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Contents v

12.3 Chaotic Dynamical System . . . . . . . . . . . . . . . . . . 71
12.4 The Harmonic Oscillator as a Chaotic System . . . . . . . . 74
12.5 Randomness and Foundations of Probability . . . . . . . . . 75
12.6 NS chaotic rather than random . . . . . . . . . . . . . . . . 78
12.7 Observability vs Computability . . . . . . . . . . . . . . . . 79
12.8 Lorenz system . . . . . . . . . . . . . . . . . . . . . . . . . . 80
12.9 Lorenz, Newton and Free Will . . . . . . . . . . . . . . . . . 81
12.10Algorithmic Information Theory . . . . . . . . . . . . . . . 82
12.11Statistical Mechanics and Roulette . . . . . . . . . . . . . . 83

13 A $1 Million Prize Problem 85
13.1 The Clay Institute Impossible $1 Million Prize . . . . . . . 85
13.2 Towards a Possible Formulation . . . . . . . . . . . . . . . . 87
13.3 Well-Posedness According to Hadamard . . . . . . . . . . . 88
13.4 ε-Weak Solutions . . . . . . . . . . . . . . . . . . . . . . . . 88
13.5 Existence of ε-Weak Solutions by Regularization . . . . . . 90
13.6 Output Sensitivity and the Dual Problem . . . . . . . . . . 91
13.7 Reformulation of the Prize Problem . . . . . . . . . . . . . 93
13.8 The standard approach to uniqueness . . . . . . . . . . . . 94

14 Weak Uniqueness by Computation 97
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
14.2 Uniqueness of cD and cL . . . . . . . . . . . . . . . . . . . . 98
14.3 Non-Uniqueness of D(t) . . . . . . . . . . . . . . . . . . . . 99
14.4 Stability of the dual solution with respect to time sampling 99
14.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

15 Existence of ε-Weak Solutions by G2 105
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
15.2 The Basic Energy Estimate for the Navier–Stokes Equations 106
15.3 Existence by G2 . . . . . . . . . . . . . . . . . . . . . . . . 107
15.4 A Posteriori Output Error Estimate for G2 . . . . . . . . . 109

16 Stability Aspects of Turbulence in Model Problems 111
16.1 The Linearized Dual Problem . . . . . . . . . . . . . . . . . 111
16.2 Rotating Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 114
16.3 A Model Dual Problem for Rotating Flow . . . . . . . . . . 114
16.4 A Model Dual Problem for Oscillating Reaction . . . . . . . 116
16.5 Model Dual Problem Summary . . . . . . . . . . . . . . . . 116
16.6 The Dual Solution for Bluff Body Drag . . . . . . . . . . . 117
16.7 Duality for a Model Problem . . . . . . . . . . . . . . . . . 117
16.8 Ensemble Averages and Input Variance . . . . . . . . . . . 118

17 A Convection-Diffusion Model Problem 121
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



vi Contents

17.2 Pointwise vs Mean Value Residuals . . . . . . . . . . . . . . 121
17.3 Artificial viscosity from least squares stabilization . . . . . . 123

18 Reynolds Stresses In and Out 125
18.1 Introducing Reynolds Stresses . . . . . . . . . . . . . . . . . 125
18.2 Removing Reynolds Stresses . . . . . . . . . . . . . . . . . . 126

19 Smagorinsky Viscosity In and Out 127
19.1 Introducing Smagorinsky Viscosity . . . . . . . . . . . . . . 127
19.2 Removing Smagorinsky Viscosity . . . . . . . . . . . . . . . 129

20 G2 for Euler 131
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
20.2 Euler/G2 as a Model of the World . . . . . . . . . . . . . . 133
20.3 Solution of the Euler Equations by G2 . . . . . . . . . . . . 134
20.4 Drag of a Square Cylinder . . . . . . . . . . . . . . . . . . . 135
20.5 Instability of the pointwise potential solution . . . . . . . . 137
20.6 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 137
20.7 G2 as Dissipative Weak Solutions . . . . . . . . . . . . . . . 147
20.8 Entropy, G2 and Physics . . . . . . . . . . . . . . . . . . . . 151
20.9 Analysis of Instability of the Potential Solution . . . . . . . 152
20.10Proof that Euler/G2 is a dissipative weak solution . . . . . 153

21 Resolution of Loschmidt’s Mystery 155
21.1 Irreversibility in Reversible Systems . . . . . . . . . . . . . 155
21.2 Euler/G2 as a Model of Thermodynamics . . . . . . . . . . 156
21.3 Euler/G2 vs Physics . . . . . . . . . . . . . . . . . . . . . . 156
21.4 The World as a Clock with Finite Precision . . . . . . . . . 157
21.5 Direction of Time . . . . . . . . . . . . . . . . . . . . . . . . 157
21.6 Finite Precision Computation . . . . . . . . . . . . . . . . . 158
21.7 Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
21.8 Coupling to Particle Systems . . . . . . . . . . . . . . . . . 161
21.9 Imperfect Nature and Mathematics? . . . . . . . . . . . . . 163
21.10A New Paradigm? . . . . . . . . . . . . . . . . . . . . . . . 164
21.11The Prize Problem Again . . . . . . . . . . . . . . . . . . . 164

22 Secrets of Ball Sports 167
22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
22.2 Dimples of a Golf Ball: Drag Crisis . . . . . . . . . . . . . . 168
22.3 Topspin in Tennis: Magnus Effect . . . . . . . . . . . . . . . 168
22.4 Roberto Carlos: Reverse Magnus Effect? . . . . . . . . . . . 170
22.5 Pitch in Baseball . . . . . . . . . . . . . . . . . . . . . . . . 171

23 Secrets of Flight 173
23.1 Generation of Lift . . . . . . . . . . . . . . . . . . . . . . . 173



Contents vii

23.2 Generation of Drag . . . . . . . . . . . . . . . . . . . . . . . 173

24 Summary so far 177
24.1 Outputs of ε-weak solutions . . . . . . . . . . . . . . . . . . 177
24.2 Chaos and Turbulence . . . . . . . . . . . . . . . . . . . . . 178
24.3 Computational Turbulence . . . . . . . . . . . . . . . . . . . 180
24.4 Irreversibility . . . . . . . . . . . . . . . . . . . . . . . . . . 180

II Computational Method: G2 181

25 G2 for Navier-Stokes Equations 183
25.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
25.2 Development of G2 . . . . . . . . . . . . . . . . . . . . . . . 184
25.3 The Incompressible Navier-Stokes Equations . . . . . . . . . 185
25.4 G2 as Eulerian cG(p)dG(q) . . . . . . . . . . . . . . . . . . 186
25.5 Neumann Boundary Conditions . . . . . . . . . . . . . . . . 187
25.6 No Slip and Slip Boundary Conditions . . . . . . . . . . . . 187
25.7 Outflow Boundary Conditions . . . . . . . . . . . . . . . . . 187
25.8 Shock Capturing . . . . . . . . . . . . . . . . . . . . . . . . 188
25.9 Basic Energy Estimate for cG(p)dG(q) . . . . . . . . . . . . 188
25.10G2 as Eulerian cG(1)dG(0) . . . . . . . . . . . . . . . . . . 189
25.11Eulerian cG(1)cG(1) . . . . . . . . . . . . . . . . . . . . . . 190
25.12Basic Energy Estimate for cG(1)cG(1) . . . . . . . . . . . . 190
25.13Slip with Friction Boundary Conditions . . . . . . . . . . . 191

26 Discrete solvers 193
26.1 Fixed point iteration using multigrid/GMRES . . . . . . . . 193

27 G2 as Adaptive DNS/LES 195
27.1 An a posteriori error estimate . . . . . . . . . . . . . . . . . 195
27.2 Proof of the a posteriori error estimate . . . . . . . . . . . . 197
27.3 Interpolation error estimates . . . . . . . . . . . . . . . . . 198
27.4 G2 as Adaptive DNS/LES . . . . . . . . . . . . . . . . . . . 199
27.5 Computation of multiple output . . . . . . . . . . . . . . . 200
27.6 Mesh refinement . . . . . . . . . . . . . . . . . . . . . . . . 201

28 Implementation of G2 with FEniCS 203

29 Moving Meshes and ALE Methods 205
29.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
29.2 G2 formulation . . . . . . . . . . . . . . . . . . . . . . . . . 205
29.3 Free boundary . . . . . . . . . . . . . . . . . . . . . . . . . 207
29.4 Laplacian Mesh Smoothing . . . . . . . . . . . . . . . . . . 208
29.5 Mesh Smoothing by Local Optimization . . . . . . . . . . . 208
29.6 Object in a box . . . . . . . . . . . . . . . . . . . . . . . . . 212



viii Contents

29.7 Sliding mesh . . . . . . . . . . . . . . . . . . . . . . . . . . 213

III Flow Fundamentals 217

30 Bluff Body Flow 219
30.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
30.2 Drag and Lift . . . . . . . . . . . . . . . . . . . . . . . . . . 220
30.3 An Alternative Formula for Drag and Lift . . . . . . . . . . 220
30.4 A posteriori error estimation . . . . . . . . . . . . . . . . . 221
30.5 Surface Mounted Cube . . . . . . . . . . . . . . . . . . . . . 224
30.6 Square Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . 229
30.7 Circular cylinder . . . . . . . . . . . . . . . . . . . . . . . . 237
30.8 Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

31 Boundary layers 253
31.1 Flat plate laminar boundary layer . . . . . . . . . . . . . . 254
31.2 Skin friction for laminar boundary layers . . . . . . . . . . . 255
31.3 Skin friction for turbulent boundary layers . . . . . . . . . . 255
31.4 Computing skin friction by G2 . . . . . . . . . . . . . . . . 256
31.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

32 Separation 259
32.1 Drag reduction for a square cylinder . . . . . . . . . . . . . 260
32.2 Drag crisis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
32.3 Drag crisis for a circular cylinder . . . . . . . . . . . . . . . 263
32.4 The Magnus effect . . . . . . . . . . . . . . . . . . . . . . . 265
32.5 Flow due to a cylinder rolling along ground . . . . . . . . . 267

33 EG2 and Turbulent Euler Solutions 273
33.1 Turbulent Euler solutions . . . . . . . . . . . . . . . . . . . 273
33.2 The dual problem for EG2 . . . . . . . . . . . . . . . . . . . 274
33.3 EG2 for a circular cylinder . . . . . . . . . . . . . . . . . . . 276

34 Transition to Turbulence 279
34.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
34.2 The Challenge . . . . . . . . . . . . . . . . . . . . . . . . . 281
34.3 The Failure of Classical Stability Theory . . . . . . . . . . . 283
34.4 Non-modal Algebraic Perturbation Growth . . . . . . . . . 283
34.5 Different perturbations . . . . . . . . . . . . . . . . . . . . . 284
34.6 Hydrodynamic stability . . . . . . . . . . . . . . . . . . . . 284
34.7 Worst case exponential perturbation growth . . . . . . . . . 286
34.8 Linear perturbation growth in shear flow . . . . . . . . . . . 286
34.9 Computational transition in shear flows . . . . . . . . . . . 289
34.10Couette flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 289



Contents ix

34.11Poiseuille flow - Reynolds experiment . . . . . . . . . . . . . 301
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Contents 1

Preface

Applied Mathematics: Body&Soul is a mathematics education reform
project including a series of books, together with associated educational
material and open source software freely available from the project web
page at www.bodysoulmath.org.

Body&Soul reflects the revolutionary new possibilities of mathematical
modeling opened by the modern computer in the form of Computational
Mathematical Modeling (CMM), which is now changing the paradigm of
mathematical modeling in science and technology with new methods, ques-
tions and answers.

The Body&Soul series of books presents a synthesis of computational
mathematics (Body) and analytical mathematics (Soul) including applica-
tions. Volumes 1-3 [28] give a modern version of calculus and linear algebra
starting at a basic undergraduate level, and subsequent volumes on a grad-
uate level cover different areas of applications with focus on computational
methods:

• Volume 4: Computational Turbulent Incompressible Flow.

• Volume 5: Computational Turbulent Compressible Flow.

• Volume 6: Computational Dynamical Systems

The present book is Volume 4, with Volumes 5 and 6 to appear in 2007 and
further volumes on solid mechanics and electromagnetics being planned. An
gentle introduction to the Body&Soul series is given in [54].

The overall goal of the Body&Soul project may be formulated as the Au-
tomation of CMM involving the key steps of automation of (i) discretiza-
tion, (ii) optimization and (iii) modeling. The objective of the Automa-
tion of CMM is to open for massive use of CMM in science, engineering,
medicine, and other areas of application. Automation of CMM is realized in
the FEniCS project (www.fenics.org), which represents the top software
part of Body&Soul.

The automation of discretization (i) involves automatic translation of a
given differential equation in standard mathematical notation into a dis-
crete system of equations, which can be automatically solved using numer-
ical linear algebra to produce an approximate solution of the differential
equation. The translation is performed using adaptive stabilized finite el-
ement methods, which we refer to as General Galerkin or G2 with the
adaptivity based on a posteriori error estimation by duality and the stabi-
lization representing a weighted least squares control of the residual.

The automation of optimization (ii) is performed similarly starting from
the differential equations expressing stationarity of an associated Lagrangian.
Finally, one can couple modeling to optimization by seeking from an Ansatz
a model with best fit to given data.
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The present book on Computational Fluid Dynamics (CFD) may be
viewed as a test of the functionality of the general technique for the Au-
tomation of CMM based on G2. In this book we apply G2 to the specific
problem of solving the incompressible Navier–Stokes (NS) and Euler equa-
tions computationally. The challenge includes computational simulation of
turbulent flow, since solutions of the NS and Euler equations in general are
turbulent, and thus the challenge in particular includes the open problem
of computational turbulence modeling.

We show in the book that G2 passes this test successfully: By direct
application of G2 to the Navier–Stokes or Euler equations, we can on a PC
compute quantities of interest of turbulent flow in the form of mean val-
ues such as drag and lift, up to tolerances of interest. G2 does not require
any user specified turbulence model or wall model for turbulent bound-
ary layers; by the direct application of G2 to the NS or Euler equations,
we avoid introducing Reynolds stresses in averaged NS equations requiring
turbulence models. Instead the weighted least squares stabilization of G2
automatically introduces sufficient turbulent dissipation on the finest com-
putational scales and thus acts as an automatic turbulence model. Further-
more, the adaptivity of G2 ensures that the flow is automatically resolved
by the mesh where needed. G2 thus opens for the Automation of CFD,
which could be an alternative title of this book.

