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Finite element basis functions
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Automating the assembly of the discrete system
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Implementing the local-to-global mapping
Generating the local-to-global mapping

I Chapters 4 and 6 in lecture notes
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Finite element basis functions
Tabulating polynomial spaces
Tabulating spaces with constraints

The reference finite element

The reference finite element is a triple

(K0,P0,N0)

I K0 is a bounded closed subset of R
d with nonempty interior

and piecewise smooth boundary

I P0 is a function space on K0 of dimension n0 < ∞

I N0 = {ν0
1 , ν0

2 , . . . , ν0
n0
} is a basis for P ′

0 (the bounded linear
functionals on P0)
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The nodal basis

A special basis {Φi}
n0

i=1 for P0 that satisfies

ν0
i (Φj) = δij , i, j = 1, 2, . . . , n0

Implies that

v =

n0∑
i=1

ν0
i (v)Φi

for any v ∈ P0

I Can be worked out analytically in simple cases

I Can be generated automatically
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Finite element basis functions
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The reference triangle
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P1(K0) on the reference triangle

I K0 is the reference triangle in R
2

I P0 = P1(K0) is the space of first-degree polynomials on K0

I The nodal basis is given by

Φ1(X) = 1 − X1 − X2

Φ2(X) = X1

Φ3(X) = X2
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Finite element basis functions
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P2(K0) on the reference triangle

I K0 is the reference triangle in R
2

I P0 = P2(K0) is the space of second-degree polynomials on K0

I The nodal basis is given by

Φ1(X) = (1 − X1 − X2)(1 − 2X1 − 2X2)

Φ2(X) = X1(2X1 − 1)

Φ3(X) = X2(2X2 − 1)

Φ4(X) = 4X1X2

Φ5(X) = 4X2(1 − X1 − X2)

Φ6(X) = 4X1(1 − X1 − X2)
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Generating the nodal basis

I Choose a simple (non-nodal) basis {Ψi}
n0

i=1 for P0

I Orthogonal bases exist for the reference triangle and reference
tetrahedron

I Recurrence relations for evaluation of basis functions and
derivatives

I Refer to {Ψi}
n0

i=1 as the prime basis

Anders Logg logg@tti-c.org 3. Automating Basis Functions and Assembly



Automating the tabulation of basis functions
Automating the assembly of the discrete system

Finite element basis functions
Tabulating polynomial spaces
Tabulating spaces with constraints

Generating the nodal basis

Write each Φi as a linear combination of the prime basis functions:

Φi =

n0∑
j=1

αijΨj, i = 1, 2, . . . , n0

The condition ν0
i (Φj) = δij gives

δij = ν0
i (Φj) =

n0∑
k=1

αjkν
0
i (Ψk), i, j = 1, 2, . . . , n0

This is a linear system for α
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Generating the nodal basis

Expansion coefficients α for the nodal basis obtained by solving a
linear system:

Vα> = I

The matrix V is given by

Vij = ν0
i (Ψj), i, j = 1, 2, . . . , n0

I Need to evaluate the nodes on the prime basis

I Can be automated
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Generating the nodal basis

I Implement the prime basis {Ψi}
n0

i=1

I Compute the (Vandermonde) matrix V

I Solve the linear system Vα> = I

I Nodal basis can be evaluated at any point

I Derivatives of nodal basis can be evaluated at any point

I Operations on the nodal basis translated to linear algebraic
operations on the coefficients
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Constrained spaces

I P0 ⊂ Pq(K0)

I Basis functions or derivatives constrained

I Examples:
I Raviart–Thomas
I Brezzi–Douglas–Fortin–Marini
I Arnold–Winther

I Need to compute a constrained prime basis

I Compute nodal basis from prime basis as before
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Finite element basis functions
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Constrained spaces in p-refinement

I P0 ⊂ Pq(K0)

I Constrained to Pq−1(γ0) on some part γ0 of the boundary:

P0 = {v ∈ Pq(K0) : v|γ0
∈ Pq−1(γ0)}

= {v ∈ Pq(K0) : l(v) = 0}

I The linear functional l is given by integration against the qth
degree Legendre polynomial along γ0:

l(v) =

∫
γ0

v pq ds
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Computing a constrained prime basis

In general, there may be a set of constraints:

li : Pq(K0) → R, i = 1, 2, . . . , nc

Each constraint li defines a null space on Pq(K0):

{v ∈ Pq(K0) : li(v) = 0}

Define P0 as the intersection of the null spaces on Pq(K0):

