^k)$  and  $\phi_i^K = \Phi_i \circ F_K^{-1}$ 

**Evaluation by quadrature** Evaluation by tensor representation A language for multilinear forms

・ロト ・回ト ・ヨト ・ヨト

# Cost of quadrature for Poisson

- Computing gradients: N<sub>q</sub>n<sub>0</sub>d<sup>2</sup> (multiply-add pairs)
- Approximating the integral:  $N_q n_0^2 d$
- Total cost for computing the element tensor:

$$N_q n_0 d^2 + N_q n_0^2 d \sim N_q n_0^2 d$$

Also need to compute the mapping  $F_K$ , the inverse  $F_K^{-1}$  and determinant  $\det F_K'$ 

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

イロト イポト イヨト イヨト

## Evaluation by tensor representation

- Precompute integrals on the reference element  $K_0$
- Used in specialized hand-optimized codes
- Automated by in early versions of DOLFIN for linear elements
- Automated by FFC for general elements
- Integrals automatically precomputed at compile-time

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

・ロン ・回と ・ヨン・

#### Tensor representation for Poisson

#### As before we have

$$A_i^K = \int_K \nabla \phi_{i_1}^{K,1} \cdot \nabla \phi_{i_2}^{K,2} \, \mathrm{d}x = \int_K \sum_{\beta=1}^d \frac{\partial \phi_{i_1}^{K,1}}{\partial x_\beta} \frac{\partial \phi_{i_2}^{K,2}}{\partial x_\beta} \, \mathrm{d}x$$

Make a change of variables:

$$A_i^K = \int_{K_0} \sum_{\beta=1}^d \sum_{\alpha_1=1}^d \frac{\partial X_{\alpha_1}}{\partial x_\beta} \frac{\partial \Phi_{i_1}^1}{\partial X_{\alpha_1}} \sum_{\alpha_2=1}^d \frac{\partial X_{\alpha_2}}{\partial x_\beta} \frac{\partial \Phi_{i_2}^2}{\partial X_{\alpha_2}} \det F_K' \, \mathrm{d}X$$

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

・ロン ・回と ・ヨン・

2

#### Tensor representation for Poisson

If the mapping  $F_K$  is affine, the transforms  $\partial X/\partial x$  and the determinant det  $F'_K$  are constant:

$$A_{i}^{K} = \int_{K_{0}} \sum_{\beta=1}^{d} \sum_{\alpha_{1}=1}^{d} \frac{\partial X_{\alpha_{1}}}{\partial x_{\beta}} \frac{\partial \Phi_{i_{1}}^{1}}{\partial X_{\alpha_{1}}} \sum_{\alpha_{2}=1}^{d} \frac{\partial X_{\alpha_{2}}}{\partial x_{\beta}} \frac{\partial \Phi_{i_{2}}^{2}}{\partial X_{\alpha_{2}}} \det F_{K}^{\prime} dX$$
$$= \det F_{K}^{\prime} \sum_{\alpha_{1}=1}^{d} \sum_{\alpha_{2}=1}^{d} \sum_{\beta=1}^{d} \frac{\partial X_{\alpha_{1}}}{\partial x_{\beta}} \frac{\partial X_{\alpha_{2}}}{\partial x_{\beta}} \int_{K_{0}} \frac{\partial \Phi_{i_{1}}^{1}}{\partial X_{\alpha_{1}}} \frac{\partial \Phi_{i_{2}}^{2}}{\partial X_{\alpha_{2}}} dX$$

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

・ロト ・回ト ・ヨト ・ヨト

## Tensor representation for Poisson

Write as a tensor contraction:

$$A_i^K = \sum_{\alpha_1=1}^d \sum_{\alpha_2=1}^d A_{i\alpha}^0 G_K^\alpha$$

or

$$A^K = A^0 : G_K$$

where

$$A_{i\alpha}^{0} = \int_{K_{0}} \frac{\partial \Phi_{i_{1}}^{1}}{\partial X_{\alpha_{1}}} \frac{\partial \Phi_{i_{2}}^{2}}{\partial X_{\alpha_{2}}} \, \mathrm{d}X$$
$$G_{K}^{\alpha} = \det F_{K}' \sum_{\beta=1}^{d} \frac{\partial X_{\alpha_{1}}}{\partial x_{\beta}} \frac{\partial X_{\alpha_{2}}}{\partial x_{\beta}}$$

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

イロト イポト イヨト イヨト

## Cost of tensor representation for Poisson

- ▶ Computing the tensor G<sub>K</sub>: d<sup>3</sup> (multiply-add pairs)
- Computing the tensor contraction:  $n_0^2 d^2$
- Total cost for computing the element tensor:

$$d^3 + n_0^2 d^2 \sim n_0^2 d^2$$

- Compare to cost for quadrature:  $N_q n_0^2 d$
- Speedup:  $N_q/d$

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

イロト イポト イヨト イヨト

The tensor representation 
$$A^K = A^0 : G_K$$

The rank r element tensor  $A^K$  corresponding to a multinear form a can be represented as the tensor contraction

$$A^K = A^0 : G_K$$

that is

$$A_i^K = \sum_{\alpha \in \mathcal{A}} A_{i\alpha}^0 G_K^\alpha \quad \forall i \in \mathcal{I}_K$$

