
FFC User Manual

February 24, 2006

Anders Logg

www.fenics.org

Visit http://www.fenics.org/ for the latest version of this manual.
Send comments and suggestions to ffc-dev@fenics.org.

Contents

About this manual 7

1 Quickstart 11

1.1 Downloading and installing FFC 11

1.2 Compiling Poisson’s equation with FFC 12

2 Command-line interface 15

2.1 Synopsis . 15

2.2 Description . 15

2.3 Options . 16

2.3.1 -h, --help . 16

2.3.2 -v, --version . 16

2.3.3 -l language, --language language 16

2.3.4 -d debuglevel, --debug debuglevel 16

2.3.5 -f option . 17

3

FFC User Manual Anders Logg

2.3.6 -f no-gpl . 17

2.3.7 -f blas . 17

3 Python interface 19

3.1 compile(forms, ...) . 20

3.2 build(forms, ...) . 20

3.3 write(forms, ...) . 20

3.4 writeFiniteElement(element, ...) 21

4 Form language 23

4.1 Overview . 23

4.2 The form language as a Python extension 25

4.3 Basic data types . 25

4.3.1 FiniteElement . 25

4.3.2 MixedElement . 27

4.3.3 BasisFunction . 27

4.3.4 Function . 28

4.3.5 Constant . 29

4.3.6 Index . 30

4.3.7 Identity . 30

4.4 Scalar operators . 31

4.4.1 Scalar addition: + . 31

4

FFC User Manual Anders Logg

4.4.2 Scalar subtraction: - 31

4.4.3 Scalar multiplication: * 31

4.4.4 Scalar division: / . 32

4.5 Vector operators . 32

4.5.1 Component access: v[i] 32

4.5.2 Scalar product: dot(v, w) 33

4.5.3 Vector product: cross(v, w) 33

4.5.4 Matrix product: mult(A, B) 33

4.5.5 Transpose: transp(A) 33

4.5.6 Trace: trace(A) . 34

4.5.7 Vector length: len(v) 34

4.5.8 Rank: rank(v) . 34

4.5.9 Vectorization: vec(v) 34

4.6 Differential operators . 35

4.6.1 Scalar partial derivative: D(v, i) 35

4.6.2 Gradient: grad(v) . 35

4.6.3 Divergence: div(v) . 36

4.6.4 Rotation: rot(v) . 36

4.7 Integrals . 36

4.7.1 Integration over the interior: *dx 36

4.7.2 Integration over the boundary: *ds 37

5

FFC User Manual Anders Logg

4.8 Index notation . 37

4.9 User-defined operators . 38

5 Examples 41

5.1 The mass matrix . 41

5.2 Poisson’s equation . 42

5.3 Vector-valued Poisson . 43

5.4 The strain-strain term of linear elasticity 43

5.5 The nonlinear term of Navier–Stokes 44

5.6 The heat equation . 45

5.7 Mixed formulation of Stokes 46

A Reference elements 49

A.1 The reference triangle . 49

A.2 The reference tetrahedron . 51

A.3 Ordering of degrees of freedom 52

A.3.1 Mesh entities . 52

A.3.2 Ordering among mesh entities 55

A.3.3 Internal ordering on edges 55

A.3.4 Alignment of edges . 56

A.3.5 Internal ordering on faces 56

A.3.6 Alignment of faces . 56

6

FFC User Manual Anders Logg

B Installation 59

B.1 Installing from source . 59

B.1.1 Dependencies and requirements 59

B.1.2 Downloading the source code 61

B.1.3 Installing the compiler 62

B.1.4 Compiling the demos 62

B.1.5 Verifying the generated code 63

B.2 Debian package . 63

C Contributing code 65

C.1 Creating a patch . 65

C.2 Sending patches . 67

C.3 Applying a patch (maintainers) 67

C.4 License agreement . 68

D License 69

7

About this manual

This manual is currently being written. As a consequence, some sections
may be incomplete or inaccurate.

Intended audience

This manual is written both for the beginning and the advanced user. There
is also some useful information for developers. More advanced topics are
treated at the end of the manual or in the appendix.

Typographic conventions

• Code is written in monospace (typewriter) like this.

• Commands that should be entered in a Unix shell are displayed as
follows:

./configure

make

Commands are written in the dialect of the bash shell. For other shells,
such as tcsh, appropriate translations may be needed.

9

FFC User Manual Anders Logg

Enumeration and list indices

Throughout this manual, elements xi of sets {xi} of size n are enumarated
from i = 0 to i = n − 1. Derivatives in R

n are enumerated similarly:
∂/∂x0, ∂/∂x1, . . . , ∂/∂xn−1.

Contact

Comments, corrections and contributions to this manual are most welcome
and should be sent to

ffc-dev@fenics.org

10

Chapter 1

Quickstart

This chapter demonstrates how to get started with FFC, including down-
loading and installing the latest version of FFC, and compiling Poisson’s
equation. These topics are discussed in more detail elsewhere in this man-
ual. In particular, see Appendix B for detailed installation instructions and
Chapter 4 for a detailed discussion of the form language.

1.1 Downloading and installing FFC

The latest version of FFC can be found on the FEniCS web page:

http://www.fenics.org/

The following commands illustrate the installation process, assuming that
you have downloaded release 0.1.0 of FFC:

tar zxfv ffc-0.1.0.tar.gz

cd ffc-0.1.0

python setup.py install

11

FFC User Manual Anders Logg

Make sure that you download the latest release (which is not 0.1.0).

Note that you may need to be root on your system to do the last step.
You may also need to install the Python packages FIAT and Numeric. (See
Appendix B for detailed instructions.)

1.2 Compiling Poisson’s equation with FFC

The discrete variational (finite element) formulation of Poisson’s equation,
−∆u = f , reads: Find U ∈ Vh such that

a(v, U) = L(v) ∀v ∈ V̂h, (1.1)

with (V̂h, Vh) a pair of suitable function spaces (the test and trial spaces).
The bilinear form a : V̂h × Vh → R is given by

a(v, U) =

∫
Ω

∇v · ∇U dx (1.2)

and the linear form L : V̂h → R is given by

L(v) =

∫
Ω

v f dx. (1.3)

To compile the pair of forms (a, L) into code that can called to assemble the
linear system Ax = b corresponding to the variational problem (1.1) for a
pair of discrete function spaces, specify the forms in a text file with extension
.form, e.g. Poisson.form, as follows:

element = FiniteElement(‘‘Lagrange’’, ‘‘triangle’’, 1)

v = BasisFunction(element)

U = BasisFunction(element)

f = Function(element)

a = dot(grad(v), grad(U))*dx

L = f*v*dx

12

FFC User Manual Anders Logg

The example is given for piecewise linear finite elements in two dimensions,
but other choices are available, including arbitrary order Lagrange elements
in two and three dimensions.

To compile the pair of forms implemented in the file Poisson.form, call the
compiler on the command-line as follows:

ffc Poisson.form

This generates the file Poisson.h which implements the forms in C++ for
inclusion in DOLFIN. For help on the ffc command, including compilation
for other systems than DOLFIN, type ffc -h or man ffc.

13

Chapter 2

Command-line interface

The command-line interface of FFC is documented by the man page for FFC,
which can be read by the command

man ffc

on any system where FFC has been installed. A copy of this documentation
is included below for convenience.