Applying G2 to the NS and Euler equations opens a vast area for ex-
ploration, which we demonstrate by resolving several scientific mysteries,
including d’Alembert’s Mystery of zero drag in inviscid flow, and uncovering
several secrets of fluid dynamics including the secret of flying. In particular
we are led to a new formulation of thermodynamics based on determinis-
tic microscopical mechanics with deterministic mean value outputs coupled
with indeterminate pointwise outputs. The new formulation is not based
on microscopical statistics as statistical mechanics, and thus offers a ratio-
nal scientific basis of thermodynamics based on computation. It appears
that this approach also may give insight to physics following the idea that
Nature in one way or the other is performing an analog computation when
evolving in time from one moment to the next.

We are also led to a new computational approach to basic mathemati-
cal questions concerning existence and uniqueness of solutions of the NS
and Euler equations, for which analytical methods have not shown to be
productive.

In short, we show that G2 opens to new insights into both mathematics,
physics and mechanics with an amazingly rich range of possible applica-
tions. The main message of this book thus is that of a breakthrough: Using
G2 one can simulate turbulent flow on a a standard PC with a 2 GHz pro-
cessor and 1-2 Gb memory computing on adaptive meshes with 105 − 106

mesh points in space (but not less). We hope the reader will have a good
time browsing through the book and trying out the G2 FEniCS software
on the Navier-Stokes and Euler equations.
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1
Main Objective

Turbulence is one of the principal unsolved problems of physics to-
day. ....The real challenge, it seems to us, is that no adequate model
for turbulence exists today.... The equations of motion have been
analyzed in great detail, but it is still next to impossible to make ac-
curate quantitative predictions without relying heavily on empirical
data. (Tennekes and Lumley in A First Course in Turbulence, 1994).

This book is devoted to computational fluid dynamics with focus on tur-
bulent incompressible flow. In this first Part I we give a glimpse of the
central themes of the book, which are developed in detail in Part II on
Computational Method and Part III on Flow Fundamentals. In a compan-
ion forthcoming volume, we extend to turbulent compressible flow.

A fluid may appear in the form of a liquid like water or a gas like air.
Water is virtually incompressible; the relative change in volume for each
atmosphere in pressure is less than 10−6. Air can be viewed to be incom-
pressible as long as the flow speed is well below the speed of sound, that is
for flow speeds less than say 200 miles per hour.

Turbulence in fluid flow represents a basic phenomenon of our world of
crucial importance in a wide range of phenomena in Nature and technical
applications. Turbulent flow has a complex, seemingly chaotic, variation in
space and time on a wide range of scales from small to large, and typically
appears for fluids with small viscosity, such as air and water.

The basic mathematical models for fluid flow, incompressible and com-
pressible, are given by the the Euler equations and the Navier–Stokes equa-
tions expressing conservation of mass, momentum and energy. The Euler
equations model the flow of a fluid with zero viscosity, referred to as an ideal
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fluid, and were formulated by Euler in 1755. The Navier–Stokes equations
model the flow of a fluid with positive viscosity, and were formulated during
1821-45 by Navier, Stokes, Poisson and Saint-Venant, assuming the fluid
to be Newtonian, with the viscous forces depending linearly on velocity
strains.

FIGURE 1.1. Leonhard Euler (1707-1783), Claude Louis Marie Henri Navier
(1785–1836), George Gabriel Stokes (1819–1903), Siméon Denis Poisson
(1781–1840), and Adhémar Jean Claude Barré de Saint-Venant (1797–1886).

We all have practical experience of fluid motion and the concept of viscos-
ity for fluids with large viscosity such as heavy oil or tooth paste, and fluids
with small viscosity such as air and water. The Navier–Stokes equations
appear to be an accurate mathematical model of fluid flow with varying vis-
cosity from small to large, including in particular turbulent flow for fluids
with small viscosity. There are also non-Newtonian fluids with a nonlinear
dependendence of the viscosity, typically fluids with large viscosity such as
polymers.

The basic mathematical models for turbulence thus appear to be known
since very long, but nevertheless turbulence is viewed as the basic open
problem of classical mechanics. How can it be? The main reason is that
the progress of solving the Navier–Stokes equations equations using an-
alytical mathematical methods to obtain quantitative information about
turbulent flow, has been very slow or rather non-existent, because the com-
plexity of turbulent solutions to the Navier-Stokes equations defy analytical
representations. Even basic qualitative mathematical questions concerning
existence and uniqueness of solutions represent open problems seemingly
inaccessible to analytical mathematical treatment using classical methods
of calculus and functional analysis.

The main objective of this book is to show that it is possible to accu-
rately simulate turbulent fluid flow by solving the Navier-Stokes or Euler
equations computationally using solid mathematical principles, in simple
geometries on a PC, and in complex geometries on clusters of PCs. The
main objective is thus to demonstrate that computational turbulence now
is available for massive use in a wide range of applications.
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2
Mysteries and Secrets

...the whole procedure was an act of despair because a theoretical
interpretation had to be found at any price, no matter how high
that might be... (Planck on the statistical mechanics basis of his
radiation law)

Sommerfeld’s very exhaustive discussion of Couette flow led to the
conclusion that this type of flow remains stable for all viscosities. For
a time, after this negative result had been obtained, it was thought
that the method of small oscillations was unsuitable for the theoret-
ical solution of the problem of transition to turbulence. It transpired
later that this view was not justified, because Couette flow is a very
special and restricted example. (Schlichting in Boundary Layer The-
ory, p 465, McGraw-Hill 1979)

2.1 Mysteries

We shall also demonstrate the usefulness of computational turbulence in
basic science by resolving the following unsolved mysteries, which have
haunted scientists over centuries:

• d’Alembert’s Mystery: Zero drag of inviscid flow.

• Loschmidt’s Mystery: Violation of the 2nd law of thermodynamics.

• Sommerfeld’s Mystery: Stability of Couette flow.
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All these mysteries reflect paradoxes, where phenomena predicted by math-
ematics are not at all observed in reality. Since science is supposed to be
rational and based on mathematics, paradoxes are catastrophical for the
credibility of science, and thus have to be resolved (or covered up), in one
way or the other, at any price.

In d’Alembert’s Mystery formulated in 1752 [22], mathematics predicts
that a body may move through a fluid with zero (very small) viscosity,
like air and water, with zero (very small) resistance or drag. But everbody
knows that this is impossible; the drag increases roughly quadratically with
the velocity and becomes very substantial for higher velocities.

In Loschmidt’s Mystery formulated in 1876 [72], mathematics of systems
with zero viscosity predicts that time reversal and a perpetum mobile is
possible. But everybody knows that time is always moving forward and
that a perpetum mobile is impossible, as expressed by the 2nd law of ther-
modynamics.

In Sommerfeld’s Mystery from 1908 [84], mathematics predicts that the
simplest of all flows, Couette flow with a stationary linear velocity profile,
is stable and thus should exist. But nobody has ever observed this flow in
a fluid with small viscosity.

The cover up of d’Alembert’s Mystery is to blame the assumption of zero
viscosity for the erronous prediction: In reality there is always some possibly
very very small viscosity (of some nature), which changes everything (in
some mysterious way). We will below argue that such explanations are
not scientifically satisfactory and we shall instead present a new resolution
based on computational turbulence in the inviscid Euler equations.

The cover up of Loschmidt’s Mystery is to introduce statistical mechanics
based on microscopic games of roulette. We will below argue that such
an explanation is cumbersome scientifically, and we shall instead present
a new resolution demonstrated through computational turbulence in the
Euler equations.

The cover up of Sommerfeld’s Mystery is to say that a linear velocity
profile is too simple for the mathematical theory to apply, which evidently
is not scientifically satisfactory either. We will below computationally study
Couette flow and we will find that it is not stable, just as observed. After
this experience we will be able to theoretically understand, using math-
ematics and avoiding the pitfall of Sommerfeld, why Couette flow is not
stable.

2.2 Secrets

As applications of computational turbulence we shall uncover (some of the)
secrets of the following activities based on turbulent incompressible flow of
air:
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• ball sports,

• flying,

• sailing,

• racing.

In all ball sports including soccer, baseball, tennis, golf and table-tennis,
the player that can control the spin of the ball to give it a desired curved
path, has an important advantage. The fluid mechanics giving the spinning
ball a curved path, depending on the direction of the spin, is referred to as
the Magnus effect which creates a lift force perpendicular to the direction
of motion (and spin). Below we will study the Magnus effect computa-
tionally including the dependence on the spin, speed and the roughness of
the surface of the ball. Of course, the flow of air around a spinning ball is
turbulent.

FIGURE 2.1. Turbulent flow around a spinning ball.

To understand why flying is possible, we will below simulate the tur-
bulent flow around a wing, and this way uncover how the necessary lift
and unavoidable drag is generated. We shall also see that without com-
putational turbulence it is impossible to mathematically predict lift and
drag, in particular at take-off and landing, where the angle of attack of the
wing against the flow is large and the flow is very turbulent. We shall thus
compute the turbulent flow around a wing at different angles of attack and
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discover that the flow features are very different for the low angle of attack
at crusing speed and the high angle of attack at take-off and landing. We
shall see that classical analytical mathematical methods may give fairly
reasonable predictions for (very) long wings at small angles of attack, but
not so for normal wings and/or large angles of attack. To cruise at 30.000
feet is one thing, and to take off and land a completely different game.

FIGURE 2.2. Turbulent flow around a wing.

Sailing is similar to flying from a fluid mechanics point of view, with
the sail when going against the wind acting like a wing giving a lift force
pulling the sail and boat against the wind but also tilting the boat. Needless
to say, the flow of air around a sail is turbulent, and thus computational
turbulence certainly opens new insights into the art of sailing and how to
win Americas Cup. Also the keel of a sailing boat acts like a wing and gives
a pull partly balancing the side force from the sail.

Modern cars are designed to have small drag, since fuel consumption
directly couples to drag, and for racing cars also the lift is of concern
since a flying racing car is hard to control. Computational turbulence offers
new possibilities of car design, since traditional experimental testing of
prototypes in wind tunnels is very slow and costly.
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FIGURE 2.3. Turbulent flow around a car.
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3
Turbulent flow and History of Aviation

I feel perfectly confident, however, that this noble art will soon be
brought home to man’s general convenience, and that we shall be
able to transport ourselves and families, and their goods and chattels,
more securely by air than by water, and with a velocity of from 20
to 100 miles per hour. (George Cayley 1809)

3.1 Leonardo da Vinci, Newton and d’Alembert

Is it conceivable that with proper mathematics, humans would have been
flying, at least gliders (without engine), several hundred years before this
actually came true in the late 19th century? Well, let’s face some facts.

The idea of flying, like the birds, goes back at least to Greek mythology
about the inventor and master craftsman Deadalus, who built wings for
himself and his son Icaros in order to escape from imprisonment in the
Labyrinth of Knossos on the island of Crete.

Leonardo da Vinci made impressive and comprehensive investigations
into aerodynamics collected into his Treatise on the Flight of Birds from
1505, and designed a large variety of devices for muscle-powered human
flight. After extensive testing da Vinci realized that even if both arms and
legs got involved through elaborate mechanics, human power was insuffi-
cient to get off the ground.

Newton confirmed these experiences by calculating the lift of a tilted flat
plate, representing a wing, in a horisontal stream of “air particles” hitting
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the plate from below, to obtain a disappointingly small (erronous) value of
the lift.

Newton’s result was further supported by d’Alembert’s Mystery predict-
ing that both the drag and the lift of a body traveling through air would
be close to zero, clearly at variance with many early observations of birds
flying long distances even without flapping wings. d’Alembert built his com-
putations of drag (and lift) on particular solutions to the Euler equations
referred to as potential solutions, with the velocity given as the gradient of
a potential satisfying Laplace’s equation. But nobody could come up with
any kind of resolution of the paradox before Ludwig Prandtl (1875-1953),
called the Father of Modern Fluid Dynamics, in a short note from 1904
suggested a resolution based on boundary layer effects from vanishingly
small viscosity, which no fluid dynamicist dared to question. As already
indicated, we shall below present computational evidence that Prandtl’s
resolution is not credible and instead put forward a new scientifically more
satisfactory resolution.

3.2 Cayley and Lilienthal

Despite the pessimistic predictions by Newton and d’Alembert, the 29 years
old engineer George Cayley (uncle of the mathematician Arthur Cayley) in
1799 sketched the by now familiar configuration of an airplane with fixed
cambered wings and aft horisontal and vertical tails, and also investigated
the characteristics of airfoils using a whirling arm apparatus. Cayley out-
lined his ideas about the principles of flying in On Aerial Navigation (1809).
But Cayley did not produce any mathematical description of the motion
of an aircraft and thus had no quantitative basis for designing airplanes.
In 1849 Cayley built a large glider, along the lines of his 1799 design, and
tested the device with a 10-year old boy aboard. The glider carried the boy
aloft on at least one short flight.

The next major step was taken by the German engineer Otto Lilienthal,
who made careful experiments on the lift and drag of wings of different
shapes and designed various gliders, and himself made 2000 more or less
successful flights starting from a little hill, see Fig 3.1, before he broke his
neck in 1896 after the glider had stalled 15 meter above ground.

3.3 Kutta, Zhukovsky and the Wright Brothers

Stimulated by Lilienthal’s successful flights and his widely spread book
Bird Flight as the Basis of Aviation from 1899, the mathematician Martin
Kutta (1867-1944) in his thesis from 1902 modified the erronous classical
potential flow solution by including a new term corresponding to a rotating
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FIGURE 3.1. Otto Lilienthal (1848-1896), some of the 137 known photos from
1891 to 1896. To document the development of his flight technique he was reg-
ulary joined by photographers during his flight practise (photos from Archive
Otto-Lilienthal-Museum / www.lilienthal-museum.de).

flow around the wing with the strength of the vortex determined so that
the combined flow velocity became zero at the trailing edge of the wing.
This Kutta condition reflected the observation of Lilienthal that the flow
should come off the wing smoothly, at least for small angles of attack. The
strength of the vortex was equal to the circulation around the wing of the
velocity, which was also equal to the lift. Kutta could this way predict
the lift of various airfoils with a precision of practical interest. But the
calculation assumed the flow to be fully two-dimensional and the wings to
be very long and became inaccurate for shorter wings and large angles of
attack.