- $A^0$  is the *reference tensor*
- $G_K$  is the geometry tensor

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

・ロト ・同ト ・ヨト ・ヨト

#### Efficient computation of the element tensor

- Compute the reference tensor A<sup>0</sup> once at compile-time
- ▶ Generate code for efficient computation of the geometry tensor G<sub>K</sub>
- ▶ Generate code for efficient computation of the tensor contraction A<sup>K</sup> = A<sup>0</sup> : G<sub>K</sub>
- Since A<sup>0</sup> is known at compile-time, we may automatically optimize the tensor-contraction based on the structure of A<sup>0</sup>

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

・ロト ・同ト ・ヨト ・ヨト

-2

## A canonical form

- ► Need to find the tensor representation A<sup>K</sup> = A<sup>0</sup> : G<sub>K</sub> for a general multilinear form
- Write the element tensor in a general canonical form and find the tensor representation for the canonical form:

$$A_i^K = \sum_{\gamma \in \mathcal{C}} \int_K \prod_{j=1}^m c_j(\gamma) D_x^{\delta_j(\gamma)} \phi_{\iota_j(i,\gamma)}^{K,j}[\kappa_j(\gamma)] \, \mathrm{d}x$$

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

イロン イヨン イヨン イヨン

## The canonical form for Poisson

$$A_{i}^{K} = \int_{K} \sum_{\gamma=1}^{d} \frac{\partial \phi_{i_{1}}^{K,1}}{\partial x_{\gamma}} \frac{\partial \phi_{i_{2}}^{K,2}}{\partial x_{\gamma}} \, \mathrm{d}x = \sum_{\gamma=1}^{d} \int_{K} \frac{\partial \phi_{i_{1}}^{K,1}}{\partial x_{\gamma}} \frac{\partial \phi_{i_{2}}^{K,2}}{\partial x_{\gamma}} \, \mathrm{d}x$$
$$= \sum_{\gamma \in \mathcal{C}} \int_{K} \prod_{j=1}^{m} c_{j}(\gamma) D_{x}^{\delta_{j}(\gamma)} \phi_{\iota_{j}(i,\gamma)}^{K,j} [\kappa_{j}(\gamma)] \, \mathrm{d}x$$

$$\begin{array}{rcl} m & = & 2 & & \iota(i,\gamma) & = & (i_1,i_2) \\ \mathcal{C} & = & [1,d] & & \kappa(\gamma) & = & (\emptyset,\emptyset) \\ c(\gamma) & = & (1,1) & & \delta(\gamma) & = & (\gamma,\gamma) \end{array}$$

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

・ロト ・同ト ・ヨト ・ヨト

## The canonical form for a stabilization term

A stabilization term in a least-squares stabilized cG(1)cG(1) method for Navier–Stokes:

$$a(v,U) = \int_{\Omega} (w \cdot \nabla v) \cdot (w \cdot \nabla U) \, \mathrm{d}x$$
$$= \int_{\Omega} \sum_{\gamma_1,\gamma_2,\gamma_3=1}^d w[\gamma_2] \frac{\partial v[\gamma_1]}{\partial x_{\gamma_2}} w[\gamma_3] \frac{\partial U[\gamma_1]}{\partial x_{\gamma_3}} \, \mathrm{d}x$$

where  $w \in V_h^3 = V_h^4$  is a given approximation of the velocity

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

イロン イヨン イヨン イヨン

#### The canonical form for a stabilization term

$$\begin{split} A_{i}^{K} &= \int_{K} \sum_{\gamma_{1},\gamma_{2},\gamma_{3}=1}^{d} \sum_{\gamma_{4}=1}^{n_{K}^{3}} \sum_{\gamma_{5}=1}^{n_{K}^{4}} \frac{\partial \phi_{i_{1}}^{K,1}[\gamma_{1}]}{\partial x_{\gamma_{2}}} \frac{\partial \phi_{i_{2}}^{K,2}[\gamma_{1}]}{\partial x_{\gamma_{3}}} w_{\gamma_{4}}^{K} \phi_{\gamma_{4}}^{K,3}[\gamma_{2}] w_{\gamma_{5}}^{K} \phi_{\gamma_{5}}^{K,4}[\gamma_{3}] \,\mathrm{d}x \\ &= \sum_{\gamma \in \mathcal{C}} \int_{K} \prod_{j=1}^{m} c_{j}(\gamma) D_{x}^{\delta_{j}(\gamma)} \phi_{\iota_{j}(i,\gamma)}^{K,j}[\kappa_{j}(\gamma)] \,\mathrm{d}x \end{split}$$

$$\begin{array}{rcl} m &= & 4 & & \iota(i,\gamma) &= & (i_1,i_2,\gamma_4,\gamma_5) \\ \mathcal{C} &= & [1,d]^3 \times [1,n_K^3] \times [1,n_K^4] & & \kappa(\gamma) &= & (\gamma_1,\gamma_1,\gamma_2,\gamma_3) \\ c(\gamma) &= & (1,1,w_{\gamma_4}^K,w_{\gamma_5}^K) & & \delta(\gamma) &= & (\gamma_2,\gamma_3,\emptyset,\emptyset) \end{array}$$