2.1 Synopsis

ffc [-h] [-l language] [-d debuglevel] [-f option] input.form

2.2 Description

The FEniCS Form Compiler FFC accepts as input one or more files each
specifying one or more multilinear forms and compiles the given forms into

15

FFC User Manual Anders Logg

efficent low-level code for automatic assembly of the tensors representing the
multilinear forms. In particular, FFC compiles a pair of bilinear and linear
forms defining a variational problem into code that can be used to efficiently
assemble the corresponding linear system.

By default, FFC generates C++ code for DOLFIN, but this can be changed
by specifying a different output language (option -l). It is also possible to
add new output languages to FFC.

2.3 Options

2.3.1 -h, --help

Display help text and exit.

2.3.2 -v, --version

Display version number and exit.

2.3.3 -l language, --language language

Specify output language, one of dolfin (default), latex, raw, ase or xml.

2.3.4 -d debuglevel, --debug debuglevel

Specify debug level (default is 0).

16

FFC User Manual Anders Logg

2.3.5 -f option

Specify code generation options. The list of options available depends on
the specified language (format). Current options include -f no-gpl and -f

blas described in detail below.

2.3.6 -f no-gpl

Don’t add GPL license to generated code. This option has only effect when
compiling with -ldolfin.

2.3.7 -f blas

Generate code that uses BLAS to compute tensor products. This option has
only effect when compiling with -ldolfin.

17

Chapter 3

Python interface

FFC provides a Python interface in the form of a standard Python module.
The following example demonstrates how to define and compile the varia-
tional problem for Poisson’s equation in a Python script:

from ffc import *

element = FiniteElement(‘‘Lagrange’’, ‘‘triangle’’, 1)

v = BasisFunction(element)

U = BasisFunction(element)

f = Function(element)

a = dot(grad(v), grad(U))*dx

L = f*v*dx

compile([a, L])

At the basic level, the only difference between the command-line interface
and the Python interface is that the function compile must be called when
using the Python interface.

19

FFC User Manual Anders Logg

In addition to the function compile, the Python interface provides the func-
tions build, write and writeFiniteElement. These functions are docu-
mented below.

Documentation can also be accessed from within Python. To read the docu-
mentation for the function compile, run the following commands in a Python
shell:

from ffc import *

help(compile)

3.1 compile(forms, ...)

This function takes as argument a form or list of forms and compiles it into
low-level code for assembly. Calling this function is equivalent to first calling
build followed by write.

3.2 build(forms, ...)

This function takes as argument a form or list of forms and does preprocessing
of the forms (including computation of the reference tensor), but does not
generate any code.

3.3 write(forms, ...)

This function takes a preprocessed form or list of forms and generates code.
Note that build must be called before write:

forms = build([a, L])

write(forms)

20

FFC User Manual Anders Logg

3.4 writeFiniteElement(element, ...)

This function generates code for a given FiniteElement. Use this function
if you just want to generate code for a finite element (including mapping of
nodes and nodal points):

element = FiniteElement(‘‘Lagrange’’, ‘‘triangle’’, 1)

writeFiniteElement(element)

21

Chapter 4

Form language

FFC uses a flexible and extensible language to define and process multilinear
forms. In this chapter, we give the details of this form language and present a
number of examples to illustrate the use of the form language in applications.

4.1 Overview

A form is expressed using a combination of basic data types and operators.
FFC compiles a given multilinear form

a : V 1
h × V 2

h × · · · × V r
h → R (4.1)

into code that can be used to compute the corresponding tensor

Ai = a(φ1
i1
, φ2

i2
, . . . , φr

ir
). (4.2)

In the form language, a multilinear form is defined by first specifying the set
of function spaces, V 1

h , V 2
h , . . . , V r

h , and then expressing the multilinear form
in terms of the basis functions of these functions spaces.

A function space is defined in the form language through a FiniteElement,
and a corresponding basis function is represented as a BasisFunction. The

23

FFC User Manual Anders Logg

following code defines a pair of basis functions v and U for a first-order La-
grange finite element on triangles:

element = FiniteElement(‘‘Lagrange’’, ‘‘triangle’’, 1)

v = BasisFunction(element)

U = BasisFunction(element)

The two basis functions can now be used to define a bilinear form:

a = v*D(U, 0)*dx

corresponding to the mathematical notation

a(v, U) =

∫
Ω

v
∂U

∂x0

dx. (4.3)

Note the order of the argument list of the multilinear form is determined by
the order in which basis functions are declared, not by the order in which they
appear in the form. Thus, both a = v*D(U, 0)*dx and a = D(U, 0)*v*dx

define the same multilinear form.

The arity of a multilinear form is determined by the number of basis functions
appearing in the definition of the form. Thus, a = v*U*dx defines a bilinear

form, namely a(v, U) =
∫

Ω
v u dx, whereas L = v*f*dx defines a linear form,

namely L(v) =
∫
Ω

v f dx.

In the case of a bilinear form, the first of the two basis functions is referred
to as the test function and the second is referred to as the trial function.

Not every expression is a valid multilinear form. The following list explains
some of the basic rules that must be obeyed in the definition of a form:

• A form must be linear in each of its arguments; otherwise it is not a
multilinear form. Thus, a = v*v*U*dx is not a valid form, since it is
quadratic in v.

24

FFC User Manual Anders Logg

• The value of a form must be a scalar. Thus, if v is a vector-valued
basis function (see below), then L = v*dx is not a valid form, since the
value of the form is not a scalar.

• The integrand of a form must be integrated exactly once. Thus, neither
a = v*u nor a = v*u*dx*dx are valid forms.

4.2 The form language as a Python extension

The FFC form language is built on top of Python. This is true both when
calling FFC as a compiler from the command-line or when calling the FFC
compiler from within a Python program. Through the addition of a collection
of basic data types and operators, FFC allows a form to be specified in a
language that is close to the mathematical notation. Since the form language
is built on top of Python, any Python code is valid in the definition of a form
(but not all Python code defines a multilinear form). In particular, comments
(lines starting with #) and functions (keyword def, see Section 4.9 below)
are allowed in the definition of a form.

4.3 Basic data types

4.3.1 FiniteElement

The data type FiniteElement represents a finite element on a triangle or
tetrahedron. A FiniteElement is declared by specifying the type of element,
the underlying shape, the polynomial order and, optionally, the number of
vector components:

element = FiniteElement(type, shape, <degree>, <num components>)

The argument type is a string and possible values include:

25

FFC User Manual Anders Logg

• ‘‘Lagrange’’, representing a standard Lagrange finite element for con-
tinuous piecewise polynomial functions;

• ‘‘Discontinuous Lagrange’’, representing a discontinuous Lagrange
finite element for discontinuous piecewise polynomial functions;

• ‘‘Vector Lagrange’’, representing a standard vector Lagrange finite
element for continuous piecewise polynomial vector-valued functions;

• ‘‘Discontinuous vector Lagrange’’, representing a discontinuous
Lagrange finite element for discontinuous piecewise polynomial vector-
valued functions.

The argument shape is a string and possible values include:

• ‘‘triangle’’, representing a triangle in R
2;

• ‘‘tetrahedron’’, representing a tetrahedron in R
3.