The first successful powered piloted controled flight was performed by the
brothers Orwille and Wilbur Wright on December 17 1903 on the windy
fields of Kitty Hawk, North Carolina, with Orwille winning the bet to be
the pilot of the Flyer and Wilbur watching on ground, see Fig 3.2. In the
words of the Wright brothers from Century Magazine, September 1908:
“The flight lasted only twelve seconds, a flight very modest compared with
that of birds, but it was, nevertheless, the first in the history of the world
in which a machine carrying a man had raised itself by its own power into
the air in free flight, had sailed forward on a level course without reduction
of speed, and had finally landed without being wrecked. The second and
third flights were a little longer, and the fourth lasted fifty-nine seconds,
covering a distance of 852 feet over the ground against a twenty-mile wind.”
The modern era of aviation had started.
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FIGURE 3.2. Orwille Wright (1871-1948) and Wilbur Wright (1867-1912) and
the lift-off at Kitty Hawk, North Carolina, the 17th December 1903.

The mathematician Nikolai Zhukovsky (1847-1921), called the Father of
Russian Aviation, in 1906 independently derived the same mathematics for
computing lift as Kutta, after having observed several of Lilienthal’s flights,
which he presented before the Society of Friends of the Natural Sciences
in Moscow as: ”The most important invention of recent years in the area
of aviation is the flying machine of the German engineer Otto Lilienthal”.
Zhukovsky also purchased one of the eight gliders which Lilienthal sold to
members of the public.

Kutta and Zhukovsky thus could modify the mathemathical potential
theory of lift of a wing to give reasonable results, but of course could not
give anything but a very heuristic justification of their Kutta-Zhukovsky
condition of zero velocity at the trailing edge of the wing, and could not
treat realistic wings in three dimensions. Further, their modified potential
solutions were not turbulent at all, so their calculations would seem merely
like happy coincidences (knowing ahead the correct answer to obtain). We
will return below in more detail to the basic problem of lift and drag of
wings in turbulent flow.

FIGURE 3.3. Martin Kutta (1867-1944) and Nikolai Egorovich Zhukovsky
(1847-1921).

Today computational methods open new possibilities of solving the equa-
tions for fluid flow using the computational power of modern computers.
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Thus, for the first time the mathematical fluid models of Euler and Navier-
Stokes may come to a real use, which opens new revolutionary possibilities
of computational simulation and prediction of fluid flow in science and
technology. The range of possible applications is incredibly rich! For ex-
ample, it is now becoming possible to simulate the turbulent flow around
an entire aircraft and thus systematically investigate questions of stability
and control, which caused severe head-ache for the Wright brothers, as well
as the designers of the modern Swedish jet fighter JAS Gripen. Actually,
both the 1903 Wright Flyer airplane with a forward canard instead of an
aft tail, and the JAS are unstable and require careful control to fly. The
instability of the fighter is intentional allowing quick turns, but the Wrights
later replaced the canard with the conventional aft tail to improve stability.
The stability of an airplane is similar to that of a boat, with the important
design feature being the relative position of the center of gravity and the
center of the forces from the fluid (center of buoyancy for a boat), with the
center of gravity ahead (below) giving stability.

FIGURE 3.4. The 1903 Wright Flyer and JAS Gripen (JAS photo from
http://www.gripen.com/.

It is remarkable that 400 years passed between Leonardo da Vinci’s in-
vestigations and the largely similar ones by Lilienthal. Why did it take
so long time from almost success to success? Can we blame the erronous
mathematics of Newton and d’Alembert for the delay? Or was the reason
that the (secret) writings of da Vinci were made public with a delay of 300
years? We leave the question open.
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4
The Navier–Stokes and Euler
Equations

However sublime are the researches on fluids which we owe to Messrs
Bernoulli, Clairaut and d’Alembert, they flow so naturally from my
two general formulae that one cannot sufficiently admire this accord
of their profound meditations with the simplicity of the principles
from which I have drawn my two equations ...(Euler 1752)

4.1 The Navier–Stokes Equations

For an incompressible Newtonian fluid of constant unit density and con-
stant viscosity ν > 0 enclosed in a volume Ω in R

3 with boundary Γ over a
time interval I = (0, T ], the Navier–Stokes equations (NS) read as follows:

u̇+ (u · ∇)u− ν∆u+ ∇p = f, in Ω × I,
∇ · u = 0, in Ω × I,

u = 0, on Γ × I,
u(·, 0) = u0, in Ω,

(4.1)

where u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) is the velocity and p =
p(x, t) the pressure of the fluid at (x, t) = (x1, x2, x3, t) ∈ Ω× I with ui the
velocity in the coordinate direction xi, and the dot indicates differentiation
with respect to time. Further, f = (f1, f2, f3) is a given volume force (like
gravity) acting on the fluid, and u0 = u0(x) is a given initial velocity. We
here assume homogeneous Dirichlet boundary conditions for the velocity,
and consider other boundary conditions below.
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The first equation in (4.1) expresses Newton’s 2nd law of conservation of
momentum in vector form with ∇p the pressure force and −ν∆u the viscous
force of a Newtonian fluid, and the second equation expresses conservation
of mass in the form of incompressibility. Newton’s 2nd law in component
form reads

u̇i +
3

∑

j=1

ujui,j − ν∆ui + p,i = fi, i = 1, 2, 3,

where , j indicates differentiation with respect to xj , or equivalently

u̇i +
3

∑

j=1

(ujui),j − ν∆ui + p,i = fi, i = 1, 2, 3,

where we used the incompressibility of u: ∇ · u =
∑3

j=1 uj,j = 0.
For incompressible flow, the equation expressing conservation of total

energy, that is the sum of kinetic energy and heat energy), is decoupled
from the equations (4.1) expressing conservation of momentum and mass.
We return below to the full model including the energy equation.

We note that the given data for NS is represented by (Ω, T, f, u0) together
with the viscosity ν, and û = (u, p) is the corresponding solution which we
seek. The specification of the data (Ω, T, f, u0) is usually clear, and we now
comment on the determination of the viscosity ν, which may be much less
clear.

4.2 What is Viscosity?

In fact, viscosity closely couples to turbulence and thus the viscosity in NS
would rather represent a turbulent viscosity ν = ν(u) with a possibly very
complex dependence on the velocity u; with a non-constant ν the viscous
term would take the form −∇ · (ν∇u). But if indeed ν depends on u and
we cannot determine how, then the NS equations would seem to be useless
for predictions, even using computational methods.

So how are we going to handle this problem? Well, first we recall that
we focus on the case of small viscosity. The first idea that comes up is then
of course to assume that the viscosity is so small that we can put it equal
to zero. This leads to the Euler equations, which we present in the next
section. This is an elegant solution: By assuming the viscosity to be zero
there is no viscosity to specify as data. We shall below investigate how far
this elegant solution can take us, and see that it is indeed quite far.

Next we assume that ν is non-vanishing, but still small, so that we are
facing NS. We shall below see that solving NS computationally we have to
use a mesh with a certain mesh size h, and we shall see that the compu-
tational method itself introduces an effect which can be viewed as a mesh
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dependent artificial viscosity νh. Now, if νh > ν, then the true viscosity ν
will be overshadowed by the artificial viscosity νh, which means that the
precise value of ν becomes irrelevant. And the smaller ν is, the bigger is
the chance that it will be overshadowed by the artificial viscosity νh, so
that we do not have to determine ν accurately; it would be sufficient just
to know that ν is (sufficiently) small.

Of course, we expect the solution (u, p) = (uν , pν) to depend on ν, and
in order for a computation with an artificial viscosity νh > ν to have some
predictive value, it is necessary that the output or quantity of interest from
the solution (uν , pν) is not critically depending on the precise value of ν.
We shall below see that this may indeed be true in many cases if the output
is a mean value in space-time such as a drag coefficient cD(ν) measuring
the total force of a body moving through a fluid with viscosity ν. Thus, we
shall see that cD(ν) varies quite slowly with ν, which means that we do not
have to know ν very precisely (which certainly helps when determining ν),
or that we effectively can compute with an artificial viscosity νh and only
need to know that ν < νh. Thus, the good news is that for turbulent flow
with small viscosity, in many cases we do not need to specify the viscosity
very precisely, which would be very difficult.

We shall also study cases with a critical dependence on (small) viscosity,
including the so-called drag crisis reflecting that the resistance of e.g. a
sphere of unit diameter and speed moving through a fluid, quite suddenly
drops by 50% as ν decreases to about 10−6 to raise again for smaller ν.

As indicated, we shall see that simply assuming ν = 0, in a case where
we know that the viscosity is small but not exactly how small, will take us
quite far. This follows the initial ingenious idea of Euler of studying ideal
fluids with zero viscosity, but we shall see that to arrive at this peak, we
will have to pass through the deep valley of d’Alembert’s paradox.

To sum up: Turbulence occurs in fluids with small viscosity ν and typical
outputs may have a weak dependence on ν. This means that we do not
need precise information on ν; in many cases we may effectively set ν = 0
following Euler, or knowing just one binary digit of ν may be enough.
Thus turbulent flow is difficult because of its complexity, but may be easy
because precise information on the viscosity is not needed. This is favorable
for computation, because complexity is handled by brute computational
power, while the viscosity advantage remains.
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4.3 The Euler Equations

Setting the viscosity ν = 0 in Navier–Stokes equations (4.1), we obtain the
Euler equations for incompressible inviscid flow :

u̇+ (u · ∇)u+ ∇p = f in Ω × I,
∇ · u = 0 in Ω × I,
u · n = 0 on Γ × I,

u(·, 0) = u0 in Ω,

(4.2)

where n is the outward unit normal to Γ. Here we only prescribe the normal
velocity u ·n = 0 on the boundary, while the tangential velocity u ·τ is free,
where τ is a tangential direction. This is also referred to as a slip boundary
condition, as compared to the no-slip Dirichlet boundary condition u = 0
in the NS boundary condition including u · τ = 0.

4.4 Friction Boundary Condition

We start our studies in Chapter 9 considering the Euler equations with slip
boundary condition, following the historical development of fluid dynam-
ics, to discover several surprising facts. Later we shall also discuss friction
boundary conditions for the Euler equations with the tangential velocity
u · τ coupled to the tangential strain with a friction parameter, with slip
corresponding to zero friction. We will view the friction boundary condi-
tions as a simple so-called wall model for the flow in a turbulent boundary
layer close to the boundary, with the friction parameter depending on the
Reynolds number.

We will find that we may simulate flows with very large Reynolds number
using the Euler equations with proper friction boundary condition, without
computationally resolving the boundary layer. Computational solution of
the Euler equations thus will become extremely useful all along Eulers orig-
inal plans, which resurrects Eulers model after a long dark age of discredit
caused by d’Alembert’s Mystery.

4.5 Euler Equations as Einstein’s Ideal Model

The Euler equations (with slip boundary conditions) is an example of the
ideal mathematical model according to Einstein, that is, a model without
any parameter. The only parameter in NS is the viscosity ν and setting ν =
0, we obtain the Euler equations without any parameter. The advantage
of a model without parameter, is that we do not need to feed in values
of the parameter (like the viscosity) to make predictions. But is it really
possible to make predictions about the flow of a fluid without knowing the
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viscosity of the fluid, only knowing that the viscosity is small? In the book
we shall show that this is possible, but not in the classical way that led
to catastrophy assuming that the effect of viscosity was zero, but in a new
non-trivial way building on the observation that outputs of turbulent flows
may have a weak dependence on viscosity!

4.6 Euler and NS as Dynamical Systems

The Euler and Navier–Stokes equations are examples of a dynamical system
of the general form of an initial value problem u̇(t) = g(u(t)) for t ∈ (0, T ],
u(0) = u0, where g(v) is a given function of v, u0 is a given initial value,
and t → u(t) is the solution defined on [0, T ]. We say that the function
v → g(v) expresses the law of the dynamical system. We also refer to a
solution t → u(t) as a trajectory of the dynamical system. In a dynamical
system of this form time changes continuously over an interval of time from
an initial time 0 to a final time T . If g is bounded, then a solution u(t) is
continuous in time.
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5
Triumph and Failure of Mathematics

The field of hydrodynamic phenomena which can be explored with
exact analysis is more and more increasing. (Zhukovsky, 1911)

5.1 Triumph: Celestial Mechanics

In the famous treatise Celestial Mechanics in five volumes published during
1799-1825, Laplace formulated Newton’s theory of gravitation in the form
−∆φ = ρ, where φ is the gravitational potential and ρ the mass distribution.
Knowing the mass distribution, e.g. one heavy point mass representing the
Sun, surrounded by lighter point masses representing the planets, that is,
knowing ρ(x) at a given time instant one can solve for φ(x) and obtain
the gravitational force field F (x) = ∇φ(x), from which the acceleration
of the masses can be determined using Newton’s Law F = ma, where
m is the mass and a the acceleration. From the acceleration, the velocity
and motion of the masses can then be determined. Laplace could thus
summarize celestial mechanics in the differential equation −∆φ = ρ, and
in particular this way prove Newton’s inverse square law, which Newton just
assumed to be true. Laplace could thus, and also did, predict the positions
of the planets many years ahead from knowing their present positions and
velocities. This is probably the most important triumph of mathematics all
times, and gave mathematics and science an enormous boost.
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FIGURE 5.1. Isaac Newton (1643-1727), Pierre-Simon Laplace (1749-1827), and
Jean Le Rond d’Alembert (1717-1783).

5.2 Failure: Potential Flow

The triumph for mathematics in celestial mechanics starting with Newton,
stimulated mathematicians of the 18th and 19th centuries to try the same
approach for fluid mechanics, with the hope of summarizing also this scien-
tific discipline in the form ∆φ = 0, with φ now a velocity potential with ∇φ
representing the flow velocity. The prospects seemed really good: In this
form one could represent a variety of ideal, stationary (time-independent),
incompressible, irrotational flows as potential flows. We recall that a flow
velocity u is irrotational if ∇× u = 0, which holds if u = ∇φ.