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

## A representation theorem

$$A_i^K = \sum_{\gamma \in \mathcal{C}} \int_K \prod_{j=1}^m c_j(\gamma) D_x^{\delta_j(\gamma)} \phi_{\iota_j(i,\gamma)}^{K,j}[\kappa_j(\gamma)] \,\mathrm{d}x = \sum_{\alpha \in \mathcal{A}} A_{i\alpha}^0 G_K^\alpha$$

where

$$A_{i\alpha}^{0} = \sum_{\beta \in \mathcal{B}} \int_{K_{0}} \prod_{j=1}^{m} D_{X}^{\delta_{j}^{\prime}(\alpha,\beta)} \Phi_{\iota_{j}(i,\alpha,\beta)}^{j} [\kappa_{j}(\alpha,\beta)] \, \mathrm{d}X$$

and the geometry tensor  $G_K$  is the outer product of the coefficients of any weight functions with a tensor that depends only on the Jacobian  $F'_K$ :

$$G_{K}^{\alpha} = \prod_{j=1}^{m} c_{j}(\alpha) \det F_{K}' \sum_{\beta \in \mathcal{B}'} \prod_{j'=1}^{m} \prod_{k=1}^{|\delta_{j'}(\alpha,\beta)|} \frac{\partial X_{\delta_{j'k}'(\alpha,\beta)}}{\partial x_{\delta_{j'k}(\alpha,\beta)}}$$
Anders Logg loggetti-c.org
4. Computing the Element Tensor

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

イロト イボト イヨト イヨト

# A representation thereom (cont'd)

- Proof same as for Poisson
- Make a change of variables to the reference cell  $K_0$
- Interchange order of product of summation
- Constructive proof, repeated every time FFC compiles a form

Note that in general, we have a sum of tensor contractions:

$$A^K = \sum_k A^{0,k} : G_{K,k}$$

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

◆□ > ◆□ > ◆臣 > ◆臣 > ○

#### Test case 1: the mass matrix

Bilinear form:

$$a(v,U) = \int_{\Omega} v \, U \, \mathrm{d}x$$

Tensor representation:

$$A_{i\alpha}^0 = \int_{K_0} \Phi_{i_1}^1 \Phi_{i_2}^2 \,\mathrm{d}X$$
$$G_K^\alpha = \det F_K'$$

$$|i\alpha| = 2$$
$$|\alpha| = 0$$

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

・ロン ・回と ・ヨン・

## Test case 2: Poisson's equation

1

Bilinear form:

$$a(v,U) = \int_{\Omega} \nabla v \cdot \nabla U \, \mathrm{d}x$$

Tensor representation:

$$A_{i\alpha}^{0} = \int_{K_{0}} \frac{\partial \Phi_{i_{1}}^{1}}{\partial X_{\alpha_{1}}} \frac{\partial \Phi_{i_{2}}^{2}}{\partial X_{\alpha_{2}}} \, \mathrm{d}X$$
$$G_{K}^{\alpha} = \det F_{K}' \sum_{\beta=1}^{d} \frac{\partial X_{\alpha_{1}}}{\partial x_{\beta}} \frac{\partial X_{\alpha_{2}}}{\partial x_{\beta}}$$

$$|i\alpha| = 4$$
$$|\alpha| = 2$$

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

・ロト ・回ト ・ヨト ・ヨト

## Test case 3: nonlinear term in Navier-Stokes

Bilinear form:

$$a(v,U) = \int_{\Omega} v \cdot (w \cdot \nabla) U \, \mathrm{d}x$$

Tensor representation:

$$A_{i\alpha}^{0} = \sum_{\beta=1}^{d} \int_{K_{0}} \Phi_{i_{1}}^{1}[\beta] \frac{\partial \Phi_{i_{2}}^{2}[\beta]}{\partial X_{\alpha_{3}}} \Phi_{\alpha_{1}}^{3}[\alpha_{2}] dX$$
$$G_{K}^{\alpha} = w_{\alpha_{1}}^{K} \det F_{K}^{\prime} \frac{\partial X_{\alpha_{3}}}{\partial x_{\alpha_{2}}}$$

$$|i\alpha| = 5$$
$$|\alpha| = 3$$

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

イロト イヨト イヨト イヨト

## Test case 4: strain-strain term of linear elasticity

Bilinear form:

$$a(v, U) = \int_{\Omega} \epsilon(v) : \epsilon(U) \, \mathrm{d}x$$

Tensor representation (first term):