The argument order is an integer specifying the polynomial order of the
finite element. Note that the minimal order for Lagrange finite elements is
one, whereas the minimal order for discontinuous Lagrange finite elements is
zero.

The argument num components is optional and specifies the number of vector
components for a vector-valued element. If not specified, the number of vec-
tor components is assumed to be the same the dimension d of the underlying
shape.

Note that more than one FiniteElement can be declared and used in the
definition of a form. The following example declares two elements, one linear
and one quadratic Lagrange finite element:

P1 = FiniteElement(‘‘Lagrange’’, ‘‘tetrahedron’’, 1)

P2 = FiniteElement(‘‘Lagrange’’, ‘‘tetrahedron’’, 2)

26

FFC User Manual Anders Logg

4.3.2 MixedElement

The data type MixedElement represents a mixed finite element on a triangle
or tetrahedron. The function space of a mixed finite element is defined as the
direct sum of the function spaces of a given list of elements. A MixedElement

is declared by specifying a list of FiniteElements:

mixed_element = FiniteElement([e0, e1, ...])

Alternatively, a MixedElement can be created as the sum of a sequence of
FiniteElements. The following example illustrates how to create a Taylor-
Hood element (quadratic velocity and linear pressure):

P2 = FiniteElement("Vector Lagrange", "triangle", 2)

P1 = FiniteElement("Lagrange", "triangle", 1)

TH = P2 + P1

4.3.3 BasisFunction

The data type BasisFunction represents a basis function on a given finite
element. A BasisFunction must be declared from a previously declared
FiniteElement:

v = BasisFunction(element)

Note that more than one BasisFunction can be declared from the same
FiniteElement.

Note that the order in which BasisFunctions are declared is important. The
order determines the order of arguments to the multilinear form. Thus, for a
bilinear form a(v, U), the test function v should be declared before the trial
function U :

27

FFC User Manual Anders Logg

v = BasisFunction(element)

U = BasisFunction(element)

For a MixedElement, the function BasisFunctions can be used to construct
tuples of BasisFunctions, as illustrated here for a mixed Taylor-Hood ele-
ment:

(v, q) = BasisFunctions(TH)

(U, P) = BasisFunctions(TH)

4.3.4 Function

The data type Function represents a function belonging to a given finite
element space, that is, a linear combination of basis functions of the finite
element space. A Function must be declared from a previously declared
FiniteElement:

f = Function(element)

Note that more than one BasisFunction can be declared from the same
FiniteElement. The following example declares two BasisFunctions and
one Function from the same FiniteElement:

v = BasisFunction(element)

U = BasisFunction(element)

f = Function(element)

Function is used to represent user-defined functions, including right-hand
sides, variable coefficients and stabilization terms. FFC treats each Function

as a linear combination of basis functions with unknown coefficients. It is
the responsibility of the user or the system for which the form is compiled to

28

FFC User Manual Anders Logg

supply the values of the coefficients at run-time. In the case of DOLFIN, the
coefficients are automatically computed from a given user-defined function
during the assembly of a form.

Note that the order in which Functions are declared is important. The
code generated by FFC accepts as arguments a list of functions that should
correspond to the Functions appearing in the form in the order they have
been declared.

For a MixedElement, the function Functions can be used to construct tuples
of Functions, as illustrated here for a mixed Taylor-Hood element:

(f, g) = Functions(TH)

4.3.5 Constant

The data type Constant represents a constant scalar value that is unknown
at compile-time. A Constant is declared without any arguments:

c = Constant()

Just as with Functions, it is the responsibility of the user or the system for
which the form is compiled to supply the value of the constant at run-time.
In the case of DOLFIN, a constant is automatically assigned a value from a
given user-defined variable.

Note that the order in which Constants are declared is important. The
code generated by FFC accepts as arguments a list of constants that should
correspond to the Constants appearing in the form in the order they have
been declared.

29

FFC User Manual Anders Logg

4.3.6 Index

The data type Index represents an index used for subscripting derivatives
or taking components of vector-valued functions. If an Index is declared
without any arguments,

i = Index()

a free Index is created, representing an index range determined by the con-
text; if used to subscript a vector-valued BasisFunction or a Function, the
range is given by the number of vector dimensions n, and if used to subscript
a derivative, the range is given by the dimension d of the underlying shape
of the finite element space. As we shall see below, indices can be a powerful
tool when used to define forms in tensor notation.

An Index can also be fixed, meaning that the value of the index remains
constant:

i = Index(0)

When using the command-line interface to FFC, a sequence of free indices
are automatically declared for convenience: i, j, k, l, m, n. Note however
that a user is free to declare new indices with other names or even reuse these
variables for other things than indices.

4.3.7 Identity

The data type Identity represents an n×n unit matrix of given size n. An
Identity is declared by specifying the dimension n:

I = Identity(n)

30

FFC User Manual Anders Logg

4.4 Scalar operators

The basic operators used to define a form are scalar addition, subtraction
and multiplication. Note the absence of division which is intentionally left
out (but see the comment below).

4.4.1 Scalar addition: +

Scalar addition is supported for all scalar-valued basic data types, thus
including BasisFunction, Function, Constant and expressions involving
these data types.

In addition, unary plus is supported for all basic data types.

4.4.2 Scalar subtraction: -

Scalar subtraction is supported for all scalar-valued basic data types, thus
including BasisFunction, Function, Constant and expressions involving
these data types.

In addition, unary minus is supported for all basic data types.

4.4.3 Scalar multiplication: *

Scalar multiplication is supported for all scalar-valued basic data types, thus
including BasisFunction, Function, Constant and expressions involving
these data types.

31

FFC User Manual Anders Logg

4.4.4 Scalar division: /

Division is not allowed in the definition of a form. This is because division
by a BasisFunction in the definition of a form does not result in a valid
multilinear form, since a multilinear form must be linear in each of its argu-
ments. Division by Functions and Constants may be implemented in future
versions of FFC.

4.5 Vector operators

Vectors are defined in the form language using Python’s built-in list type.
This means that all list operations such as slicing, list comprehension etc.
are supported. There is one exception to this rule, namely vector-valued
BasisFunctions and Functions, which are not lists (but can be made into
lists using the operator vec discussed below). The operators listed below
support all objects which are logically vectors, thus including both Python
lists and vector-valued expressions.

4.5.1 Component access: v[i]

Brackets [] are used to pick a given component of a logically vector-valued
expression. Thus, if v is a vector-valued expression, then v[0] represents a
function corresponding to the first component of (the values of) v. Similarly,
if i is an Index (free or fixed), then v[i] represents a function corresponding
to component i of (the values of) v.

32

FFC User Manual Anders Logg

4.5.2 Scalar product: dot(v, w)

The operator dot accepts as arguments two logically vector-valued expres-
sions and returns the scalar product (dot product) of the two vectors:

dot(v, w) ↔ v · w =
n−1∑
i=0

viwi. (4.4)

Note that this operator is only defined for vectors of equal length.

4.5.3 Vector product: cross(v, w)

The operator cross accepts as arguments two logically vector-valued expres-
sions and returns a vector which is the cross product (vector product) of the
two vectors:

cross(v, w) ↔ v × w = (v1w2 − v2w1, v2w0 − v0w2, v0w1 − v1w0). (4.5)

Note that this operator is only defined for vectors of length three.