We know that potential flows had been studied already by d’Alembert
in the mid 18th century and d’Alembert had published his paradox 1752:
A body of any shape can move through a lightly viscous fluid like water
without any drag! Of course nobody could believe this, which from start
gave mathematical fluid mechanics a strange reputation among the many
practitioners of hydraulical engineering, which probably has lasted into our
days. The challenge is to change this unfortunate situation.

The same mathematical equation, Laplace’s equation, which was so amaz-
ingly successful in celestial mechanics, thus was a complete failure in fluid
mechanics, and evidently mathematics and fluid mechanics lived a long
time with a very disturbing paradox. How could that be?

As indicated, we present below a new resolution of d’Alembert’s Mystery
to illustrate basics aspects of fluid flow, including stability and transition
to turbulence.
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6
Laminar and Turbulent Flow

Il y a toujours sur ma strophe ou sur ma page
un peu de l’ombre du nuage et de la salive de la mer;
ma pensée flotte et va et vient, comme dénouée par toute
cette gigantesque oscillations de l’infini. (Victor Hugo)

In my boyhood I had the advantage of the constant guidance of my
father, also a lover of mechanics, and a man of no mean attainments
in mathematics and its application to physics. (Reynolds)

6.1 Reynolds

The Navier–Stokes equations give an accurate description of a great variety
of fluid flows including both laminar flow with ordered flow features and
turbulent flow with unordered seemingly chaotic fluid dynamics.

The onset of turbulence in laminar flow was studied experimentally by
Osborne Reynolds in the 1880s. By injecting dye in a flow through a trans-
parent pipe of a certain length, Reynolds could trace streamlines of the
flow through the pipe, and thus observe the straight streamlines of laminar
inlet flow starting to fluctuate into irregular motion downstream. Reynolds
thus could study transition from laminar to turbulent flow, see Fig. 6.1.

Reynolds tried to find a connection between transition and the Reynolds
number Re ≡ UL

ν , where U represents a characteristic flow velocity and
L a characteristic length scale. Reynolds found that transition occurred
if Re was large enough (usually in the range 102 − 103), but his hope to
determine a critical value of Re, above which transition would always occur
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FIGURE 6.1. “This is a definite relation of the exact kind for which I was in
search. Of course without integration the equations only gave the relation without
showing at all in what way the motion might depend upon it. It seemed, however,
to be certain, if the eddies were due to one particular cause, that integration would
show the birth of eddies to depend on some definite value of UL/ν” (Osborne
Reynolds, 1842-1912).
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and never below, turned out to be elusive. We will explain in Chapter 34
below in a detailed study of transition, why this is impossible. In short, the
reason is that transition occurs if a product of perturbation growth and
perturbation level is above a certain threshold, and only the perturbation
growth can be connected to Re. In Reynolds’ experiments the perturbation
level varied from one day to the other, and thus the transition clould occur
at a certain Re one day, but not the next. Therefore Reynolds’ idea of a
critical value of Re for transition will have to be abandoned.

As a consequence, there is no precise value of Re indicating the presence
of turbulence in a given flow, but most flows exhibit turbulent flow features
for Re ≥ 103, because perturbations are always present in both practice and
controlled experiments, albeit on different levels. Kolmogorov conjectured
in his famous 1941-articles [65, 66, 64] that turbulent flow features occur on
a range of length scales down to a smallest scale, which may be estimated
to be of size Re−3/4, normalizing to L = 1. We can thus use the rough
size of Re to indicate the qualitative nature of a given flow, such as the
presence and scale features of turbulent flow.

6.2 Applications and Reynolds Numbers

Important applications concern fluid flow around bluff bodies, such as the
flow of air around a car, a jumbo-jet at take off/landing or the sail of a
sailing boat, or the flow of water around a super-tanker or a sailing boat,
which all represent incompressible partly turbulent flows at large Reynolds
numbers: Re ≈ 106 for a car traveling at 60 mph, Re ≈ 108 for a jumbo jet
or a super-tanker at cruising speed, while Re ≈ 1010 might be relevant in
meteorology. In bluff body flow, turbulence typically appears in a boundary
layer close to the surface of the body, and in a wake attaching to the rear
of the body, while the flow elsewhere is laminar, see Fig. 6.2. Typically
the boundary layer is laminar on the body surface facing the flow, with
streamlines following the surface, until separation away from the surface
into recirculating turbulent flow. For very high Re (∼ 106) the boundary
layer may undergo transition to turbulence before separation, resulting in
a delayed separation of the boundary layer, corresponding to a drastically
reduced volume of the wake, and thus also a reduction of the drag force,
referred to as drag crisis.

In everyday life, we can observe separating laminar/turbulent bluff body
flow around a boat, a stone in a river, or a car in the case of light rain or
mist when the flow pattern becomes visible, see Fig. 6.2-6.3.

In this book we focus on flows with medium (say Re ≈ 102 − 104) over
large (say Re ≈ 104 − 106) to very large (say Re > 107) Reynolds numbers
involving both laminar and turbulent flow features, which appear in many
important applications. For short we refer to such flows as turbulent flows.
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FIGURE 6.2. Lockheed L-1011 and F1 racing car (upper), vorticity in computa-
tions of flow past square and circular cylinders and a sphere, transversal veloci-
ties in a boundary layer computation, and in a computation of flow past cylinder
rolling along ground (modeling a wheel).
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Such flows typically have surfaces separating laminar and turbulent flow,
see Fig. 6.2. For very large Reynolds numbers we use the Euler equations,
formally corresponding to Re = ∞.

Normalizing to U = L = 1, we thus focus on flows with medium small
viscosity (ν ≈ 10−2 − 10−4), over small (ν ≈ 10−4 − 10−6) to very small
viscosity or zero viscosity (ν = 0), that is, we focus on small viscosity. We
shall see that the precise value of the small viscosity, or the large Reynold’s
number, in many cases is irrelevant. As indicated, this relieves us from the
difficult (or simply impossible) task of determining a precise value of the
viscosity ν to put into the NS equations.

FIGURE 6.3. Andrey Nikolaevich Kolmogorov (1903-1987), and Leonardo da
Vinci (1452–1519) with a sketch of turbulent wakes behind bluff bodies, and “My
Destiny” by Victor Hugo. Inscription on the ship; FRACTA SED INVICTA.
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7
Computational Turbulence

The closer mutual approximation of the points of view of theory
and practice brings most beneficial results, and it is not exclusively
the practical side that gains; under its influence the sciences are
developing in that this approximation delivers new objects of study
or new aspects in subjects long familiar. In spite of the great advance
of the mathematical sciences due to the works of the outstanding
mathematicians of the last three centuries, practice clearly reveals
their imperfection in many respects; it suggests problems essentially
new for science and thus challenges one to seek quite new methods.
And if theory gains much when new applications or developments
of old methods occur, the gain is still greater when new methods
are discovered; and here science finds a reliable guide in practice.
(Chebyshev 1856)

7.1 Are Turbulent Flows Computable?

The main question addressed in this book is the following: Can we compute
solutions to the NS or Euler equations in the case of turbulent flow? Or
shorter: Are turbulent flows computable?

Recalling the dimensional analysis of Kolmogorov (1903-1987), it would
appear that to pointwise resolve all the scales of turbulent flow in a Di-
rect Numerical Simulation DNS, would seem to require of the order Re3

mesh points in space-time, assuming the smallest scale in space and time
is Re−3/4 and L = T = 1. Thus, already a flow at Re = 106 would seem to
require at least Re3 = 1018 mesh points in space-time for pointwise repre-
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sentation, which is beyond the capacity of any foreseeable computer. Not
to speak of Euler with Re = ∞!

Does this mean that we have to give up, and simply conclude that tur-
bulent flows are not computable? The answer is yes if we ask for pointwise
accurate computations in space-time. This not only because the number
of mesh points would be overwhelming, but also because in fact pointwise
values of a turbulent flow are not well defined, but fluctuate in a seemingly
chaotic way. So even if we could compute with 1018 mesh points, we should
not expect to be able to get pointwise accurate solutions for turbulent flow.

In fact, as we will see below, mathematical existence of pointwise solu-
tions can neither be proved nor expected, and pointwise accurate computed
solutions thus seem to be pure fiction. We may phraze this as an impossi-
bilty of obtaining solutions û = (u, p) to the NS or Euler equations written
in the form R(û) = 0, with the residual R(û) being zero pointwise in space-
time. If true this would certainly be shocking to the large community of
mathematicians trying to prove existence of pointwise solutions, but would
not in principle disturb a computational mathematician familiar with the
fact that computational solutions usually have non-zero residuals. However,
we shall see that the pointwise residuals in computational simulations of
turbulent flow usually are far from being small, and facing this evidence
also many computational mathematicians should become nervous. In par-
ticular, these results challenge the traditional idea of DNS as a computation
with small pointwise error.

The natural way out of this obvious dilemma is to ask for less, that
is to seek to compute hopefully well-defined mean values in space-time,
instead of ill-defined point values. This means that as quantities of interest,
or observables, or simply outputs, we shift from pointwise to different mean
value quantities.

We further introduce a quantitative quality measure in the form of a tol-
erance indicating the desired precision in a chosen output. We also measure
computational cost, in terms of e.g. computing time and memory require-
ments on a certain system. The main problem addressed in this book can
now be formulated as follows:

(P) What outputs of turbulent flows are computable to what tolerance
to what cost?

We present answers to this problem, and in particular we show that we can
compute outputs for turbulent flows of interest in a large variety of appli-
cations using the computational power of a PC on meshes with 100 000-
500 000 mesh points. These results are new and should have important
consequenses concerning the use of computational methods for simulation
of fluid flow.



7.2 Typical Outputs: Drag and Lift 35

7.2 Typical Outputs: Drag and Lift

A typical quantity of interest may be the drag coefficient cD or the lift
coefficient cL of a bluff body, which are mean values in time of the total
fluid force acting on the body in the direction of the flow and perpendicular
to the flow, respectively. The drag and lift coefficients thus represent global
mean values in space-time. Some car manufacturers like to present the cD

of a certain car as an indication of fuel economy (for example cD < 0.3).
For a jumbo-jet a decrease in drag with one percent could save $400 million
in fuel cost over a 25 year life span.

As a main contribution of this book, we show that mean values such as
cD and cL are computable on a PC within a day (in 2006) up to a tolerance
of a few percent.

We also show that as the mean values become more local in space or
time, the computational work to reach the same tolerance increases, so
that in particular point values are uncomputable.

7.3 Approximate Weak Solutions: G2

When we relax outputs to mean values, we open to relax to a weak solu-
tion concept, where we ask that ((R(û), v̂)) ≈ 0, where ((·, ·)) is a scalar
product in space-time and v̂ varies over a a set of (smooth) test functions.
We thus relax twofold from requiring exact satisfaction of R(û) = 0 in a
pointwise sense, to approximate satisfaction R(û) ≈ 0 in a weak sense, that
is, ((R(û), v̂)) ≈ 0 for all test functions v̂ with the meaning of ≈ made
precise below. Accordingly, we say that a function û satisfying R(û) ≈ 0 in
a weak sense, is an approximate weak solution.

Our main problem can now be reformulated as follows:

(P1) What is the error in output of approximate weak solutions?

To answer this question amounts to finding the effect of a nonzero residual
on the output error, which as we will see can be expressed as a question of
stability of an associated dual problem.

In this book we compute approximate weak solutions using a Galerkin
finite element method, where we seek an approximate solution Û in a finite
element space satisfying ((R(Û), v̂)) = 0 for a set of finite element test
functions v̂. More precisely, we use a General Galerkin method with a cer-
tain strong control of the residual in a weighted least squares sense, which
we refer to as G2. We may thus view a G2 solution Û as an approximate
weak/strong solution of the Navier-Stokes or Euler equations. We shall see
that the weighted least squares control corresponds to an automatic tur-
bulence model, relieving us from the (very difficult or probably in general
impossible) task of finding a correct turbulence model.
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7.4 G2 Error Control and Stability

In general terms, we will be able to estimate an output error of a G2
solution Û by a product Sε, where ε measures the size of the residual R(Û)
in the weak sense and S is a stability factor which measures certain norms
of the solution of the dual problem with data depending on the output.
The computational goal is then to achieve Sε ≤ TOL, where TOL is the
tolerance.

We shall see that for turbulent solutiopns the residual R(Û) of a G2
solution Û may be small in the weak sense, while R(Û) is large in the
pointwise sense, and the stability factor S may be of moderate size for a
mean-value output like drag and lift. Altogether, we shall thus see that it
is possible to satisfy the stopping criterion Sε ≤ TOL with tolerances of
practical interest and mesh sizes affordable on a PC.

An output with strong sensitivity will have a very large stability factor
S, and one way of expressing the chaotic nature of a pointwise output of a
turbulent flow is to say that the corresponding stability factor is so large
that we can never make the residual so small that Sε ≤ TOL. Effectively
we may say that this corresponds to S = ∞, and therefore it is impossible
to choose ε > 0 so that Sε ≤ TOL. In this case it does not help to choose
ε = 0, since Sε is not well defined if S = ∞ and ε = 0. The result is that
we have to give up the idea of a pointwise well defined solution to the NS
equations in the case of turbulent flow.

Stability factors obviously play a central role in this book since they
directly couple to errors in outputs, and a central theme of the book is
accordingly the computation of stability factors. And we will be very happy
to find that stability factors for mean-value outputs are of moderate size
and not too large!!

7.5 What about Mathematics of NS and Euler?

The mathematician Jean Leray proved in 1934 existence of an exact weak
solution to the NS equations satisfying ((R(Û), v̂)) = 0 for all test functions
v̂ (corresponding to ε = 0), by using methods from functional analysis.
Leray referred to his weak solutions as turbulent solutions. This is still
today the only analytical mathematical existence result for the general
form of the NS equations! Leray did not prove any result on uniqueness
of weak solutions of NS equations. Since uniqueness directly couples to
stability, this means that effectively Leray did not consider the aspect of
stability and in particular not the question of output uniqueness, which for
turbulent flows has to replace pointwise uniqueness: We can estimate the
difference in output of two approximate weak solutions by Sε if ε bounds
the two residuals, so that the output will be unique up to Sε.
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For the Euler equations not even existence of an exact weak solution has
been proved mathematically. Thus the analytical mathematics for the NS
and Euler equations has remained severely incomplete over a long time,
with little progress.