$$A_{i\alpha}^{0} = \sum_{\beta=1}^{d} \int_{K_{0}} \frac{\partial \Phi_{i_{1}}^{1}[\beta]}{\partial X_{\alpha_{1}}} \frac{\partial \Phi_{i_{2}}^{2}[\beta]}{\partial X_{\alpha_{2}}} dX$$
$$G_{K}^{\alpha} = \frac{1}{2} \det F_{K}' \sum_{\beta=1}^{d} \frac{\partial X_{\alpha_{1}}}{\partial x_{\beta}} \frac{\partial X_{\alpha_{2}}}{\partial x_{\beta}}$$

$$|i\alpha| = 4$$
$$|\alpha| = 2$$

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

・ロン ・回と ・ヨン・

## Extension to non-affine mappings

Consider Poisson again:

$$\begin{split} A_i^K &= \int_K \nabla \phi_{i_1}^{K,1} \cdot \nabla \phi_{i_2}^{K,2} \, \mathrm{d}x = \int_K \sum_{\beta=1}^d \frac{\partial \phi_{i_1}^{K,1}}{\partial x_\beta} \frac{\partial \phi_{i_2}^{K,2}}{\partial x_\beta} \, \mathrm{d}x \\ &= \sum_{\alpha_1=1}^d \sum_{\alpha_2=1}^d \sum_{\beta=1}^d \int_{K_0} \frac{\partial X_{\alpha_1}}{\partial x_\beta} \frac{\partial X_{\alpha_2}}{\partial x_\beta} \frac{\partial \Phi_{i_1}^1}{\partial X_{\alpha_1}} \frac{\partial \Phi_{i_2}^2}{\partial X_{\alpha_2}} \, \mathrm{det} \, F'_K \, \mathrm{d}X \\ &\approx \sum_{\alpha_1=1}^d \sum_{\alpha_2=1}^d \sum_{\alpha_3=1}^{N_q} w_{\alpha_3} \frac{\partial \Phi_{i_1}^1}{\partial X_{\alpha_1}} (X_{\alpha_3}) \frac{\partial \Phi_{i_2}^2}{\partial X_{\alpha_2}} (X_{\alpha_3}) \quad \times \\ &\times \quad \sum_{\beta=1}^d \frac{\partial X_{\alpha_1}}{\partial x_\beta} (X_{\alpha_3}) \frac{\partial X_{\alpha_2}}{\partial x_\beta} (X_{\alpha_3}) \, \mathrm{det} \, F'_K (X_{\alpha_3}) \end{split}$$

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

・ロト ・回ト ・ヨト ・ヨト

## Extension to non-affine mappings

We obtain a representation of the form

$$A^K = A^0 : G_K$$

where the reference tensor  $A^0$  is now given by

$$A_{i\alpha}^0 = w_{\alpha_3} \frac{\partial \Phi_{i_1}^1}{\partial X_{\alpha_1}} (X_{\alpha_3}) \frac{\partial \Phi_{i_2}^2}{\partial X_{\alpha_2}} (X_{\alpha_3})$$

and the geometry tensor  $G_K$  is given by

$$G_K^{\alpha} = \det F_K'(X_{\alpha_3}) \sum_{\beta=1}^d \frac{\partial X_{\alpha_1}}{\partial x_{\beta}} (X_{\alpha_3}) \frac{\partial X_{\alpha_2}}{\partial x_{\beta}} (X_{\alpha_3})$$

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

・ロン ・回と ・ヨン・

# A language for multilinear forms

- Language should be close to mathematical notation
- Should be easy to obtain the canonical form from a string in the language
- The tensor representation follows from the canonical form
- Language implemented by FFC

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

・ロト ・同ト ・ヨト ・ヨト

## An algebra for multilinear forms

The vector space of linear combinations of basis functions:

$$\overline{\mathcal{P}}_{K} = \left\{ v : v = \sum c_{(\cdot)} \phi_{(\cdot)}^{K} \right\}$$

The *algebra* of linear combinations of products of basis functions and their derivatives:

$$\overline{\mathcal{P}}_{K} = \left\{ v : v = \sum c_{(\cdot)} \prod \frac{\partial^{|(\cdot)|} \phi_{(\cdot)}^{K}}{\partial x_{(\cdot)}} \right\}$$

The elements of the algebra  $\overline{\mathcal{P}}_K$  correspond to the integrands of the canonical form

## An example

Consider the bilinear form

$$a(v, U) = \int_{\Omega} \nabla v \cdot \nabla U + v U \, \mathrm{d}x$$

Evaluation by guadrature

Evaluation by tensor representation

・ロト ・同ト ・ヨト ・ヨト

-2

A language for multilinear forms

with corresponding element tensor canonical form

$$A_i^K = \sum_{\gamma=1}^d \int_K \frac{\partial \phi_{i_1}^{K,1}}{\partial x_\gamma} \frac{\partial \phi_{i_2}^{K,2}}{\partial x_\gamma} \,\mathrm{d}x + \int_K \phi_{i_1}^{K,1} \phi_{i_2}^{K,2} \,\mathrm{d}x$$