4.5.4 Matrix product: mult(A, B)

The operator mult accepts as arguments two matrices (or more generally,
tensors) and returns the matrix (tensor) product.

4.5.5 Transpose: transp(A)

The operator transp accept as argument a matrix and return the transpose
of the given matrix:

transp(A)[i][j] ↔ (A>)ij = Aji. (4.6)

33

FFC User Manual Anders Logg

4.5.6 Trace: trace(A)

The operator trace accepts as argument a square matrix A and returns its
trace, that is, the sum of its diagonal elements:

trace(A) ↔ trace(A) =
n−1∑
i=0

Aii. (4.7)

4.5.7 Vector length: len(v)

The operator len accepts as argument a logically vector-valued expression
and returns its length (the number of vector components).

4.5.8 Rank: rank(v)

The operator rank returns the rank of the given argument. The rank of an
expression is defined as the number of times the operator [] can be applied
to the expression before a scalar is obtained. Thus, the rank of a scalar is
zero, the rank of a vector is one and the rank of a matrix is two.

4.5.9 Vectorization: vec(v)

The operator vec is used to create a Python list object from a logically
vector-valued expression. This operator has no effect on expressions which
are already lists. Thus, if v is a vector-valued BasisFunction, then vec(v)

returns a list of the components of v. This can be used to define forms in
terms of standard Python list operators or Python Numeric array opera-
tors.

The operator vec does not have to be used if the form is defined only in
terms of the basic operators of the form language.

34

FFC User Manual Anders Logg

4.6 Differential operators

4.6.1 Scalar partial derivative: D(v, i)

The basic differential operator is the scalar partial derivative D. This dif-
ferential operator accepts as arguments a scalar or logically vector-valued
expression v together with a coordinate direction i and returns the partial
derivative of the expression in the given coordinate direction:

D(v, i) ↔
∂v

∂xi

. (4.8)

Alternatively, the member function dx can be used. For v an expression, the
two expressions D(v, i) and v.dx(i) are equivalent, but note that only the
operator D works on vector-valued expressions that are defined in terms of
Python lists.

4.6.2 Gradient: grad(v)

The operator grad accepts as argument an expression v and returns its gra-
dient. If v is scalar, the result is a vector containing the partial derivatives
in the coordinate directions:

grad(v) ↔ grad(v) = ∇v = (
∂v

∂x0

,
∂v

∂x1

, . . . ,
∂v

∂xd−1

). (4.9)

If v is logically vector-valued, the result is a matrix with rows given by the
gradients of each component:

grad(v)[i][j] ↔ (grad(v))ij = (∇v)ij =
∂vi

∂xj

. (4.10)

Thus, if v is scalar-valued, then grad(grad(v)) returns the Hessian of v,
and if v is vector-valued, then grad(v) is the Jacobian of v.

35

FFC User Manual Anders Logg

4.6.3 Divergence: div(v)

The operator div accepts as argument a logically vector-valued expression
and returns its divergence:

div(v) ↔ div(v) = ∇ · v =
d−1∑
i=0

∂vi

∂xi

. (4.11)

Note that the length n of the vector v must be equal to the dimension d of
the underlying shape of the FiniteElement defining the function space for v.

4.6.4 Rotation: rot(v)

The operator rot accepts as argument a logically vector-valued expression
and returns its rotation:

rot(v) ↔ rot(v) = ∇× v = (
∂v2

∂x1

−
∂v1

∂x2

,
∂v0

∂x2

−
∂v2

∂x0

,
∂v1

∂x0

−
∂v0

∂x1

). (4.12)

Note that this operator is only defined for vectors of length three.

Alternatively, the name curl can be used for this operator.

4.7 Integrals

Each term of a valid form expression must be a scalar-valued expression
integrated exactly once. Integrals are expressed through multiplication with
a measure, representing either an integral over the interior of the domain Ω
or the boundary ∂Ω of Ω.

4.7.1 Integration over the interior: *dx

A measure for integration over the interior of Ω is created as follows:

36

FFC User Manual Anders Logg

dx = Integral(‘‘interior’’)

If v is a scalar-valued expression, then the integral of v over the interior of
Ω is written as v*dx.

When using the command-line interface to FFC, the measure dx is automat-
ically declared as an integral over the interior of Ω. Note however that a user
is free to declare measures with other names or even reuse the variable dx

for something else.

4.7.2 Integration over the boundary: *ds

A measure for integration over the boundary of Ω is created as follows:

ds = Integral(‘‘boundary’’)

If v is a scalar-valued expression, then the integral of v over the boundary
of Ω is written as v*ds.

When using the command-line interface to FFC, the measure ds is automat-
ically declared as an integral over the boundary of Ω. Note however that a
user is free to declare measures with other names or even reuse the variable
ds for something else.

At this point, complete support has not been added to FFC for boundary
integrals, which means that all boundary integrals are currently evaluated to
zero.

4.8 Index notation

FFC supports index notation, which is often a convenient way to express
forms. The basic principle of index notation is that summation is implicit

37

FFC User Manual Anders Logg

over indices repeated twice in each term of an expression. The following
examples illustrate the index notation, assuming that each of the variables i
and j have been declared as a free Index:

v[i]*w[i] ↔

n−1∑
i=0

viwi, (4.13)

D(v, i)*D(w, i) ↔
d−1∑
i=0

∂v

∂xi

∂w

∂xi

= ∇v · ∇w, (4.14)

D(v[i], i) ↔
d−1∑
i=0

∂vi

∂xi

= ∇ · v, (4.15)

D(v[i], j)*D(w[i], j) ↔

n−1∑
i=0

d−1∑
j=0

∂vi

∂xj

∂wi

∂xj

. (4.16)

Index notation is used internally by FFC to represent multilinear forms and in
most cases, FFC is capable of generating an efficient tensor representation of
any given expression. However, in some cases index notation might generate
more efficient code.

4.9 User-defined operators

A user may define new operators, using standard Python syntax. As an
example, consider the strain operator ε of linear elasticity, defined by

ε(v) =
1

2
(∇v + (∇v)>). (4.17)

This operator can be implemented as a function using the Python def key-
word:

def epsilon(v):

return 0.5*(grad(v) + transp(grad(v)))

38

FFC User Manual Anders Logg

Alternatively, using the shorthand lambda notation, the strain operator may
be defined as follows:

epsilon = lambda v: 0.5*(grad(v) + transp(grad(v)))

39

Chapter 5

Examples

The following examples illustrate basic usage of the form language for the
definition of a collection of standard multilinear forms. We assume that
dx has been declared as an integral over the interior of Ω and that both i

and j have been declared as a free Index, which is always the case if the
command-line interface is used.

The examples presented below can all be found in the subdirectory src/demo

of the FFC source tree.

5.1 The mass matrix

As a first example, consider the bilinear form corresponding to a mass matrix,

a(v, U) =

∫
Ω

v U dx, (5.1)

which can be implemented in FFC as follows:

element = FiniteElement("Lagrange", "triangle", 1)

v = BasisFunction(element)

41

FFC User Manual Anders Logg

U = BasisFunction(element)

a = v*U*dx

This example is implemented in the file Mass.form in the collection of demon-
stration forms included with the FFC source distribution.