Our results indicate that approximate weak solution and output unique-
ness are suitable concepts for the NS and Euler equations, while tradi-
tional analytical mathematical techniques working with exact weak solu-
tions without output uniqueness, are not. We will discuss these aspects in
more detail below when presenting the Clay Institute Millenium $1 million
Prize Problem asking for existence and uniqueness of solutions to the NS
equations.

7.6 When is a Flow Turbulent?

We will identify turbulence by the fact that the G2 least squares stabiliza-
tion is not small signifying that the pointwise residual is large. Typically,
this situation prevails under mesh refinement which reflects that the small-
est scales of the physical flow are not computationally resolved, not even
on the finest mesh.

7.7 G2 vs Physics

Changing from the classical setting with pointwise residuals and outputs to
the new setting of global mean value outputs and G2 weak/strong residuals,
suggests a new perspective on mathematical modeling of fundamental phe-
nomena such as turbulent fluid flow. We remarked above that residuals of
approximate weak solutions of the NS equations may be large pointwise but
small in a mean value sense. We may view a pointwise large NS residual as
a local violation of Newtons 2nd law and incompressibility, which we could
view as a local non-equilibrium. An approximate weak solution would thus
represent fluid dynamics in global equilibrium but local non-equilibrium.

Experimentally we would not be able to distinguish such “imperfect fluid
dynamics” from “perfect fluid dynamics” in equilibrium pointwise, since we
can only observe mean values. Mathematically we would be able to ratio-
nalize “imperfect fluid dynamics” by proving existence of weak approxi-
mate solutions, but probably not “perfect fluid dynamics” requiring exact
solutions with pointwise vanishing residual. The scientific study of fluid dy-
namics would thus concern “imperfect fluid dynamics”, while “perfect fluid
dynamics” would belong to metaphysics. We add more substance to this
picture below. In particular we propose a solution of the classical paradox of
irreversibility in reversible systems based on finite precision computation.
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The same type or reasoning may apply to other fundamental mathe-
matical models of mechanics and physics such as the Schrödinger equa-
tion for the quantum mechanics of atoms and molecules. Solutions of the
Schrödinger equation are called wave functions and have an incredibly rich
structure with one separate copy of R

3 for each electron and nucleus. It
is impossible to experimentally or computationally determine this struc-
ture pointwise even for small clusters of atoms, and thus the existence of
a world ruled by “perfect quantum mechancis” could again be questioned.
This connects to the question of how it can be that an electron is smart
enough to solve its own R

3 version of the Schrödinger equation to deter-
mine what to do? Maybe the answer is that single electrons simply aren’t
that smart and thus leave large pointwise residuals, while clusters of elec-
trons can do better and have small residuals in a mean value sense, all of
which could be viewed to correspond to some kind of “imperfect quantum
mechancis”.

7.8 Computability and Predictability

Using the NS equations to simulate fluid flow, we obtain contributions to
the error in output from the following sources: (i) computation, (ii) data and
(iii) modeling. In this book we focus on output errors from computation and
we also discuss errors from data, which includes Ω, f , u0, ν, while we leave
out errors from modeling related to the assumptions of incompressibility
and constant density. In a forthcoming volume we consider compressible
and variable density flows.

We will below connect the general concept of predictability to the quality
of output based on the quality of given data, that is, predictability will
connect to error in output resulting from error in data. Further, we will
connect computability to output error from computation.

It is natural to expect that aspects of predictability and computability
closely couple, because both connect to stability or perturbation growth in
the model. Stability factors measure the sensitivity in output to perturba-
tions from computation, data and modeling. Large stability factors indicate
strong sensitivity.

We will further use the general concept of reliability to signify that the
output error is below a certain tolerance TOL. We may thus indicate the
reliability of a computation of a drag coefficient cD by stating that cD =
1.5± TOL, or |cD − 1.5| ≤ TOL, where TOL = 0.1.

Using the NS equations to make predictions, it may be natural to speak
of a total prediction error in output including errors from both data and
computation. Usually however, we connect predictability to output error
from data and computability to output error from computation.
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We have indicated that in turbulent flow pointwise values in space-time
of velocity-pressure are not predictable/computable to any tolerance of
interest. The main question of this book thus concerns the predictability
and computability of mean values in space-time of turbulent flow up to
tolerances of interest.

7.9 G2 in Dolfin in FEniCS

The computational results presented in the book have been obtained on
a PC on a 2 GHz single processor PC with 1 Gb memory with a typical
computation taking a few days using meshes with up to 500.000 mesh
points in space, using an implementation of G2 in the free software Dolfin
developed by Johan Hoffman and Anders Logg as part of the FEniCS
project (www.fenics.org). The goal of FEniCS is to set a new standard of
Automation of Computatinonal Mathematical Modelling. FEniCS serves as
the top software of the Body&Soul project (www.bodysoulmath.org) and
also includes a mini-version of Dolfin named Puffin aimed at introductory
education.

The reader is encouraged to down-load Dolfin and try its Navier–Stokes/Euler
solver on some problems in the book, and of course other problems. There
are many waiting to be solved.
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8
A First Study of Stability

...do steady flow ever occur in nature, or have we been pursuing
fantasy all along? If steady flows do occur, which ones occur? Are
they stable, or will a small perturbation of the flow cause it to drift
to another steady solution, or even an unsteady one? The answer to
none of these questions is known. (Marvin Shinbrot in Lectures on
Fluid Mechanics, 1970)

8.1 The linearized Euler Equations

As already indicated, a main theme of this book is the stability of fluid
flow. Stability concerns the growth of perturbations in the flow. Since fluid
flow is well described by the Euler and NS equations, stability concerns
the growth of perturbations of solutions of the Euler and NS equations.
Focussing here on Euler, suppose that û and ŵ are two solutions to the
Euler equations (4.2) with different initial data u0 and w0. We are interested
in the difference v̂ = (v, q) = û−ŵ for time t > 0 knowing that v0 = u0−w0.
Subtracting the two versions of the Euler equations, we obtain the following
system, which we may refer to as the linearized Euler equations :

v̇ + (u · ∇)v + (v · ∇)w + ∇q = 0 in Ω × I,
∇ · v = 0 in Ω × I,
v · n = 0 on Γ × I,

v(·, 0) = u0 − w0 in Ω,

(8.1)
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We may view this as a linear system for v̂ with u a given convection velocity,
and ∇w a given reaction coefficient. The growth properties of v̂(t) in time
expresses the stability, and these properties directly couple to the reaction
term (v · ∇)w with ∇w as reaction coefficient in matrix form, while the
convection term (u · ∇)v intuitively does not seem to influence the growth
of v̂, since it just “shifts v around”. We expect the eigenvalues of ∇w
to connect to the growth properties of v̂, with eigenvalues with positive
real part corresponding to eigenmodes with exponential decay and with
negative real part to eigenmodes of exponential growth. Because of the
incompressibility, the trace of ∇w will be zero, and thus the sum of the
eigenvalues will also be zero, and thus we normally have eigenvalues with
real parts of both signs. Thus normally we expect to see some exponential
growth, unless all the eigenvalues are purely imaginary or zero. We thus
expect perturbations of Euler solutions to grow exponentially, and thus any
Euler solution would be expected to be unstable! In particular, a stationary
solution given by an analytical formula would be expected to be unstable.

We notice that the stability connects to the growth properties of v̂ which
may be studied assuming the perturbations to be small so that effectively
we may choose w = u. To study the stability of a given solution û, we
would thus study the linearized Euler equations (8.1) with w = u.

We now proceed to give two basic examples illustrating basic features
of the flow of an ideal fluid, which are also relevant for fluids with small
viscosity. We thus present two analytical stationary solutions to the Euler
equations, and we will of course discover that they are both unstable. We
will kill any hopes of the reader by reminding that an unstable solution
has no permanence, and thus will have no interest from practical point of
view; it simply does not “exist”and cannot be observed. We would thus
be led to the conclusion that making predictions about fluid flow based on
an analytical solution of the Euler or NS equations (with small viscosity)
would be impossible. This would seem to indicate pretty grim perspectives
for analytical mathematics in fluid dynamics. We will give evidence below
indicating that this is not overly pessimistic. Of course, we will counter by
showing that on the other hand computational mathematics has excellent
possibilities of generating information of value, by computational solution
of the Euler or NS equations.

8.2 Flow in a Corner or at Separation

We consider the constant velocity u(x, t) = (2x1,−2x2, 0) in the halfplane
{x1 > 0}, with streamlines according to Fig 8.1. We easily check that (u, p)
solves the Euler equation, with p = −2(x2

1 + x2
2). This is the potential

solution for an incompressible ideal fluid in the corner of the quarterplane
{x1, x2 > 0}, or at a separation point at the origin considering the halfplane
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{x1 > 0}, see Fig 8.2. We will explain below, why it is referred to as a
potential solution. Incidently, this potential solution is also a solution to
the NS equations for any viscosity, in particular for small viscosities.

FIGURE 8.1. Potential solution at a corner.

To study the stability of this potential flow we study the perturbation
equation (8.1) with w = u and we are thus led to study the matrix ∇u,
which we find to be diagonal with diagonal (2,−2, 0), thus with one pos-
itive (stable) and one negative (unstable) eigenvalue. We conclude that
the potential flow of an incompressible ideal fluid at a separation point is
unstable, in fact exponentially unstable.

We will return to this observation below. Already here we can indicate
some (far-reaching) consequences. Consider the flow around a body, e.g. a
circular cylinder with axis along the x3-axis in a flow in the direction of
the x1-axis. This could model the water flow around the pillar of a bridge
standing on the bottom of a deep river. We could then imagine a stationary
solution with streamlines around the pillar, e.g. according to Fig 8.3 (we
will write down the corresponding analytical solution formula in Chapter 9
below). We notice that any such flow will necessarily have a separation
point somewhere at the back of the cylinder, where the flow would look
like the potential solution just given. Necessarily! We conclude that any
such stationary flow will be unstable and hence would be impossible to
observe. If we observe the flow around a pillar of a bridge, we must see
something different. We will show what below.

Having now observed that the sum of the eigenvalues of the reaction
coefficient in the linearized Euler equations is always equal to zero, we un-
derstand that most solutions to the Euler equations must be unstable! The
flow at a separation point just studied was just one example. If someone
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FIGURE 8.2. Potential solution at a separation point.

FIGURE 8.3. Streamlines for the potential solution of a circular cylinder.
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comes to us with a formula for the analytical solution to the Euler equa-
tions, we would be able, with very high probability, to say that the solution
must be unstable and thus can never be observed and thus would not have
any predictive value. Right?

From this experience, we could be led to conclude that there is something
seriously wrong with the Euler equations, so that we should never speak
about this equation, and of course never try to find any solutions. We shall
see below that this conclusion is wrong: We will see that the Euler equations
is a very valuable model with lots of predictive value but we will have to
qualify what we mean by solving the Euler equations. We shall see that this
occupies an essential part of this book.

8.3 Couette Flow

Is there some flow velocity u with the eigenvalues of ∇u = 0 all having zero
real part? Yes, there is a basic flow pattern with this property, which is
Couette flow given by u(x) = (ax2, 0, 0) and p = 0 with a > 0 a constant,
which is a stationary solution of both the Euler and NS equations. It rep-
resents parallell shear flow in the x1-direction, which may occur inside a
flow or in a boundary layer along a boundary at x2 = 0. The streamlines
are parallell to the x1-axis and the u1 velocity increases linearly with x2.
The coefficient a controls the strength of the shear layer with the shear
force given by ν∂u1/∂x2 = νa. This is the simplest possible model solution
to both the Euler and NS equations representing stationary parallell shear
flow, see Fig. 8.4. Of course, for Euler, we would have ν = 0, so the shear
force would be zero. But u(x) would anyway be a solution to the Euler
equations.

FIGURE 8.4. Couette flow: parallell shear flow.

Is Couette flow a stable solution to Euler? Well, we compute and find
that ∇u = (0, a, 0; 0, 0, 0; 0, 0, 0) with the rows separated by semi-colon.
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Obviously, the eigenvalues are all zero, so there are no exponentially unsta-
ble modes, but the presence of the off-diagonal coefficient a allows for linear
growth in t with slope a. This is referred to as non-modal growth, occuring
because the matrix ∇u is non-normal (in particular non-symmetric) with
degenerate eigenmodes. More precisely, we expect to see that v1(t) ∼ tav0

2 .
Now if a is large, then this will correspond to considerable growth of the
perturbation v̂, and thus would signify an unstable Couette flow. Now, in
a boundary layer of thickness δ we would have a ∼ 1/δ, and we would thus
conclude that Couette flow in a boundary layer would be unstable. The
argument given also shows that Couette flow for NS with small viscosity is
unstable. We will study this phenomenon in detail in Chapter 34 below.

Sommerfeld made the mistake to believe that without exponentially un-
stable modes, Couette flow would be stable, but then missed the large
non-modal growth and got the wrong answer.

8.4 Reflections on Stability and Perspectives

We have presented two simple stationary analytical solutions to the Euler
and NS equations, and we have shown that both solutions are unstable.
From this experience we could easily be led to the suspicion that it would
be hard to find any solution to the Euler/NS equations that is stable. In
computations we will below see that if we initiate the flow with one of
these simple solutions, then the flow will quickly develop into a completely
different time-dependent, in fact turbulent, solution.

We see that the effect of the instability of solutions to the Euler/NS
equations is the development of a fluctuating time-dependent turbulent
solution. Since the flow is unstable, it will always have to change from one
state to another; it simply cannot find any stable stationary configuration.
It is like a flag in the wind, which is never in a flat stationary state, but
is always changing from one state to another in a fluctuating seemingly
chaotic way. It is clearly impossible to predict the exact position of a flag
over a time interval which is not very short, yet there is some kind of
repetitive behavior in the motion of a flag, but the motion is not periodic,
rather sort of “turbulent”.