If we let  $v=\phi_{i_1}^{K,1}\in\overline{\mathcal{P}}_K$  and  $U=\phi_{i_2}^{K,2}\in\overline{\mathcal{P}}_K$  then

$$\nabla v \cdot \nabla U + v \, U \in \overline{\mathcal{P}}_K$$

Evaluation by quadrature Evaluation by tensor representation A language for multilinear forms

イロト イポト イヨト イヨト

## Implementation by operator-overloading

- Implement by operator-overloading in Python or C++
- Basic types:
  - BasisFunction, Product, Sum
  - Index
  - FiniteElement
- Basic operators:
  - +, -, \* (note absence of /)
  - ► D
  - dot, mult, trace, transp
  - grad, div, rot

## An example

Bilinear form:

$$a(v,U) = \int_{\Omega} \nabla v \cdot \nabla U + v \, U \, \mathrm{d}x$$

Evaluation by guadrature

Evaluation by tensor representation

イロト イヨト イヨト イヨト

A language for multilinear forms

Implementation:

```
element = FiniteElement(...)
```

- v = BasisFunction(element)
- U = BasisFunction(element)

a = (dot(grad(v), grad(U)) + v\*U)\*dx

Tensor contractions as matrix-vector products Finding an optimized computation

イロト イポト イヨト イヨト

# Computing the tensor contraction

#### Need to compute the tensor contraction

$$A^K = A^0 : G_K$$

where

$$A_i^K = \sum_{\alpha \in \mathcal{A}} A_{i\alpha}^0 G_K^\alpha$$

for all  $i \in \mathcal{I}_K$ 

Two different ways to efficiently compute the tensor contraction:

- Phrase as matrix-vector products and call BLAS
- Use the structure of the reference tensor to find an optimized computation

Tensor contractions as matrix-vector products Finding an optimized computation

・ロト ・同ト ・ヨト ・ヨト

## The naive algorithm

for 
$$i \in \mathcal{I}_K$$
  
 $A_i^K = 0$   
for  $\alpha \in \mathcal{A}$   
 $A_i^K = A_i^K + A_{i\alpha}^0 G_K^\alpha$   
end for  
end for

- Flatten tensors to vectors and matrices
- ► Express the tensor contraction A<sup>K</sup> = A<sup>0</sup> : G<sub>K</sub> as a matrix-vector product

Tensor contractions as matrix-vector products Finding an optimized computation

・ロト ・回ト ・ヨト ・ヨト 三星

## Flattening the tensors

Enumerate  $\mathcal{I}_K$  and  $\mathcal{A}$ :

- Let  $\{i^j\}_{j=1}^{|\mathcal{I}_K|}$  be an enumeration the primary multiindices
- $\blacktriangleright$  Let  $\{\alpha^j\}_{j=1}^{|\mathcal{A}|}$  be an enumeration of the secondary multiindices

For Poisson with quadratic elements on triangles, we may take

$$\{i^{j}\}_{j=1}^{|\mathcal{I}_{K}|} = \{(1,1), (1,2), \dots, (1,6), (2,1), \dots, (6,6)\}$$
  
 
$$\{\alpha^{j}\}_{j=1}^{|\mathcal{A}|} = \{(1,1), (1,2), (2,1), (2,2)\}$$

Tensor contractions as matrix-vector products Finding an optimized computation

イロン イボン イヨン トヨ

## Flattening the tensors

Define the flattened element and geometry tensors (vectors)  $a^K \leftrightarrow A^K$  and  $g_K \leftrightarrow G_K$  by

$$a^{K} = (A_{i^{1}}^{K}, A_{i^{2}}^{K}, \dots, A_{i^{|\mathcal{I}_{K}|}}^{K})^{\top}$$
$$g_{K} = (G_{K}^{\alpha^{1}}, G_{K}^{\alpha^{2}}, \dots, G_{K}^{\alpha^{|\mathcal{A}|}})^{\top}$$

Define the flattened reference tensor (matrix)  $ar{A}^0$  by

$$\bar{A}_{jk}^{0} = A_{i^{j}\alpha^{k}}^{0}, \quad j = 1, 2, \dots, |\mathcal{I}_{K}|, \quad k = 1, 2, \dots, |\mathcal{A}|$$

Tensor contractions as matrix-vector products Finding an optimized computation

イロト イポト イヨト イヨト

2

#### Write as a matrix-vector product

#### We note that

$$a_{j}^{K} = A_{ij}^{K} = \sum_{\alpha \in \mathcal{A}} A_{ij\alpha}^{0} G_{K}^{\alpha} = \sum_{k=1}^{|\mathcal{A}|} A_{ij\alpha^{k}}^{0} G_{K}^{\alpha^{k}} = \sum_{k=1}^{|\mathcal{A}|} \bar{A}_{jk}^{0} (g_{K})_{k}$$