5.2 Poisson’s equation

The bilinear and linear forms form for Poisson’s equation,

a(v, U) =

∫
Ω

∇v · ∇U dx, (5.2)

L(v) =

∫
Ω

v f dx, (5.3)

can be implemented as follows:

element = FiniteElement("Lagrange", "triangle", 1)

v = BasisFunction(element)

U = BasisFunction(element)

f = Function(element)

a = dot(grad(v), grad(U))*dx

L = v*f*dx

Alternatively, index notation can be used to express the scalar product:

a = D(v, i)*D(U, i)*dx

This example is implemented in the file Poisson.form in the collection of
demonstration forms included with the FFC source distribution.

42

FFC User Manual Anders Logg

5.3 Vector-valued Poisson

The bilinear and linear forms for a system of (independent) Poisson equa-
tions,

a(v, U) =

∫
Ω

∇v : ∇U dx, (5.4)

L(v) =

∫
Ω

v · f dx, (5.5)

with v, U and f vector-valued can be implemented as follows:

element = FiniteElement(‘‘Vector Lagrange’’, ‘‘triangle’’, 1)

v = BasisFunction(element)

U = BasisFunction(element)

f = Function(element)

a = dot(grad(v), grad(U))*dx

L = dot(v, f)*dx

Alternatively, index notation may be used:

a = D(v[i], j)*D(U[i], j)*dx

L = v[i]*f[i]*dx

This example is implemented in the file PoissonSystem.form in the collec-
tion of demonstration forms included with the FFC source distribution.

5.4 The strain-strain term of linear elasticity

The strain-strain term of linear elasticity,

a(v, U) =

∫
Ω

ε(v) : ε(U) dx, (5.6)

43

FFC User Manual Anders Logg

where

ε(v) =
1

2
(∇v + (∇v)>) (5.7)

can be implemented as follows:

element = FiniteElement("Vector Lagrange", "tetrahedron", 1)

v = BasisFunction(element)

U = BasisFunction(element)

def epsilon(v):

return 0.5*(grad(v) + transp(grad(v)))

a = dot(epsilon(v), epsilon(U))*dx

Alternatively, index notation can be used to define the form:

a = 0.25*(D(v[i], j) + D(v[j], i))*

(D(U[i], j) + D(U[j], i))*dx

This example is implemented in the file Elasticity.form in the collection
of demonstration forms included with the FFC source distribution.

5.5 The nonlinear term of Navier–Stokes

The bilinear form for fixed-point iteration on the nonlinear term of the in-
compressible Navier–Stokes equations,

a(v, U) =

∫
Ω

v · ((w · ∇)U) dx, (5.8)

with w the frozen velocity from a previous iteration, can be conveniently
implemented using index notation as follows:

44

FFC User Manual Anders Logg

element = FiniteElement("Vector Lagrange", "tetrahedron", 1)

v = BasisFunction(element)

U = BasisFunction(element)

w = Function(element)

a = v[i]*w[j]*D(U[i], j)*dx

This example is implemented in the file NavierStokes.form in the collection
of demonstration forms included with the FFC source distribution.

5.6 The heat equation

Discretizing the heat equation,

u̇ −∇ · (c∇u) = f, (5.9)

in time using the dG(0) method (backward Euler), we obtain the following
variational problem for the discrete solution U = U(x, t): Find U n = U(·, tn)
with Un−1 = U(·, tn−1) given such that

1

kn

∫
Ω

(Un − Un−1) v dx +

∫
Ω

c∇Un · ∇v dx =

∫
Ω

fn v dx (5.10)

for all test functions v, where k = tn − tn−1 denotes the time step . In the
example below, we implement this variational problem with piecewise linear
test and trial functions, but other choices are possible (just choose another
finite element).

Rewriting the variational problem in the standard form a(v, U) = L(v) for
all v, we obtain the following pair of bilinear and linear forms:

a(v, Un) =

∫
Ω

v Un dx + kn

∫
Ω

c v · ∇Un dx, (5.11)

L(v) =

∫
Ω

v Un−1 dx + kn

∫
Ω

v fn dx, (5.12)

which can be implemented as follows:

45

FFC User Manual Anders Logg

element = FiniteElement("Lagrange", "triangle", 1)

v = BasisFunction(element) # Test function

U1 = BasisFunction(element) # Value at t_n

U0 = Function(element) # Value at t_n-1

c = Function(element) # Heat conductivity

f = Function(element) # Heat source

k = Constant() # Time step

a = v*U1*dx + k*c*dot(grad(v), grad(U1))*dx

L = v*U0*dx + k*v*f*dx

5.7 Mixed formulation of Stokes

To solve Stokes’ equations,

− ∆u + ∇p = f, (5.13)

∇ · u = 0, (5.14)

we write the variational problem in standard form a(v, U) = L(v) for all v
to obtain the following pair of bilinear and linear forms:

a(v, (U, P)) =

∫
Ω

∇v : ∇U − (∇ · v) P + q (∇ · U) dx, (5.15)

L(v) =

∫
Ω

v · f dx. (5.16)

Using a mixed formulation with Taylor-Hood elements, this can be imple-
mented as follows:

P2 = FiniteElement("Vector Lagrange", "triangle", 2)

P1 = FiniteElement("Lagrange", "triangle", 1)

TH = P2 + P1

(v, q) = BasisFunctions(TH)

46

FFC User Manual Anders Logg

(U, P) = BasisFunctions(TH)

f = Function(P2)

a = (dot(grad(v), grad(U)) - div(v)*P + q*div(U))*dx

L = dot(v, f)*dx

47

Appendix A

Reference elements

A.1 The reference triangle

The reference triangle (Figure A.1) is defined by the following three vertices:

v0 = (0, 0),

v1 = (1, 0),

v2 = (0, 1).

(A.1)

Note that this corresponds to a counter-clockwise orientation of the vertices
in the plane.

The edges of the reference triangle are ordered following the convention that
edge ei should be opposite to vertex vi for i = 0, 1, 2, with the vertices of
each edge ordered to give a counter-clockwise orientation of the triangle in
the plane:

e0 : (v1, v2),

e1 : (v2, v0),

e2 : (v0, v1).

(A.2)

49

FFC User Manual Anders Logg

PSfrag replacements

x0

x1

v0 v1

v2

v0 = (0, 0)

v1 = (1, 0)

v2 = (0, 1)

Figure A.1: Physical coordinates of the reference triangle.

PSfrag replacements

v0 v1

v2

e0e1

e2

Figure A.2: Ordering of mesh entities (vertices and edges) for the reference
triangle.

50

FFC User Manual Anders Logg

A.2 The reference tetrahedron

The reference tetrahedron (Figure A.3) is defined by the following four ver-
tices:

v0 = (0, 0, 0),

v1 = (1, 0, 0),

v2 = (0, 1, 0),

v4 = (0, 0, 1).

(A.3)

The faces of the reference tetrahedron are ordered following the convention
that face f i should be opposite to vertex vi for i = 0, 1, 2, 3, with the vertices
of each face ordered to give a counter-clockwise orientation of each face as
seen from the outside of the tetrahedron and the first vertex of face f i given
by vertex vi+1 mod 4:

f 0 : (v1, v3, v2),

f 1 : (v2, v3, v0),

f 2 : (v3, v1, v0),

f 3 : (v0, v1, v2).