We see similar phenomena in the evolution of the Weather; always chang-
ing in a way which is more or less predictable a couple of days ahead but
not much more, but always with some mix of rain and sunshine and with
certain mean values predictable over longer time. In fact, models for the
weather look like the Euler/NS equations, and we will return to basic as-
pects of weather prediction below connecting to the Euler/NS equations.

We shall see that outputs from computed turbulent solutions fit with
observations. We will in fact be able by a posteriori error estimation to
assess the precision in the outputs. In the a posteriori error estimation
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we solve (dual) linearized Euler or NS equations linearized at a computed
solution and compute the relevant stability factors and find that these
factors are not very large. We will thus be able to make accurate predictions
of certain outputs by computing solutions to the Euler or NS equations,
and thus we can reach our main goal: prediction by computation.

What we just said seems to contain a contradiction: We first said that
the linearized Euler/NS equations seemed to be exponentially unstable, so
that solutions would “blow up” exponentially, even when linearized at very
simple basic solutions. On the other hand we claimed that we could solve
the (dual) linearized Euler/NS equations without blow-up reflecting that
stability factors are not very large, when linearized at a complex turbulent
solution. How can this be? Exponential blow-up for simple solutions but
no blow-up for complex turbulent solutions! We will discuss this remark-
able phenomenon below and give some mathematical justification. Roughly
speaking the secret reflects effects of cancellation in a fluctuating turbulent
flow, which are not present in the case of the simple stationary solutions
studied above. It is probable that this aspect of stability also is cruicial
for phenomena in Nature to be functional and not completely chaotic and
may explain why Nature is complex; simple solutions are unstable and only
complex solutions can be realized and have some permanence!

We may thus say that it is the complexity that makes turbulent solutions
to the Euler/NS equations computable. But the cancellation of perturba-
tions in this complex flow is also some kind of “miracle”, a miracle which
gives permanence, stability and thus computability of certain outputs.

Below we will, in our discussion of d‘Alembert’s paradox, give more evi-
dence that predictions from analytical solutions (without stability analysis)
may be completely wrong. We spend some time and effort on this kind of
“wrong mathematics” because it occupies an important part of the his-
tory of fluid dynamics, and because one can learn something even from
completely wrong arguments, by proper understanding of exactly what is
wrong.
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9
d’Alembert’s Paradox and Bernoulli’s
Law

In classical hydrodynamics the motion of nonviscous fluids is chiefly
discussed. For the motion of viscous fluids, we have the differential
equation (NS) whose evaluation has been well confirmed by phys-
ical observations. As for solutoins of this differential equation, we
have, aside from unidimensional problems like those given by Lord
Rayleigh, only the ones in which inertia of the fluid is disregarded
(Stokes equations) or plays no important role. The bidimensional
and tridimensional problems, taking viscosity and inertia into ac-
count (NS), still await solution. (Prandtl in Motion of fluids with

very little viscosity 1904)

9.1 Introduction

We recall the Euler equations for incompressible inviscid flow:

u̇+ (u · ∇)u+ ∇p = 0 in Ω × I,
∇ · u = 0 in Ω × I,
u · n = g on Γ × I,

u(·, 0) = u0 in Ω.

(9.1)

We here set the volume force f = 0, and assume the non-homogeneous
slip boundary condition u · n = g, with n the outward unit normal to Γ,
and g a given function. We assume that

∫

Γ
g ds = 0, so that the boundary

condition is compatible with the incompressibility condition ∇ · u = 0 in
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Ω, in view of the divergence theorem stating that
∫

Ω

∇ · u dx =

∫

Γ

u · n ds.

Let us first recall the derivation of the first of the Euler equations, the mo-
mentum equation, expressing a balance between fluid particle acceleration
and the forces from the pressure gradient ∇p and f according to Newton’s
2nd Law. We then consider a “fluid particle” following a trajectory x(t)
defined by

dx

dt
= u(x(t), t) for t > 0, x(0) = x0,

where x0 denotes the position of the fluid particle at time t = 0, and
u(x, t) is the velocity of fluid particles at (x, t). The acceleration of the
fluid particle is given by

d

dt
u(x(t), t) = u̇(x(t), t) + ∇u(x(t), t) · dx

dt
= (u̇+ (u · ∇)u)(x(t), t),

where we used the chain rule. The acceleration should now be balanced by
the force on the particle (assuming unit mass), that is −∇p+ f , according
to Newton’s 2nd Law. This is because the force acting on a little volume
V of fluid with boundary S is given by

−
∫

S

pn ds+

∫

V

f dx =

∫

V

(−∇p+ f) dx,

where we again used the divergence theorem. We thus obtain the momen-
tum equation

u̇+ (u · ∇)u+ ∇p = f

in the fluid domain, which expresses Newton’s 2nd Law. We may thus view
the Euler equations to model the flow of very many very small ”fluid par-
ticles” interacting through a pressure force maintaining incompressibility.

It may seem natural to expect that the Euler equations model the flow
of a fluid with very small viscosity (or very high Reynold’s number). We
shall below see that this statement is largely true, if interpreted in the
right way. However, we shall now show that this idea has a serious flaw,
if interpreted in the wrong way, which in particular was done during the
initial mathematical studies of fluid mechanics by even the great masters
of the 18th century.

9.2 Bernoulli, Euler, Ideal Fluids and Potential
Solutions

The Euler equations were formulated by Euler in 1755 [30] building on
Daniel Bernoulli’s Hydrodynamik from 1738 and Johann Bernoulli’s (father
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of Daniel) Hydraulica, and thus predated the Navier-Stokes equations by
almost 100 years.

In particular, Euler derived Bernoulli’s Law for stationary incompressible
inviscid irrotational flow from the Euler equations. We shall present Eulers
derivation below.

An inviscid fluid (ν = 0) is also said to be an ideal fluid. The initial
studies by the Bernoullis and Euler thus concerned ideal fluids, with the
terminology suggesting that these studies would be fundamental: In the
ideal world there would be ideal fluids behaving in an ideal way. Of course,
the hope was that the newly invented Calculus would be the ideal tool to
uncover the secrets of this ideal World.

In particular, the interest focussed on stationary potential solutions with
the velocity u = ∇φ, where the potential φ is a harmonic function satisfying
Laplace’s equation ∆φ = 0 in the domain of the fluid together with the
Neumann boundary condtion ∂φ

∂n = u · n = g. Obviously, such a velocity is
both irrotational (∇×u = 0) and divergensfree (∇·u = 0). We show below
that if u = ∇φ with ∆φ = 0, then there is a pressure p such that (u, p)
solves the stationary Euler equations. By solving Laplace’s equation, one
can thus construct stationary irrotational solutions to the Euler equations,
and thus fluid mechanics seems to be open for exploration by Calculus,
with all its capabilities of producing harmonic functions. Unfortunately for
Calculus (but fortunately for Science, since potential solutions are pretty
boring), these hopes were almost instantly ruined by the discovery that this
type of ideal fluid theoretical predictions almost always were in complete
disagreement with observations and thus had no scientific value.

FIGURE 9.1. Daniel Bernoulli (1700-1782), his father Johann Bernoulli
(1667-1748), and Joseph-Louis Lagrange (1736-1813).

9.3 d’Alembert’s Paradox

This was pointed out by d’Alembert in 1752 in his famous Paradox, com-
paring the Calculus prediction of zero drag/lift of an inviscid potential
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solution, with the undeniable observations of non-zero drag/lift in very
nearly inviscid fluids such as air and water. We shall present d’Alembert’s
Paradox below. We shall also propose a (new) solution to the Paradox:
Briefly speaking, we will show that the zero drag/lift inviscid potential so-
lution is not stable and instead a turbulent approximate solution develops,
which has non-zero drag/lift. Our resolution of the Paradox is different
from the standard solution by Prandtl from 1904, which claims that even
the slightest viscosity changes the flow completely due to the presence of
no-slip boundary layers. We will present more material further below to
open for the reader to judge which solution of the Paradox may be closest
to the thruth. Of course, we do not claim that boundary layers never in-
fluence the flow and the drag/lift, but we give evidence that for very small
viscosity (very large Reynold’s number), Prandtl’s no-slip boundary layers
may not be the true reason why non-zero drag/lift develops.

9.4 A Vector Calculus Identity

In our study of potential solutions we shall use the following identity, which
may be verified by direct computation: If u = (u1, u2, u3) is differentiable,
then

1

2
∇|u|2 = (u · ∇)u+ u× (∇× u). (9.2)

9.5 Bernoulli’s Law

Let now u = ∇φ with ∆φ = 0 in the domain Ω of the fluid together with
the Neumann boundary condition ∂φ

∂n = u · n = g on Γ. Let us next define
the pressure p by the equation

1

2
|u|2 + p = C in Ω, (9.3)

where C is a constant. Taking the gradient of both sides of (9.3) and using
(9.2) recalling that ∇× u = 0, we find that (u, p) satisfies

(u · ∇)u+ ∇p = 0, ∇ · u = 0 in Ω, (9.4)

and we thus refer to (u, p) as a stationary potential solution to the Euler
equations with f = 0, noting that by construction u · n = g on Γ. We
have already remarked that a potential velocity is irrotational. We note
further that the pressure in the Euler equations (with velocity boundary
conditions) is only determined up to a constant, which explains the presence
of the (arbitrary) constant C in Bernoulli’s Law.

Conversely, we see that a stationary irrotational solution (u, p) of the
Euler equations (9.1), also satisfies (9.3), which we refer to as Bernoulli’s
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Law. We thus see that for stationary potential solutions, the stationary Eu-
ler equations and Bernoulli’s Law boil down to the same thing, all according
to Euler. The same conclusion was reached by Lagrange, who showed that
Bernoulli’s Law is the exact differential of the Euler equations.

From Bernoulli’s Law follows that for a potential solution (u, p), the
pressure p is large where the speed |u| is small, and vice versa.

9.6 Potential Flow around a Circular Cylinder

We consider now an infinitely long cylinder of diameter 1 oriented along the
x3 axis and immersed in an inviscid fluid filling R

3 with velocity (1, 0, 0) at
infinity, see Fig. 9.2. We now construct a corresponding potential solution
u = ∇φ by using Calculus. We assume that u3 = 0, and seek a function
φ(x1, x2) which is harmonic outside the disc x2

1 + x2
2 ≤ 1 occupied by the

cylinder, such that ∂φ
∂n = 0 on the boundary of the disc.

We find that φ is equal to the real part of the analytic function w(z) =
z + 1

z with z = x1 + ix2 and i the imaginary unit, that is,

φ(x1, x2) = (r +
1

r
) cos(θ), (9.5)

where (x1, x2) = (r cos(θ), r sin(θ)) is expressed in polar coordinates (r, θ).
We verify readlily that φ is harmonic outside the disc, because φ is the real
part of an analytic function, and that ∂φ

∂n = 0 on the boundary of the disc.
Further, one can show by a little more work that limx2

1
+x2

2
→∞ ∇φ(x1, x2) =

(1, 0, 0), so that the potential solution satsifies the uniform flow condition
far away from the cylinder. In Fig 9.2 we plot the streamlines of u, which
are the level curves of the imaginary part (r − 1

r ) sin(θ) of w(z).
We have now constructed a potential flow solution around the cylinder,

which intuitively looks quite convincing: the flow opens up to go around the
cylinder and then closes, pretty much as one may naively expect. Right?

9.7 Zero Drag/Lift of Potential Flow

Let us now compute the drag of the potential flow around the cylinder, that
is the net force on the cylinder in the x1 direction from the pressure acting
on the boundary of the cylinder. To this end we note that the flow speed
|u| evidently is symmetric with respect to both the x1 and the x2-axis,
because the flow after/below the cylinder is evidently a mirror image of
the flow before/above the cylinder. From Bernoulli’s Law we then deduce
that also the fluid pressure is symmetric before/after and above/below.
This means that the pressure around the cylinder balances out to zero,
that is, there is no net force from the flow on the cylinder: The drag is
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FIGURE 9.2. Potential flow around a cylinder

zero and evidently also the lift which is the net force in the x2-direction.
We see in particular that the pressure is high at the stagnation point A
with zero speed opposing the flow, and that this high pressure is balanced
by an equally large pressure in the opposite direction at the stagnation
point B at the back of the cylinder. And so it goes for all symmetrically
placed points on the boundary. One can easily generalize this result to a
body of arbitrary (non-symmetric) shape, subject to potential flow which
is uniform at infinity, we give the proof in the last section of this chapter.

This is d‘Alembert’s Paradox: Potential flow uniform at infinity has zero
drag/lift. But massive experimental evidence indicates substantial non-zero
drag even if the flow is very slightly viscous such as air and water. The first
such experiments were performed by d’Alembert himself in order to present
his Paradox. Further, with zero lift, flying would be impossible, again at
variance with everybodys experience.

So how is science/mathematics to deal with d’Alembert’s Paradox? Ev-
idently, something must be wrong with the potential solution. But what?
Is it the assumption about inviscid flow, which is essentially Prandtl’s ex-
planation? Or is there a different explanation? To find this out let us solve
the Euler equations computationally using G2, instead of using analytical
mathematics, and see what we get. Before we plunge into this adventure,
let us give another highlight of Calculus appplied to the Euler equations,
which is as misleading as the zero drag/lift of a potential solution.

9.8 Ideal Fluids and Vorticity

Taking the vorticity of the momentum equation in (9.1), we obtain with a
direct computation using e.g. (9.2), the following equation for the vorticity
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ω ≡ ∇× u:
ω̇ + (u · ∇)ω − (ω · ∇)u = 0 in Ω × I. (9.6)

This may be viewed as a linear convection-reaction equation for the propa-
gation of the vorticity ω with the fluid velocity u being given. Multiplying
by ω and integrating by parts with respect to x, we obtain

d

dt

∫

Ω

ω2(x, t) dx +
1

2

∫

Γ

u · nω2(s, t) ds ≤ C

∫

Ω

ω2(x, t) dx

if the velocity ∇u is bounded by the constant C, where Γ is the boundary
of Ω. It follows that if ω vanishes in Ω at initial time t = 0, and no vorticity
is convected into Ω through the boundary Γ where u · n < 0, then ω(t)
vanishes in Ω for all t > 0. We are thus led to the conclusion that in
an ideal fluid with bounded velocity gradient, vorticity cannot be created.
In the computational example with an ideal fluid which we now present,
nevertheless vorticity seems to be generated. The only way out of this dead-
lock is that the assumption of bounded velocity gradient is not verified, that
is, that the underlying Euler solution (u, p) is not a pointwise solution.