P0 = {v ∈ Pq(K0) : li(v) = 0, i = 1, 2, . . . , nc}
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Computing a constrained prime basis

I Let {Ψ̄i}
|Pq(K0)|
i=1 be a basis for Pq(K0)

I Let Ψ =
∑|Pq(K0)|

i=1 βiΨ̄i

I Determine coefficients β by

0 = li(Ψ) =

|Pq(K0)|∑
j=1

βjli(Ψ̄j)

or
Lβ = 0

where

Lij = li(Ψ̄j), i = 1, 2, . . . , nc, j = 1, 2, . . . , |Pq(K0)|
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Singular value decomposition (SVD)

Compute singular value decomposition of L:

U>LV = diag(σ1, σ2, . . . , σp)

where
σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0

I L is a nc × |Pq(K0)| matrix

I U and V are orthogonal matrices

I p = min(nc, |Pq(K0)|)

I rank(L) = r

I ran(L) = span{u1, u2, . . . , ur}

I null(L) = span{vr+1, vr+2, . . . , v|Pq(K0)|}
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Finite element basis functions
Tabulating polynomial spaces
Tabulating spaces with constraints

Generating the constrained nodal basis

I Implement a basis {Ψ̄i}
n0

i=1 for Pq(K0)

I Compute the constraint matrix L

I Compute null space by singular value decomposition
of L to obtain the prime basis

I Compute the (Vandermonde) matrix V

I Solve the linear system Vα> = I to obtain the nodal basis
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Assembling the global tensor
Implementing the local-to-global mapping
Generating the local-to-global mapping

The assembly algorithm

A = 0
for K ∈ T

(Compute the element tensor AK)
Add AK to A according to {ιK}K∈T

end for

I Straightforward if we know the local-to-global mappings
{ιK}K∈T

I More efficient if we don’t need to touch all the entries AιK(i)

for all i ∈ IK individually
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Adding the element tensor AK
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Adding the element tensor AK

I Compute a tuple

ι
j
K([1, nj

K ]) = (ιjK(1), ιjK(2), . . . , ιjK(nK))

for each j = 1, 2, . . . , r

I Give tensors A and AK and the tuples (arrays) to an
optimized library routine

I Flatten the element tensor AK into a contiguous array

Anders Logg logg@tti-c.org 3. Automating Basis Functions and Assembly



Automating the tabulation of basis functions
Automating the assembly of the discrete system

Assembling the global tensor
Implementing the local-to-global mapping
Generating the local-to-global mapping

Assembly in DOLFIN

for (CellIterator cell(mesh); !cell.end(); ++cell)

{

map.update(*cell);

a.update(map);

a.eval(block, map);

test_element.nodemap(test_nodes, *cell, mesh);

trial_element.nodemap(trial_nodes, *cell, mesh);

A.add(block, test_nodes, m, trial_nodes, n);

}
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Adding the block of values with PETSc

class Matrix

{

public:

void add(const real block[],

const int rows[], int m,

const int cols[], int n)

{

MatSetValues(A, m, rows, n, cols,

block, ADD_VALUES);

}

private:

Mat A;

};
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Different element — different mappings

I The local-to-global mapping looks very different
for different elements

I The mapping is an algorithm, not data

I A different implementation is needed for each specific element

I Can be implemented efficiently in straight-line code
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The local-to-global mapping for linears on tetrahedra

void nodemap(int nodes[], const Cell& cell,

const Mesh& mesh)

{

nodes[0] = cell.vertexID(0);

nodes[1] = cell.vertexID(1);

nodes[2] = cell.vertexID(2);

nodes[3] = cell.vertexID(3);

}
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The local-to-global mapping for quadratics on tetrahedra

void nodemap(int nodes[], const Cell& cell,

const Mesh& mesh)

{

nodes[0] = cell.vertexID(0);

nodes[1] = cell.vertexID(1);

nodes[2] = cell.vertexID(2);

nodes[3] = cell.vertexID(3);

int offset = mesh.numVertices();

nodes[4] = offset + cell.edgeID(0);

nodes[5] = offset + cell.edgeID(1);

nodes[6] = offset + cell.edgeID(2);

nodes[7] = offset + cell.edgeID(3);

nodes[8] = offset + cell.edgeID(4);

nodes[9] = offset + cell.edgeID(5);

}
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Generating the local-to-global mapping

I Tedious to implement by hand for each different element

I Generate the code automatically at compile-time

I Need a simple description of the nodes from which we can
generate the local-to-global mapping