(A.4)

The edges of the reference tetrahedron are ordered following the convention
that edges e0, e1, e2 should correspond to the edges of the reference triangle.
Edges e3, e4, e5 all ending up at vertex v3 are ordered based on their first
vertex:

e0 : (v1, v2),

e1 : (v2, v0),

e2 : (v0, v1),

e3 : (v0, v3),

e4 : (v1, v3),

e5 : (v2, v3).

(A.5)

The ordering of vertices on faces implicitly defines an ordering of edges on

51

FFC User Manual Anders Logg

faces by identifying an edge on a face with the opposite vertex on the face:

f 0 : (e5, e0, e4),

f 1 : (e3, e1, e5),

f 2 : (e2, e3, e4),

f 3 : (e0, e1, e2).

(A.6)

Note that the ordering of edges on f 3 is the same as the ordering of edges
on the reference triangle. Also note that the internal ordering of vertices
on edges does not always follow the orientation of the face (which is not
possible).

A.3 Ordering of degrees of freedom

The local and global orderings of degrees of freedom or nodes are obtained
by associating each node with a mesh entity, locally and globally.

A.3.1 Mesh entities

We distinguish between mesh entities of different topological dimensions:

vertices topological dimension 0
edges topological dimension 1
faces topological dimension 2
cells topological dimension 2 or 3

A cell can be either a triangle or a tetrahedron depending on the type of
mesh. For a mesh consisting of triangles, the mesh entities involved are
vertices, edges and cells, and for a mesh consisting of tetrahedrons, the mesh
entities involved are vertices, edges, faces and cells.

52

FFC User Manual Anders Logg

PSfrag replacements

x0

x1

x2

v0

v1

v2

v3

v0 = (0, 0, 0)

v1 = (1, 0, 0)

v2 = (0, 1, 0)

v3 = (0, 0, 1)

Figure A.3: Physical coordinates of the reference tetrahedron.

53

FFC User Manual Anders Logg

PSfrag replacements

v0

v1

v2

v3

e0

e1

e2

e3

e4

e5

f 0

f 1

f 2

f 3

Figure A.4: Ordering of mesh entities (vertices, edges, faces) for the reference
tetrahedron.

54

FFC User Manual Anders Logg

A.3.2 Ordering among mesh entities

With each mesh entity, there can be associated zero or more nodes and the
nodes are ordered locally and globally based on the topological dimension of
the mesh entity with which they are associated. Thus, any nodes associated
with vertices are ordered first and nodes associated with cells last.

If more than one node is associated with a single mesh entity, the internal
ordering of the nodes associated with the mesh entity becomes important, in
particular for edges and faces, where the nodes of two adjacent cells sharing
a common edge or face must lign up.

A.3.3 Internal ordering on edges

For edges containing more than one node, the nodes are ordered in the di-
rection from the first vertex (v0

e) of the edge to the second vertex (v1
e) of the

edge as in Figure A.5.

PSfrag replacements

v0
e

v1
e

0

1

2

Figure A.5: Internal ordering of nodes on edges.

55

FFC User Manual Anders Logg

A.3.4 Alignment of edges

Depending on the orientation of any given cell, an edge on the cell may be
aligned or not aligned with the corresponding edge on the reference cell if the
vertices of the cell are mapped to the reference cell. We define the alignment

of an edge with respect to a cell to be 0 if the edge is aligned with the
orientation of the reference cell and 1 otherwise.

Example 1: The alignment of the first edge (e0) on a triangle is 0 if the
first vertex of the edge is the second vertex (v1) of the triangle.

Example 2: The alignment of the second edge (e1) on a tetrahedron is 0 if
the first vertex of the edge is the third vertex (v2) of the tetrahedron.

If two cells share a common edge and the edge is aligned with one of the cells
and not the other, we must reverse the order in which the local nodes are
mapped to global nodes on one of the two cells. As a convention, the order
is kept if the alignment is 0 and reversed if the alignment is 1.

A.3.5 Internal ordering on faces

For faces containing more than one node, the ordering of nodes is nested
going from the first to the third vertex and in each step going from the first
to the second vertex as in Figure A.6.

A.3.6 Alignment of faces

There are six different ways for a face to be aligned on a tetrahedron; there are
three ways to pick the first edge of the face, and once the first edge is picked,
there are two ways to pick the second edge. To define an alignment of faces as
an integer between 0 and 5, we compare the ordering of edges on a face with
the ordering of edges on the corresponding face on the reference tetrahedron.
If the first edge of the face matches the first edge on the corresponding face
on the reference tetrahedron and also the second edge matches the second
edge on the reference tetrahedron, then the alignment is 0. If only the first

56

FFC User Manual Anders Logg

PSfrag replacements

v0
f v1

f

v2
f

0 1 2

3 4

5

Figure A.6: Internal ordering of nodes on faces.

57

FFC User Manual Anders Logg

edge matches, then the alignment is 1. We similarly define alignments 2, 3
by matching the first and second edges with the second and third edges on
the corresponding face on the reference tetrahedron, and alignments 4, 5 by
matching the first and second edges with the third and first edges on the
corresponding face on the reference tetrahedron.

Example 1: The alignment of the first face of a tetrahedron is 0 if the first
edge of the face is edge number 5 and the second edge is edge number 0.

Example 2: The alignment of the first face of a tetrahedron is 1 if the first
edge of the face is edge number 5 and the second edge is not edge number 0.
(It must then be edge number 4.)

Example 3: The alignment of the first face of a tetrahedron is 4 if the first
edge of the face is edge number 4 and the second edge is edge number 5.

Example 4: The alignment of the first face of a tetrahedron is 5 if the first
edge of the face is edge number 4 and the second edge is not edge number 5.
(It must then be edge number 0.)

58

Appendix B

Installation

The source code of FFC is portable and should work on any system with a
standard Python installation. Questions, bug reports and patches concerning
the installation should be directed to the FFC mailing list at the address

ffc-dev@fenics.org

FFC must currently be installed directly from source, but effort is underway
to provide precompiled Debian packages of FFC and other FEniCS compo-
nents.

B.1 Installing from source

B.1.1 Dependencies and requirements

FFC depends on a number of libraries that need to be installed on your
system. These libraries include FIAT and the Python Numeric module. In
addition, you need to have a working Python installation on your system.

59

FFC User Manual Anders Logg

Installing Python

FFC is developed for Python 2.4, but might also work with Python 2.3.
To check which version of Python you have installed, issue the command
python -V:

python -V

Python 2.4.1

If Python is not installed on your system, it can be downloaded from

http://www.python.org/

Follow the installation instructions for Python given on the Python web page.
For Debian users, the package to install is python2.4.

Installing Numeric

In addition to Python itself, FFC depends on the Python package Numeric,
which is used by FFC to process multidimensionall arrays (tensors). Python
Numeric can be downloaded from

http://www.scipy.org/

For Debian users, the package to install is python2.4-numeric.

Installing FIAT

FFC depends on the latest version of FIAT, which can be downloaded from

60

FFC User Manual Anders Logg

http://www.fenics.org/

FIAT is used by FFC to create and evaluate finite element basis functions
and quadrature rules. The installation instructions for FIAT are similar to
those for FFC given in detail below.