9.9 d’Alembert’s Computation of Zero Drag/Lift

We recall d’Alemberts (erroneous) computation of zero drag: Suppose there
is a stationary pointwise solution (u, p) to the Euler equations of inviscid
incompressible flow around a bluff body in a horisontal channel oriented in
the x1-direction, with the velocity u irrotational, i.e., ∇×u = 0. Integrating
the momentum equation over the domain, we obtain by partial integration,
considering the first component

0 =

∫

Γb

pn1 ds+

∫

Γin

(u · nu1 + pn1) ds+

∫

Γout

(u · nu1 + pn1) ds

where Γin and Γout denote the inflow and outflow boundaries of the channel,
and Γb denotes the boundary of the immersed body. Assuming now that the
velocity is equal on in and outflow, which is natural if the channel is long,
by Bernoullis law (stating that |u|2/2 + p is constant), the pressure will be
as well, and thus the inflow and outflow terms will cancel and therefore the
drag

∫

Γb
pn1 ds will be zero.

Obviously, zero drag of a bluff body contradicts experience: All bluff
bodies show substantial drag with the major contribution coming from the
pressure distribution around the body with high pressure up front and low
pressure in the back, and not from viscosity. In particular, we can attribute
only a small part of the drag to viscosity and thus experience clearly in-
dicates substantial drag for inviscid flow. But d’Alemberts computation
shows zero drag.
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We shall now in a concrete example see in Chapters 10-11 that the trouble
with d’Alemberts computation of zero drag is that the pointwise laminar
solution simply does not exist as a stable solution, which makes the com-
putation meaningless. Instead a turbulent approximate solution develops
and this solution has a substantial drag close to that for a solution of the
NS equations with large Reynolds number.

9.10 A reformulation of the momentum equation

Using the identity (9.2) we can rewrite the Euler momentum equation as
follows, assuming f = 0

u̇− u× ω + ∇(
1

2
|u|2 + p) = 0, (9.7)

a formulation which is sometimes used. In particular, we derive from this
equation Bernoulli’s Law for stationary irrotational flow.
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10
Prandtl’s Resolution of d’Alembert’s
Paradox

By denying scientific principles, one may maintain any
paradox. (Galileo Galilei)

10.1 Quotation from a Standard Source

To get the proper perspective, we present the standard view on the resolu-
tion of d’Alembert’s Paradox as the one suggested by Prandtl in the short
report Motion of fluids with very little viscosity read before the Third In-
ternational Congress of Mathematicians at Heidelberg in 1904, in the form
of some quotations from the standard source [77]:

“Ludwig Prandtl’s discovery of the boundary layer is regarded as one of
the most important breakthroughs in fluid mechanics of all time and has
earned Prandtl the title of Father of Modern Fluid Mechanics.”

“Before Prandtl’s description of the boundary layer in 1904, there was
no lack of interest in the dynamics of fluids due to the practical problems
of nautical engineering, ballistics, and hydraulics. Throughout the 18th
and 19th century the top physicists and mathematicians of Europe exam-
ined flows from a mathematical point of view. Much of this work was to
construct potential flows, i.e., incompressible, irrotational flows, over bod-
ies. Examples recognizable to most undergraduates are flows over circular
cylinders and other flows involving source-sink superpositions. Although
the mathematics was elegant and the flows aesthetically pleasing, it was
recognized that such flows failed to mimic ”real” flows seen in nature. Fur-
thermore, it was known since the time of d’Alembert that potential flows
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frequently resulted in zero drag; a prediction in clear contradiction with
everyday experience!”

”What were these mathematicians to do? Thanks to Coulomb and Stokes,
they were aware that a no-slip condition should be applied at solid bodies
(we now realize that this condition holds at all fluid boundaries). However,
standard external flow problems are ill-posed when the potential flow equa-
tions are combined with the no-slip condition. The correct approach would
be to abandon the inviscid (small viscosity) approximation and solve the
full Navier-Stokes equations. Stokes had done this himself for the problem
of creeping flow around a sphere and derived a non-zero expression for the
drag. However, the Stokes flow does not generate the large scale separation
seen in most day-to-day flows and the predicted drag is always much less
than what is measured for things like cannon balls and marbles in air and
water. The reason for these discrepencies is the neglect of the fluid inertia
in the creeping flow approximation. To include these terms is a daunting
task, even today.”

”Thus, as the 19th century came to a close, a universal and practical
application of fluid mechanics seemed far off. Prandtl’s contribution was to
realize that we can view the flow as being divided into two regions. The bulk
of the flow can be regarded as a potential flow essentially the same as that
studied by the mathematicians. Only in a small region near the body do
viscous effects dominate. This thin layer is known as the boundary layer.
Conceptually, Prandtl’s boundary layer is the reason the potential flow
theory is compatible with the exact physics. Furthermore, certain details of
the structure of the boundary layer are the key to understanding both flow
separation and the physical mechanism behind the Kutta condition. That
is, a proper understanding of the boundary layer allows us to understand
how a (vanishingly) small viscosity and a (vanishingly) small viscous region
can modify the global flow features. Thus, with one insight Prandtl resolved
d’Alembert’s Paradox and provided fluid mechanists with the physics of
both lift and form drag.”

10.2 Quotation from Prandtl’s 1904 report

We follow up with some paragraphs from Prandtl’s 1904 report which ap-
peared in English translation as Technical Memorandum 452 of the Na-
tional Advisory Committee for Aeronautics in 1928:

“It is known, however, that the solutions of the Euler equations generally
agree very poorly with experience. I will recall only the Dirichlet sphere
which, according to the theory, should move without friction.”

“I have now set myself the task to investigate systematically the laws of
motion of a fluid whose viscosity is assumed to be very small. The viscosity
is supposed to be so small that it can be disregarded wherever there are
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no great velocity differences nor accumulative effects. This plan has proved
to be very fruitful, in that, on the one hand, it produces mathematical
formulas. which enable a solution of the problem and, on the other hand,
the agreement with observations promises to be very satisfactory.”

”The most important aspect of the problem is the behavior of the fluid on
the surface of the solid body, assuming that the fluid adheres to the surface
and that, therefore, the velocity is either zero or equal to the velocity of the
body. In the thin transition layer, the great velocity differences will then
produce noticable effects in spite of the small viscosity.”

“The most important practical results of these investigations is that,
in certain cases, the flow separates from the surface at a point entirely
determined by external conditions. A fluid layer, which is set in rotation
by the friction on the wall, is thus forced into the free fluid.”

“On the one hand, we have the free fluid, which can be treated as non-
viscous, while, on the other hand, we have the transition layers on the
solid boundaries, impart their characteristic impress on the free flow by
the emission of turbulent layers.”

“No. 7-10 show the flow around a cylindrical obstacle. No. 7 shows the
beginning of the separation; Nos. 8-9, subsequent stages. No. 10 shows the
permanent condition. The wake of turbulent water behind the cylinder
swings back and forth, whence the momentary unsymmetrical apperance.”
(referring to the pictures in Fig. 10.2)

FIGURE 10.1. Ludwig Prandtl (1875-1953), called the father of modern aerody-
namics.

10.3 Discussion of Prandtl’s Resolution

The main point of Prandtl’s resolution of the d’Alembert’s Paradox is that
boundary layers always exist at solid boundaries, even if the viscosity is
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FIGURE 10.2. Pictures 1-12 from Prandtl’s Technical Memorandum 452.
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very small, and that by the strong velocity difference in the boundary
layer, vorticity is created in the layer and is then ejected into the fluid.
The important feature is the direction of the vortex generation accord-
ing to Prandtl, which is parallel to the surface and perpendicular to the
streamwise direction corresponding to “tripping” the flow by friction in
the boundary layer. We refer to vorticity in this direction as transversal
vorticity. The accepted resolution of the Paradox according to Prandtl is
thus that transversal vorticity is generated in the boundary layer, even if
the viscosity is very small, and this vorticity generation changes the global
patterns of the flow, allowing non-zero drag to develop. Prandtl thus claims
that the potential solution does not occur in practice, but instead a different
(turbulent) solution develops from the generation of transversal vorticity
in the bolundary layer.

We will below show that Prandtl’s view on the potential solution is cor-
rect, but we will question his explanation by transversal vorticity gener-
ation by showing the importance of instead generation of vorticity in the
streamwise direction reflecting the stability analysis in Chapter 8.

Another important aspect concerns the separation points: It is clear from
Fig 5 and 6 that Prandtl believes that there must be two separation points,
although his remark on No. 10 (”The wake of turbulent water behind the
cylinder swings back and forth, whence the momentary unsymmetrical ap-
perance.”), indicates that he can see only one swinging back and forth. We
will below show that with very small viscosity, there is in fact only one
separation point (in each section perpendicular to the cylinder axis), which
fits with Prandtl’s experiment, but is contrary to Prandtl’s analysis.

Altogether, we will thus present a resolution of the paradox, which is
fundamentally different from the accepted resolution by Prandtl.
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11
New Resolution of d’Alembert’s
Paradox

How wonderful that we have met with a paradox. Now we have some
hope of making progress. (Nils Bohr)

In this chapter we present a new resolution of d’Alembert’s Paradox. We
do this by showing computationally that the zero-drag potential solution
is unstable, and will therefore not be realized physically, and instead a
turbulent approximate solution with substantial drag develops. We show
that the drag results from the low pressure inside tubes of vorticity in the
streamline direction reflecting vorticity generation according to the stability
analysis of Chapter 8 and Chapter 20. Our resolution is different from the
accepted solution by Prandtl from 1904 based on boundary layer effects
of vanishing viscosity. We believe our solution is more to the point in the
case of vanishing (small) viscosity. We leave to the reader to judge which
solution is more accurate.

11.1 Drag of a Circular Cylinder

We now show the results of a G2 computational simulation of the flow
around a circular cylinder with axis oriented in the x3-direction in a long
channel oriented in the x1-direction, subject to a uniform inflow velocity
(1, 0, 0) according to Fig. 11.1. This computation is presented in detail in
Chapter 33. We choose the initial velocity equal to zero, and see a potential
solution with almost zero drag developing in a couple of time steps, but if
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we continue the computation we see that the potential solution undergoes
transition to a turbulent solution with large drag and a lot of vorticity.

There is only one separation point (in each transversal section), see
Fig. 11.2, which oscillates up and down, and we observe the generation
of vortex tubes in the streamwise direction inside which the pressure is low
generating substantial drag, see Fig. 11.3-11.6. In particular, we note that
the transversal vorticity component ω3 mainly develops downstream the
cylinder, whereas the streamwise vorticity is generated at the separation
point.

The main points in our resolution of d’Alembert’s Paradox are thus:

1. No boundary layer prior to separation.

2. Only one separation point, which oscillates up and down.

3. Strong generation of vorticity in the streamwise direction at the sep-
aration point.

These features are completely different from those suggested by Prandtl
based boundary layers before separation at two points and generation of
transversal vorticity.

The stability analysis of Chapter 8 indicates that strong vorticity in the
x1-direction should be generated at the separation point, which is clearly
observed in the computations, and which in particular reflects the insta-
bility of the potential solution. We study the instability in more detail in
Chapter 20 below.

We sum up: the potential solution with zero drag is unstable and will not
be realized in reality. Instead a turbulent solution develops with substantial
drag. This is the resolution of d’Alembert’s Mystery.
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FIGURE 11.1. Flow past a circular cylinder; velocity (upper) and pressure
(lower).
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FIGURE 11.2. Snapshot of the velocity illustrating the single separation point.
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FIGURE 11.3. Isosurfaces for vorticity ω = (ω1, ω2, ω3): ω1 (left), ω2 (mid-
dle), and ω3 (right), at three times t1 < t2 < t3 (upper, middle, lower), in
the x1x2-plane.

FIGURE 11.4. Isosurfaces for vorticity ω = (ω1, ω2, ω3): ω1 (left), ω2 (mid-
dle), and ω3 (right), at three times t1 < t2 < t3 (upper, middle, lower), in
the x1x3-plane.
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FIGURE 11.5. Isosurfaces for vorticity ω = (ω1, ω2, ω3): ω1 (left), ω2 (mid-
dle), and ω3 (right), at three times t1 < t2 < t3 (upper, middle, lower), in
the x2x3-plane.
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FIGURE 11.6. Time series of cD for a G2 solution to the Euler equations.
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12
Turbulence and Chaos

God does not throw dice. (Einstein)

We ought to regard the present state of the universe as the effect of
its antecedent state and as the cause of the state that is to follow. An
intelligence knowing all the forces acting in nature at a given instant,
as well as the momentary positions of all things in the universe,
would be able to comprehend in one single formula the motions of
the largest bodies as well as the lightest atoms in the world, provided
that its intellect were sufficiently powerful to subject all data to
analysis; to it nothing would be uncertain, the future as well as the
past would be present to its eyes. (Laplace)

12.1 Weather as Deterministic Chaos

In this chapter we approach some basic aspects of turbulent flow by con-
necting to the concept of deterministic chaos originating from the work
of the meteorologist Edward Lorenz on the unpredictable nature of the
weather, initiated in the early 1960s [71]. It is natural to make this con-
nection because weather predictions are routinely made by computational
solution of systems of differential equations similar to the NS equations
modeling the turbulent motion of air and moisture in the atmosphere of
the Earth.

We shall use the term chaotic dynamical system to describe dynamical
systems for which pointwise values in space/time are very sensitive to per-
turbations and thus unpredictable, while certain mean values in space/time
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are less sensitive and thus predictable. We shall see that the NS equations
is an example of a chaotic dynamical system in this sense.

We recall that we consider dynamical systems of the form u̇ = g(u), where
the given function u → g(u) represents the law of the system. We thus
consider deterministic systems following a deterministic law, and a chaotic
dynamical system expresses deterministic chaos. The unpredictability of
point values thus results from the strong sensitivity to perturbations, and
not from any randomness in the given law. The law of a chaotic system is
often of simple form, without any presence of randomness.