It follows that the tensor contraction

$$A^K = A^0 : G_K$$

corresponds to the matrix-vector product

$$a^K = \bar{A}^0 g_K$$

Tensor contractions as matrix-vector products Finding an optimized computation

イロン イロン イヨン イヨン 三日

#### The general case

In general the element tensor is a sum of tensor contractions:

$$A^K = \sum_k A^{0,k} : G_{K,k}$$

We may still compute the element tensor by a matrix-vector product:

$$a^{K} = \sum_{k} \bar{A}^{0,k} g_{K,k} = \begin{bmatrix} \bar{A}^{0,1} & \bar{A}^{0,2} & \cdots \end{bmatrix} \begin{bmatrix} g_{K,1} \\ g_{K,2} \\ \vdots \end{bmatrix} = \bar{A}^{0} g_{K}$$

Tensor contractions as matrix-vector products Finding an optimized computation

イロト イポト イヨト イヨト

### Processing batches of elements

- Matrix-vector product computed by a level 2 BLAS call
- More efficient to compute a matrix-matrix product with a level 3 BLAS call than a set of matrix-vector products with level 2 BLAS calls

Compute the element tensors for a batch  $\{K_k\}_k \subset \mathcal{T}$ :

$$\left[a^{K_1} \ a^{K_2} \ \cdots\right] = \left[\bar{A}^0 g_{K_1} \ \bar{A}^0 g_{K_2} \ \ldots\right] = \bar{A}^0 \left[g_{K_1} \ g_{K_2} \ \ldots\right]$$

Tensor contractions as matrix-vector products Finding an optimized computation

<ロ> (日) (日) (日) (日) (日)

# Finding an optimized computation

- ► Use the structure of the reference tensor A<sup>0</sup> to find an optimized computation
- The reference tensor may contain zeros
- Take advantage of symmetries
- Look for "complexity-reducing" relations

Will discuss two different symmetry-reducing relations:

- Collinearity
- Closeness in Hamming distance

Tensor contractions as matrix-vector products Finding an optimized computation

・ロン ・回と ・ヨン・

# Collinearity

#### Note that

$$A_i^K = \sum_{\alpha \in \mathcal{A}} A_{i\alpha}^0 G_K^\alpha = a_i^0 \cdot g_K$$

where the vector  $a_i^0$  is defined by

$$a_i^0 = (A_{i\alpha^1}^0, A_{i\alpha^2}^0, \dots, A_{i\alpha^{|\mathcal{A}|}}^0)^\top$$

If  $a_i^0$  and  $a_{i'}^0$  are collinear:

$$a_{i'}^0 = \alpha a_i^0$$

for some  $\alpha \in \mathbb{R}$  it follows that

$$A_{i'}^K = a_{i'}^0 \cdot g_K = (\alpha a_i^0) \cdot g_K = \alpha A_i^K$$

Tensor contractions as matrix-vector products Finding an optimized computation

・ロト ・同ト ・ヨト ・ヨト

-2

# Collinearity

- ► If a<sup>0</sup><sub>i</sub> and a<sup>0</sup><sub>i'</sub> are collinear then A<sup>K</sup><sub>i'</sub> can be computed from A<sup>K</sup><sub>i</sub> in just one multiplication
- Cost of direct computatation is  $|\mathcal{A}|$
- ▶ For Poisson the cost is reduced from  $|\mathcal{A}| = d^2$  to 1
- Look for pairs  $(a_i^0, a_{i'}^0)$  that are collinear

Tensor contractions as matrix-vector products Finding an optimized computation

・ロト ・同ト ・ヨト ・ヨト

# Closeness in Hamming distance

- ▶ Find pairs (a<sup>0</sup><sub>i</sub>, a<sup>0</sup><sub>i'</sub>) that are close in Hamming distance
- Hamming distance is number of entries that differ
- If the Hamming distance between a<sup>0</sup><sub>i</sub> and a<sup>0</sup><sub>i'</sub> is ρ then the cost of computing A<sup>K</sup><sub>i</sub> from A<sup>K</sup><sub>i'</sub> is ρ
- Maximum Hamming distance is  $\rho = |\mathcal{A}|$

Tensor contractions as matrix-vector products Finding an optimized computation

(日) (同) (E) (E) (E)

## Closeness in Hamming distance

If  $a_i^0$  and  $a_{i'}^0$  differ only in the first  $\rho$  entries then

$$A_{i'}^{K} = a_{i'}^{0} \cdot g_{K} = a_{i}^{0} \cdot g_{K} + \sum_{k=1}^{\rho} (A_{i'\alpha^{k}}^{0} - A_{i\alpha^{k}}^{0}) G_{K}^{\alpha^{k}}$$
$$= A_{i}^{K} + \sum_{k=1}^{\rho} (A_{i'\alpha^{k}}^{0} - A_{i\alpha^{k}}^{0}) G_{K}^{\alpha^{k}}$$