In addition, you will need to install the Python package LinearAlgebra, which
may already be included in your installation of Python Numeric. For Debian
users, the package to install is python2.4-numeric-ext.

B.1.2 Downloading the source code

The latest release of FFC can be obtained as a tar.gz archive in the down-
load section at

http://www.fenics.org/

Download the latest release of FFC, for example ffc-0.1.0.tar.gz, and
unpack using the command

tar zxfv ffc-0.1.0.tar.gz

This creates a directory ffc-0.1.0 containing the FFC source code.

If you want the very latest version of FFC, there is also a version named
ffc-cvs-current.tar.gz which provides a snapshot of the current CVS
version of FFC, updated automatically from the CVS repository each hour.
This version may contain features not yet present in the latest release, but
may also be less stable and even not work at all.

61

FFC User Manual Anders Logg

B.1.3 Installing the compiler

FFC follows the standard for Python packages. Enter the source directory
of FFC, and issue the following command:

python setup.py install

This will install the FFC Python package in a subdirectory called ffc in
the default location for user-installed Python packages (usually in the di-
rectory /usr/lib/python2.4/site-packages). In addition, the compiler
executable (a Python script) will be installed in the default directory for
user-installed Python scripts (usually in /usr/bin).

To see a list of optional parameters to the installation script, type

python setup.py install --help

If you don’t have root access to the system you are using, you can pass the
--home option to the installation script to install FFC in your home directory:

mkdir ~/local

python setup.py install --home ~/local

This installs the FFC package in the directory ~/local/lib/python and the
FFC executable in ~/local/bin. If you use this option, make sure to set
the environment variable PYTHONPATH to ~/local/lib/python and to add
~/local/bin to the PATH environment variable.

B.1.4 Compiling the demos

To test your installation of FFC, enter the subdirectory src/demo and com-
pile some of the demonstration forms. With FFC installed on your system,
just type

62

FFC User Manual Anders Logg

ffc Poisson.form

to compile the bilinear and linear forms for Poisson’s equation. This will
generate a C++ header file called Poisson.h that can be used with DOLFIN
to implement a solver for Poisson’s equation. Adding the flag -l latex

generates output in LATEX format:

ffc -l latex Poisson.form

latex Poisson.tex

xdvi Poisson.dvi

It is also possible to compile the forms in src/demo without needing to install
FFC on your system. In that case, you need to supply the path to the FFC
executable:

../bin/ffc Poisson.form

B.1.5 Verifying the generated code

To verify the output generated by the compiler, run the script verify from
within the FFC source tree:

scripts/verify

This script compiles all forms found in src/demo and compares the output
with previously compiled forms in src/reference.

B.2 Debian package

In preparation.

63

Appendix C

Contributing code

If you have created a new module, fixed a bug somewhere, or have made a
small change which you want to contribute to FFC, then the best way to do
so is to send us your contribution in the form of a patch. A patch is a file
which describes how to transform a file or directory structure into another.
The patch is built by comparing a version which both parties have against
the modified version which only you have.

C.1 Creating a patch

The tool used to create a patch is called diff and the tool used to apply
the patch is called patch. These tools are free software and are standard on
most Unix systems.

Here’s an example of how it works. Start from the latest release of FFC,
which we here assume is release 0.1.0. You then have a directory structure
under ffc-0.1.0 where you have made modifications to some files which you
think could be useful to other users.

1. Clean up your modified directory structure to remove temporary and
binary files which will be rebuilt anyway:

65

FFC User Manual Anders Logg

make clean

2. From the parent directory, rename the FFC directory to something else:

mv ffc-0.1.0 ffc-0.1.0-mod

3. Unpack the version of FFC that you started from:

tar zxfv ffc-0.1.0.tar.gz

4. You should now have two FFC directory structures in your current
directory:

ls

ffc-0.1.0

ffc-0.1.0-mod

5. Now use the diff tool to create the patch:

diff -u --new-file --recursive ffc-0.1.0

ffc-0.1.0-mod > ffc-<identifier>-<date>.patch

written as one line, where <identifier> is a keyword that can be used
to identify the patch as coming from you (your username, last name,
first name, a nickname etc) and <date> is today’s date in the format
yyyy-mm-dd.

6. The patch now exists as ffc-<identifier>-<date>.patch and can
be distributed to other people who already have ffc-0.1.0 to easily
create your modified version. If the patch is large, compressing it with
for example gzip is advisable:

gzip ffc-<identifier>-<date>.patch

66

FFC User Manual Anders Logg

C.2 Sending patches

Patch files should be sent to the FFC mailing list at the address

ffc-dev@fenics.org

Include a short description of what your patch accomplishes. Small patches
have a better chance of being accepted, so if you are making a major con-
tribution, please consider breaking your changes up into several small self-
contained patches if possible.

C.3 Applying a patch (maintainers)

Let’s say that a patch has been built relative to FFC release 0.1.0. The
following description then shows how to apply the patch to a clean version
of release 0.1.0.

1. Unpack the version of FFC which the patch is built relative to:

tar zxfv ffc-0.1.0.tar.gz

2. Check that you have the patch ffc-<identifier>-<date>.patch and
the FFC directory structure in the current directory:

ls

ffc-0.1.0

ffc-<identifier>-<date>.patch

Unpack the patch file using gunzip if necessary.

3. Enter the FFC directory structure:

cd ffc-0.1.0

67

FFC User Manual Anders Logg

4. Apply the patch:

patch -p1 < ../ffc-<identifier>-<date>.patch

The option -p1 strips the leading directory from the filename references
in the patch, to match the fact that we are applying the patch from
inside the directory. Another useful option to patch is --dry-run

which can be used to test the patch without actually applying it.

5. The modified version now exists as ffc-0.1.0.

C.4 License agreement

By contributing a patch to FFC, you agree to license your contributed code
under the GNU General Public License (a condition also built into the GPL
license of the code you have modified). Before creating the patch, please
update the author and date information of the file(s) you have modified
according to the following example:

__author__ = ‘‘Anders Logg (logg@tti-c.org)’’

__date__ = ‘‘2004-11-17 -- 2005-09-09’’

__copyright__ = ‘‘Copyright (c) 2004, 2005 Anders Logg’’

__license__ = ‘‘GNU GPL Version 2’’

Modified by Johan Jansson 2005.

As a rule of thumb, the original author of a file holds the copyright.

68

Appendix D

License

FFC is licensed under the GNU General Public License (GPL) version 2,
included verbatim below.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

License is intended to guarantee your freedom to share and change free

software--to make sure the software is free for all its users. This

General Public License applies to most of the Free Software

Foundation’s software and to any other program whose authors commit to

using it. (Some other Free Software Foundation software is covered by

the GNU Library General Public License instead.) You can apply it to

your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

69

FFC User Manual Anders Logg

this service if you wish), that you receive source code or can get it

if you want it, that you can change the software or use pieces of it

in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.

These restrictions translate to certain responsibilities for you if you

distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must give the recipients all the rights that

you have. You must make sure that they, too, receive or can get the

source code. And you must show them these terms so they know their

rights.