I FIAT provides simple description of the nodes

I FFC generates the local-to-global mapping

I DOLFIN calls the local-to-global mapping
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A simple description of the nodes

I Associate nodes with geometric entities:
I vertices
I edges
I faces
I cells

I Order geometric entities by topological dimension to get a
dimension-independent description:

I topological dimension 0: vertices
I topological dimension 1: edges
I topological dimension 2: faces, cells (triangles)
I topological dimension 3: cells (tetrahedra)

I List the local node numbers associated with the geometric
entities within each topological dimension
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Specifying the nodes for linears on tetrahedra

d = 0 (1) – (2) – (3) – (4)

PSfrag replacements

I One node is associated with each vertex

I Ordering not important
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Assembling the global tensor
Implementing the local-to-global mapping
Generating the local-to-global mapping

Specifying the nodes for quadratics on tetrahedra

d = 0 (1) – (2) – (3) – (4)

d = 1 (5) – (6) – (7) – (8) – (9) – (10)

PSfrag replacements

I One node is associated with each vertex and each edge
I Ordering not important
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Specifying the nodes for quintics (q = 5) on tetrahedra

d = 0 (1) – (2) – (3) – (4)

d = 1 (5, 6, 7, 8) – (9, 10, 11, 12) – (13, 14, 15, 16) –
(17, 18, 19, 20) – (21, 22, 23, 24) – (25, 26, 27, 28)

d = 2 (29, 30, 31, 32, 33, 34) – (35, 36, 37, 38, 39, 40) –
(41, 42, 43, 44, 45, 46) – (47, 48, 49, 50, 51, 52)

d = 3 (53, 54, 55, 56)

I One node is associated with each vertex

I Four nodes are associated with each edge

I Six nodes are associated with each face

I Four nodes are associated with the cell itself

I Ordering is important!
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The local-to-global mapping for quintics on tetrahedra

void nodemap(int nodes[], const Cell& cell, const Mesh& mesh)

{

static unsigned int edge_reordering[2][4]

= {{0, 1, 2, 3}, {3, 2, 1, 0}};

static unsigned int face_reordering[6][6]

= {{0, 1, 2, 3, 4, 5},

{0, 3, 5, 1, 4, 2},

{5, 3, 0, 4, 1, 2},

{2, 1, 0, 4, 3, 5},

{2, 4, 5, 1, 3, 0},

{5, 4, 2, 3, 1, 0}};

nodes[0] = cell.vertexID(0);

nodes[1] = cell.vertexID(1);

nodes[2] = cell.vertexID(2);

nodes[3] = cell.vertexID(3);

...
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The local-to-global mapping for quintics on tetrahedra

...

int alignment = cell.edgeAlignment(0);

int offset = mesh.numVertices();

nodes[4] = offset + 4*cell.edgeID(0) + edge_reordering[alignment][0];

nodes[5] = offset + 4*cell.edgeID(0) + edge_reordering[alignment][1];

nodes[6] = offset + 4*cell.edgeID(0) + edge_reordering[alignment][2];

nodes[7] = offset + 4*cell.edgeID(0) + edge_reordering[alignment][3];

...

alignment = cell.faceAlignment(0);

offset = offset + 4*mesh.numEdges();

nodes[28] = offset + 6*cell.faceID(0) + face_reordering[alignment][0];

nodes[29] = offset + 6*cell.faceID(0) + face_reordering[alignment][1];

nodes[30] = offset + 6*cell.faceID(0) + face_reordering[alignment][2];

nodes[31] = offset + 6*cell.faceID(0) + face_reordering[alignment][3];

nodes[32] = offset + 6*cell.faceID(0) + face_reordering[alignment][4];

nodes[33] = offset + 6*cell.faceID(0) + face_reordering[alignment][5];

...

offset = offset + 6*mesh.numFaces();

nodes[52] = offset + 4*cell.id() + 0;

nodes[53] = offset + 4*cell.id() + 1;

nodes[54] = offset + 4*cell.id() + 2;

nodes[55] = offset + 4*cell.id() + 3;

}
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Ordering of entities on the reference triangle
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Ordering of nodes on edges
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Ordering of entities on the reference tetrahedron
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Upcoming lectures

0. Automating the Finite Element Method

1. Survey of Current Finite Element Software

2. The Finite Element Method

3. Automating Basis Functions and Assembly

4. Automating and Optimizing the
Computation of the Element Tensor

5. FEniCS and the Automation of CMM

6. FEniCS Demo Session
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