- ► The vector  $(A^0_{i'\alpha^1} A^0_{i\alpha^1}, A^0_{i'\alpha^2} A^0_{i\alpha^2}, \dots, A^0_{i'\alpha^\rho} A^0_{i\alpha^\rho})^\top$  can be computed at compile-time
- The cost is reduced from  $|\mathcal{A}|$  to  $\rho$

Tensor contractions as matrix-vector products Finding an optimized computation

イロン イヨン イヨン ・ ヨン

## Complexity-reducing relations

- We refer to collinearity and closeness in Hamming distance as complexity-reducing relations
- ▶ Define the complexity-reducing relation p(a<sup>0</sup><sub>i</sub>, a<sup>0</sup><sub>i'</sub>) ≤ |A| as the minimum of all complexity-reducing relations

How do we systematically explore a complexity-reducing relation to find an optimized computation?

Tensor contractions as matrix-vector products Finding an optimized computation

# Minimum spanning trees (MST)

- Let G = (V, E) be a graph with vertices V and edges E
- $\blacktriangleright$  A tree is any connected acyclic subgraph G' = (V, E') of G with  $E' \subset E$
- A minimum spanning tree for a weighted graph is a tree with minimal edge weight
- Standard algorithms: Prim's algorith, Kruskal's algorithm



Tensor contractions as matrix-vector products Finding an optimized computation

・ロト ・同ト ・ヨト ・ヨト

# Finding an optimized computation of $A^K$

- ▶ Let the vertices V correspond to the entries {A<sub>i</sub><sup>K</sup>}<sub>i∈I<sub>K</sub></sub> of the element tensor A<sup>K</sup>
- Put edges between all pairs of vertices  $(A_i^K, A_{i'}^K)$
- ▶ Put a weight on each edge  $(A_i^K, A_{i'}^K)$  given by  $\rho(a_i^0, a_{i'}^0)$
- Compute the minimum spanning tree
- Compute the entries {A<sup>K</sup><sub>i</sub>}<sub>i∈I<sub>K</sub></sub> by traversing the minimum spanning tree

Tensor contractions as matrix-vector products Finding an optimized computation

## The minimum spanning tree for Poisson

Reference tensor:

$$A_{i\alpha}^{0} = \int_{K_{0}} \frac{\partial \Phi_{i_{1}}^{1}}{\partial X_{\alpha_{1}}} \frac{\partial \Phi_{i_{2}}^{2}}{\partial X_{\alpha_{2}}} \, \mathrm{d}X \quad \forall i \in \mathcal{I}_{K} \quad \forall \alpha \in \mathcal{A}$$

Quadratic elements on triangles:

• 
$$\mathcal{I}_K = [1, 6]^2$$
 and  $\mathcal{A} = [1, 2]^2$ 

- The rank two element tensor A<sup>K</sup> has 36 entries
- The rank four reference tensor  $A^0$  has 144 entries
- Reduce operation count from 144 to less than 17 multiply-add pairs
- ▶ Compute *A<sup>K</sup>* by less than one operation per entry!

Tensor contractions as matrix-vector products Finding an optimized computation

#### The Poisson reference tensor for quadratics on triangles

| (3, 3, 3, 3)  | (1, 0, 1, 0)  | (0, 1, 0, 1)  | (0, 0, 0, 0)  | -(0, 4, 0, 4) | -(4, 0, 4, 0) |
|---------------|---------------|---------------|---------------|---------------|---------------|
| (1, 1, 0, 0)  | (3, 0, 0, 0)  | -(0, 1, 0, 0) | (0, 4, 0, 0)  | (0, 0, 0, 0)  | -(4, 4, 0, 0) |
| (0, 0, 1, 1)  | -(0, 0, 1, 0) | (0,0,0,3)     | (0, 0, 4, 0)  | -(0, 0, 4, 4) | (0, 0, 0, 0)  |
| (0, 0, 0, 0)  | (0, 0, 4, 0)  | (0, 4, 0, 0)  | (8, 4, 4, 8)  | -(8, 4, 4, 0) | -(0, 4, 4, 8) |
| -(0, 0, 4, 4) | (0, 0, 0, 0)  | -(0, 4, 0, 4) | -(8, 4, 4, 0) | (8, 4, 4, 8)  | (0, 4, 4, 0)  |
| -(4, 4, 0, 0) | -(4, 0, 4, 0) | (0, 0, 0, 0)  | -(0, 4, 4, 8) | (0, 4, 4, 0)  | (8, 4, 4, 8)  |

► Scaled by a factor 6

• 
$$A_{1111}^0 = A_{1112}^0 = A_{1121}^0 = A_{1122}^0 = 3/6 = 1/2$$
  
•  $A_{1211}^0 = 1/6$ ,  $A_{1212}^0 = 0$  etc.