We protect your rights with two steps: (1) copyright the software, and

(2) offer you this license which gives you legal permission to copy,

distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain

that everyone understands that there is no warranty for this free

software. If the software is modified by someone else and passed on, we

want its recipients to know that what they have is not the original, so

that any problems introduced by others will not reflect on the original

authors’ reputations.

Finally, any free program is threatened constantly by software

patents. We wish to avoid the danger that redistributors of a free

program will individually obtain patent licenses, in effect making the

program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and

modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains

a notice placed by the copyright holder saying it may be distributed

under the terms of this General Public License. The "Program", below,

refers to any such program or work, and a "work based on the Program"

means either the Program or any derivative work under copyright law:

that is to say, a work containing the Program or a portion of it,

either verbatim or with modifications and/or translated into another

70

FFC User Manual Anders Logg

language. (Hereinafter, translation is included without limitation in

the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the Program

is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s

source code as you receive it, in any medium, provided that you

conspicuously and appropriately publish on each copy an appropriate

copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty;

and give any other recipients of the Program a copy of this License

along with the Program.

You may charge a fee for the physical act of transferring a copy, and

you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion

of it, thus forming a work based on the Program, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

c) If the modified program normally reads commands interactively

when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this

License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)

71

FFC User Manual Anders Logg

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Program.

In addition, mere aggregation of another work not based on the Program

with the Program (or with a work based on the Program) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may copy and distribute the Program (or a work based on it,

under Section 2) in object code or executable form under the terms of

Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer

to distribute corresponding source code. (This alternative is

allowed only for noncommercial distribution and only if you

received the program in object code or executable form with such

an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for

making modifications to it. For an executable work, complete source

code means all the source code for all modules it contains, plus any

associated interface definition files, plus the scripts used to

72

FFC User Manual Anders Logg

control compilation and installation of the executable. However, as a

special exception, the source code distributed need not include

anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component

itself accompanies the executable.

If distribution of executable or object code is made by offering

access to copy from a designated place, then offering equivalent

access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program

except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense or distribute the Program is

void, and will automatically terminate your rights under this License.

However, parties who have received copies, or rights, from you under

this License will not have their licenses terminated so long as such

parties remain in full compliance.

5. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Program or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Program (or any work based on the

Program), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the

original licensor to copy, distribute or modify the Program subject to

these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to

this License.

7. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

73

FFC User Manual Anders Logg

may not distribute the Program at all. For example, if a patent

license would not permit royalty-free redistribution of the Program by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under

any particular circumstance, the balance of the section is intended to

apply and the section as a whole is intended to apply in other

circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Program under this License

may add an explicit geographical distribution limitation excluding

those countries, so that distribution is permitted only in or among

countries not thus excluded. In such case, this License incorporates

the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

Each version is given a distinguishing version number. If the Program

specifies a version number of this License which applies to it and "any

later version", you have the option of following the terms and conditions

either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of

this License, you may choose any version ever published by the Free Software

Foundation.

74

FFC User Manual Anders Logg

10. If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, write to the author

to ask for permission. For software which is copyrighted by the Free

Software Foundation, write to the Free Software Foundation; we sometimes

make exceptions for this. Our decision will be guided by the two goals

of preserving the free status of all derivatives of our free software and

of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

75

Index

BasisFunctions, 27
BasisFunction, 27
Constant, 29
D, 35
FiniteElement, 25
Functions, 28
Function, 28
Identity, 30
Index, 30
MixedElement, 27
cross, 33
curl, 36
div, 36
dot, 33
grad, 35
len, 34
rank, 34
rot, 36
trace, 34
transp, 33
vec, 34

addition, 31

backward Euler, 45
basis functions, 27
boundary measure, 37

component access, 32
constants, 29
contributing, 65

cross product, 33

Debian package, 63
def, 39
dependencies, 59
diff, 65
differential operators, 35
discontinuous Lagrange element, 25
divergence, 36
division, 32
downloading, 11, 61

elasticity, 43
examples, 41

ffc, 13
FIAT, 12
finite elements, 25
fixed-point iteration, 44
form language, 23
functions, 28

GNU General Public License, 69
GPL, 69
gradient, 35

heat equation, 45
Hessian, 35

identity matrix, 30
index notation, 37
indices, 30

77

FFC User Manual Anders Logg

installation, 11, 59
integrals, 36
interior measure, 36

Jacobian, 35

Lagrange element, 25
lambda, 39
license, 68, 69
linear elasticity, 43

man page, 13
mass matrix, 41
matrix product, 33
mixed finite elements, 27
mixed formulation, 46
multiplication, 31

Navier-Stokes, 44
Numeric, 12

partial derivative, 35
patch, 65, 67
Poisson’s equation, 12, 42
Python, 25

quickstart, 11

reference tetrahedron, 51
reference triangle, 49
rotation, 36

scalar operators, 31
scalar product, 33
source code, 61
Stokes’ equations, 46
strain, 43
subscripting, 32
subtraction, 31

Taylor-Hood element, 46

time-stepping, 45
trace, 34
transpose, 33

user-defined operators, 38

vector length, 34
vector operators, 32
vector product, 33
vector rank, 34
vector-valued Poisson, 43
vectorization, 34

78

	About this manual
	Quickstart
	Downloading and installing FFC
	Compiling Poisson's equation with FFC

	Command-line interface
	Synopsis
	Description
	Options
	-h, --help
	-v, --version
	-l language, --language language
	-d debuglevel, --debug debuglevel
	-f option
	-f no-gpl
	-f blas

	Python interface
	compile(forms, ...)
	build(forms, ...)
	write(forms, ...)
	writeFiniteElement(element, ...)

	Form language
	Overview
	The form language as a Python extension
	Basic data types
	FiniteElement
	MixedElement
	BasisFunction
	Function
	Constant
	Index
	Identity

	Scalar operators
	Scalar addition: +
	Scalar subtraction: -
	Scalar multiplication: *
	Scalar division: /

	Vector operators
	Component access: v[i]
	Scalar product: dot(v, w)
	Vector product: cross(v, w)
	Matrix product: mult(A, B)
	Transpose: transp(A)
	Trace: trace(A)
	Vector length: len(v)
	Rank: rank(v)
	Vectorization: vec(v)

	Differential operators
	Scalar partial derivative: D(v, i)
	Gradient: grad(v)
	Divergence: div(v)
	Rotation: rot(v)

	Integrals
	Integration over the interior: *dx
	Integration over the boundary: *ds

	Index notation
	User-defined operators

	Examples
	The mass matrix
	Poisson's equation
	Vector-valued Poisson
	The strain-strain term of linear elasticity
	The nonlinear term of Navier--Stokes
	The heat equation
	Mixed formulation of Stokes

	Reference elements
	The reference triangle
	The reference tetrahedron
	Ordering of degrees of freedom
	Mesh entities
	Ordering among mesh entities
	Internal ordering on edges
	Alignment of edges
	Internal ordering on faces
	Alignment of faces

	Installation
	Installing from source
	Dependencies and requirements
	Downloading the source code
	Installing the compiler
	Compiling the demos
	Verifying the generated code

	Debian package

	Contributing code
	Creating a patch
	Sending patches
	Applying a patch (maintainers)
	License agreement

	License