Tensor contractions as matrix-vector products Finding an optimized computation

# Use symmetry

- ► The element tensor  $A^K$  is symmetric so we only need to compute 21 of the 36 entries
- ► The geometry tensor *G<sub>K</sub>* is symmetric so we may reduce the vectors:

$$\begin{split} A_i^K &= a_i^0 \cdot g_K = A_{i11}^0 G_K^{11} + A_{i12}^0 G_K^{12} + A_{i21}^0 G_K^{21} + A_{i22}^0 G_K^{22} \\ &= A_{i11}^0 G_K^{11} + (A_{i12}^0 + A_{i21}^0) G_K^{12} + A_{i22}^0 G_K^{22} = \bar{a}_i^0 \cdot \bar{g}_K \end{split}$$

where

$$\bar{a}_i^0 = (A_{i11}^0, A_{i12}^0 + A_{i21}^0, A_{i22}^0)^\top$$
$$\bar{g}_K = (G_K^{11}, G_K^{12}, G_K^{22})^\top$$

• We directly obtain a reduction from 144 multiply-add pairs to  $21 \times 3 = 63$  multiply-add pairs

Tensor contractions as matrix-vector products Finding an optimized computation

#### The symmetry-reduced reference tensor

| $(3,6,3)^	op$ | $(1,1,0)^	op$ | $(0,1,1)^	op$    | $(0,0,0)^	op$ | $-(0,4,4)^	op$ | $-(4,4,0)^	op$   |
|---------------|---------------|------------------|---------------|----------------|------------------|
|               | $(3,0,0)^	op$ | $-(0,1,0)^	op$ , | $(0,4,0)^	op$ | $(0,0,0)^	op$  | $-(4,4,0)^{	op}$ |
|               |               | $(0,0,3)^	op$    | $(0,4,0)^	op$ | $-(0,4,4)^	op$ | $(0,0,0)^	op$    |
|               |               |                  | $(8,8,8)^	op$ | $-(8,8,0)^	op$ | $-(0,8,8)^	op$   |
|               |               |                  |               | $(8,8,8)^	op$  | $(0,8,0)^	op$    |
|               |               |                  |               |                | $(8,8,8)^	op$    |

- $\bar{a}_{12}^0$ ,  $\bar{a}_{16}^0$ ,  $\bar{a}_{26}^0$  and  $\bar{a}_{45}^0$  collinear
- $\bar{a}_{44}^0$  and  $\bar{a}_{45}^0$  close in Hamming distance
- Can you spot any other complexity-reducing relations?

Tensor contractions as matrix-vector products Finding an optimized computation

・ロト ・同ト ・ヨト ・ヨト

# The minimum spanning tree (upper part)



Tensor contractions as matrix-vector products Finding an optimized computation

イロン イボン イヨン イヨン

#### The optimized computation

$$A_{44}^{K} = A_{4411}^{0}G_{K}^{11} + (A_{4412}^{0} + A_{4421}^{0})G_{K}^{12} + A_{4422}^{0}G_{K}^{22}$$

| $\begin{array}{l} A^{K}_{46} = -A^{K}_{44} + 8G^{11}_{K} \\ A^{K}_{45} = -A^{K}_{44} + 8G^{22}_{K} \\ A^{K}_{55} = A^{K}_{44} \\ A^{K}_{66} = A^{K}_{44} \\ A^{K}_{66} = -A^{K}_{45} - 8G^{11}_{K} \\ A^{K}_{12} = -\frac{1}{8}A^{K}_{45} \\ A^{K}_{16} = \frac{1}{2}A^{K}_{45} \\ A^{K}_{23} = -A^{K}_{12} + 1G^{11}_{K} \\ A^{K}_{24} = -A^{K}_{16} - 4G^{11}_{K} \end{array}$ | $\begin{array}{l} A_{13}^{K} = -A_{23}^{K} + 1G_{22}^{K} \\ A_{14}^{K} = 0A_{23}^{K} \\ A_{34}^{K} = A_{24}^{K} \\ A_{15}^{K} = -4A_{13}^{K} \\ A_{25}^{K} = A_{14}^{K} \\ A_{22}^{K} = A_{14}^{K} + 3G_{11}^{K} \\ A_{33}^{K} = A_{14}^{K} + 3G_{22}^{K} \\ A_{36}^{K} = A_{14}^{K} \\ A_{35}^{K} = A_{15}^{K} \end{array}$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $A_{24}^{K} = -A_{16}^{K} - 4G_{K}^{11}$ $A_{26}^{K} = A_{16}^{K}$                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |

- 17 multiply-add pairs
- Can be reduced further

Tensor contractions as matrix-vector products Finding an optimized computation

イロト イポト イヨト イヨト

# Upcoming lectures

- 0. Automating the Finite Element Method
- 1. Survey of Current Finite Element Software
- 2. The Finite Element Method
- 3. Automating Basis Functions and Assembly
- 4. Automating and Optimizing the Computation of the Element Tensor
- 5. FEniCS and the Automation of CMM
- 6. FEniCS Demo Session