To illustrate the difference between pointwise values and mean values, we
may consider the problem of predicting the weather, or more precisely the
temperature, at a specific location in space. Guide books often present, for
given locations, predictions of monthly mean temperatures for the different
months of the year, but never 24h daily mean temperatures for all the days
of the year. This indicates that monthly mean values are predictable to a
tolerance of interest, while 24h daily mean values are not.

A daily mean value is an average over short time, which we may refer to
as a pointwise value in time, while we may refer to a monthly mean value
simply as a mean value. We may then say that mean values appear to be
predictable to a tolerance of interest while point values are not.

It is a common observation that predictions of the daily weather more
than 3-6 days ahead (depending on the general weather situation) are very
unreliable. Lorenz connected the unpredictability to strong sensitivity to
perturbations with the question: “Does the flap of a butterfly’s wings in
Brazil set off a tornado in Texas?” In predictions of daily weather it is
observed that perturbations may double every 12-48 hour depending on
the model, and thus make predictions over more than say a week unreliable
because of the considerable uncertainty in both data and modeling.

Obviously, the size of the tolerance is an important aspect of predictabil-
ity: To predict a July mean value up to 10◦C is of little interest, while a
tolerance of 1◦C may be the best we can ever hope for. So, the difference
between interest or no interest may be just one order of magnitude. We
shall meet this aspect below when computing drag and lift coefficients.

To say that a daily mean temperature is unpredictable up to a tolerance
of say 1◦C, does of course not mean that the daily mean temperature a
specific day of July at a specific location is not determined up to 1◦C, but
only that its value may effectively be anything between say 10◦C and 30◦C,
and that we cannot predict more than a few days ahead what the actual
value might be.
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12.2 Predicting the Temperature in Målilla

As an illustration we focus on the little village Målilla in the county of
Småland in southern Sweden, for which data are available from the Swedish
Institute of Meteorology SMHI. In Fig. 12.1 we display daily, weekly, and
monthly mean temperatures over the years 1988-1995, and we also show the
yearly mean values of the temperature in southern Sweden for the period
1860-2003. We see that the variation of the daily temperatures is ±10◦C, of
weekly averages ±7◦C, monthly averages ±4◦C, and yearly averages ±2◦C.

We may say that there are many possible daily temperature curves in
Målilla which differ significantly (±10◦C), and it seems impossible to pre-
dict which curve the actual temperature in Målilla will follow a particular
year.

On the other hand, the variation of monthly averages over the different
daily temperature curves is significantly smaller, and seems predictable to
a tolerance of ±4◦C. Further, taking the monthly mean value of any of the
many possible daily temperture curves will give a good approximation of
the common monthly mean value for all the curves. To compute monthly
averages is thus not necessarily a matter of statistics, where we would
compute ensemble averages over many different daily temperature curves.

12.3 Chaotic Dynamical System

Lorenz connected the term chaos to strong pointwise sensitivity to per-
turbations, and noticed that many systems including pinball machines,
planetary motion and the weather may show features of strong pointwise
sensitivity to perturbations, and thus according to Lorenz show features of
chaos. This is no surprize of course; everybody is familiar with the possi-
bility that small perturbations may have large pointwise effects.

What made chaos to such a hot topic in the 1980s, was the seemingly
paradoxical concept of order in chaos : in a system behaving pointwise in
an irregular chaotic unpredictable manner, there may still be some aspects
that are predictable. The challenge then becomes to identify these aspects,
that is, to identify the order in the disorder or chaos.

The intriguing aspect of a chaotic system such as the weather, is that
some quantities appear to be truely unpredictable, like a daily temperature,
but there are also other quantities, such as a monthly average temperature,
which may be predictable to a tolerence of interest.

We are thus led to identify a dynamical system as chaotic if the following
two conditions are satisfied:

(1) Pointwise quantities are strongly sensitive to perturbations and there-
fore unpredictable.
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FIGURE 12.1. Mean temperatures for Målilla in Sweden over the years 1988-1995,
24 hour mean, weekly mean, monthly mean, and also yearly mean temperatures
for southern Sweden over the years 1860-2003.



12.3 Chaotic Dynamical System 73

(2) Certain quantities of interest are moderatly sensitive to perturbations
and thus predictable.

Typically, the quantities of interest are more or less local mean values in
space-time of individual trajectories or solutions to the dynamical system,
but may also be other quantities reflecting certain aspects of the solution.

The nature of the order in chaos of course is of prime importance. Much
of the mathematical work on chaos has been geared towards global aspects
such as attractors approached by all trajectories after long time. We fo-
cus on aspects of order in chaos that can be captured by mean values in
space/time, which are not necessarily very long, like montly mean values of
daily temperatures. We do this by computational methods which open new
possibilites of identifying more precise expressions of order than analytical
methods.

The main new contribution of this book is evidence that turbulent flow
is chaotic in the above sense: pointwise quantities are unpredictable with
strong sensitivity to perturbations, while certain mean value quantities in
space-time of interest are predictable with moderate sensitivity to pertur-
bations.

The notion of a chaotic system may seem to be paradoxical in the follow-
ing sense: In a chaotic system (like the weather) individual trajetories are
unpredictable (like the daily temperature in Målilla), yet certain mean val-
ues of interest of such unpredictable trajectories indeed may be predictable
to tolerances of interest (like monthly mean value tempertures). We can
also formulate the paradox: How can it be that certain mean values of a
pointwise incorrect individual trajectory may be correct? If our daily tra-
jectory is all wrong, how come that we are able to live normal lives over
many years? We will unfold the paradox below, not as simple matter of
statistics (because it is not), but as a subtle matter of cancellation.

We may express the essence of a chaotic system alternatively as follows:
Each individual trajectory represents one possible trajectory out of many
possible trajectories and we cannot predict which trajectory out of the
many possible ones the system will actually follow. There are many possi-
ble developments of the daily weather over the next month and we cannot
predict which possibility will be realized. However, certain mean value out-
puts vary little over the different possible trajectories, which effectively
makes certain mean value outputs predictable. In Målilla there are many
possible daily temperature variations, which are all very different, but their
monthly mean values are all similar.

Another example: The trajectories of life for different human beings are
all vastly different, but certain mean value quanties may have smaller vari-
ation (many human lifes are quite alike in certain aspects).
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12.4 The Harmonic Oscillator as a Chaotic System

A basic model of physics is the harmonic oscillator with angular frequency
ω > 0:

ü(t) + ω2u(t) = 0 for 0 < t ≤ T,

with solution u(t) = cos(ωt) satisfying the intial conditions u(0) = 1,
u̇(0) = 0. We claim that if ω is large, then this is a chaotic system. How
can it be? Isn’t the harmonic oscillator the most ordered, predictable and
non-chaotic system that is thinkable? Well, let us consider the output u(T )
where T is the given final time. A change from T to T + δT will change the
output by the amount ωδT sin(ωT ), which may be far from small even if
δT is small, since ω is large. Thus the output u(T ) is strongly sensitive to
perturbations in T , and thus unpredictable, so that the harmonic oscillator
satisfies (1) in the requirement of a chaotic system, if ω is large.

Next, let us now for small positive τ consider the output

Mτ (u) =
1

τ

∫ T

T−τ

u(t) dt =
1

τω
(sin(ωT ) − sin(ω(T − τ)),

which is a mean value in time close to the final time T . Clearly, |Mτ (u)| ≤
2

τω , and thus Mτ (u) ≈ 0 if τω is large, which does not change under
perturbations of T . We conclude that if ωτ is large, then the mean-value
Mτ (u) ≈ 0 is not at all sensitive to perturbations in the data T and is
therefore predictable, and thus also (2) is satisfied. Evidently, there is some
order in the pointwise chaos of the harmonic oscillator at high frequency.

We conclude that the harmonic oscillator with large frequency may be
viewed to be a chaotic system: The solution is pointwise unpredictable but
a mean value in time is predictable. We understand that the reason for
this effect is the oscillatory nature of the solution u(t) = cos(ωt), creating
substantial cancellation in the integral defining the mean value. We shall
below meet the same crucial feature in turbulence.

We may say that the order of the harmonic oscillator is built into the
law of the dynamical system itself: ü+ ω2u = 0, which expresses Newtons
2nd law for a unit mass connected to the origin with a Hookean spring with
spring constant ω2. This is clearly a very simple law which should impose
some order, and certainly does, although pointwise outputs evidently be-
come unpredictable if the spring is stiff with ω large and the oscillation is
fast. Similarly, the NS equations express Newtons 2nd law for a Newtonian
fluid combined with incompressibility, and so we may expect some order in
the chaos of turbulence as well.
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12.5 Randomness and Foundations of Probability

One may attempt to describe a dynamical system to be random if only (1)
is satsified but not (2). A random system would then be a system which
deterministically would be fully unpredictable; not even mean values in
space/time would be deterministically predictable. Knowing one solution
trajectory of a random system would say nothing about other possible
trajectories, not even about mean values. One might have the impression
that the ideal objects of study in probability and statistics would be such
deterministically unpredictable systems, but as we will see this does not
appear to be a correct viewpoint.

As a possible example of a random system, let us consider the process
of coin-tossing, which is studied with probabilistic methods in any text on
probability or statistics. The assumption is that it is impossible to predict
the outcome of head or tail of a single coin toss. As a compensation the
notion of probability is introduced aimed at describing that tossing the coin
many times will show approximately equal number of heads and tails (if
there is nothing wrong with the coin). One would thus associate a proba-
bility of 1/2 to both head and tail.

From a deterministic point of view the process of coin tossing may be
described by the equations of motion for a rotating coin based on Newtons
2nd law, that is as a dynamical system based on a simple law as we have
discussed. This system is very sensitive to perturbations in e.g. initial con-
ditions, which makes it satisfy condition (1). A simplified model for coin
tossing is the harmonic oscillator with the solution u(t) describing the ro-
tation of the coin during the tossing, with the outcome being say head if
u(T ) > 0 and tail if u(T ) < 0, where T is the final time when the coin
hits the table (and u(T ) = 0 would correspond to the unlikely outcome
that the coin ends up balancing vertically on its perimeter). We may here
assume that we always initiate the coin with the same initial conditions
u(0) = 1 and u̇(0) = 0 say, and the unpredictable nature of the outcome of
the tossing would then correspond to small perturbations in the choice of
final time T , as in the above study of the harmonic oscillator. Viewing coin
tossing this way would correspond to viewing it as a deterministic chaotic
dynamical system with continuous time, for which a pointwise output in
time would be unpredictable, but for which a mean value in time would be
predictable. The predictability of the mean value in time would then result
from carefully following one single coin toss and observing that half of the
time of the toss the coin would have heads up.

However, in probability theory coin tossing is instead viewed as a process
with discrete time, where the coin jumps from an initial state u(0) at initial
time 0 to a final state u(T ) at final time T . Here time appears to be discrete
with only two values 0 and T , and the motion of the coin under a continuous
change of time is not observed. It is like closing the eyes during the toss
and to only open them at the end of the toss to observe the outcome. The
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assumption is now made that it is impossible to say anything about a single
coin toss, representing a jump from u(0) to u(T ). To say anything about
properties of the coin or the process of coin tossing, we would have to toss
the coin many times corresponding to ensembles of solutions from which we
can experimentally compute mean values and probabilities. Alternatively,
for an ideal coin one could use probability theory based on (in this case
very simple) combinatorics, noting that for an ideal coin head and tail
represent 2 equally possible outcomes, to compute the the probability for
each outcome to be 1/2. For a real coin (possibly a bit non-symmetric)
tossed by real people, only the experimental method of tossing the coin
many times would be seem to be available, and to determine any slight bias
would require many thousands of coin tosses. In both practical experiments
and probabilistic mathematics, we would then be working with ensemble
mean values over many tosses and not mean values in time of a single toss.

The mathematical statistician Persi Diaconis [24] tried to get around
costly experiments with real people tossing coins many times by instead
recording the motion of a coin during a few tosses with a high-speed cam-
era. From the video Diaconis could (somehow) predict that in 51 cases out
of 100 the coin would land on the same side it started, a property of coin
tossing which of course could be disputed. In any case, the methods con-
templated by Diaconis as probabilist would either be expensive experiments
with ensembles of many thousands of coin tosses, or expensive high-speed
camera recordings of a few tosses and some kind of analysis (yet to be
defined) of the video sequences.

Of course, using a deterministic approach, we would instead try com-
putational simulation using a realistic model of a flipping coin based on
Newtons 2nd law, with the advantage that it would be cheap and quick
(if you have the software for the modeling and computation). Using com-
putation we could thus be able to mimic Diaconis two methods, by either
simulating the outcomes of many coin tosses with slightly different data
and computing corresponding ensemble averages, or by carefully recording
the motion of the coin in a few experiments and (somehow) drawing conclu-
sions about the probability of head or tail by the very motion of the coin. In
both cases we would view coin tossing as a deterministic chaotic dynamical
system, rather than taking a probabilistic view. In particular, we would
this way directly see a connection between ensemble mean values and time
mean values: A time mean value at final time may be viewed either as a
mean value in time over a discrete set of uniformly distributed quadrature
points of a single coin toss, or as an ensemble mean value corresponding
to randomly chosen quadrature points corresponding to randomly chosen
final times, and the two mean values should be approximately the same. It
would further seem natural to expect the randomly chosen final times to
be smoothly distributed as a reflection of the strong sensitivity of the final
time to perturbations in e.g. initial data. This would follow from the idea
of Poincaré ([76]) that the scales of the initial data perturbations would
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be larger than the very small scales of initial data resulting in different
outputs reflecting the strong sensitivity. Of course, this idea connects to
the idea of Leibniz and Laplace of “equally possible” outcomes.

Viewing coin tossing as deterministic chaos would connect to what is
referred to as an objectivist point of view in probability theory advocated
by Popper, where the probability of coin tossing with a certain coin would
reflect the physics of that particular coin under tossing, or the propensity
of the coin, also connecting to single-case probability. The experimental
approch corresponds to the frequentist interpretation where the probability
of head is the frequency of heads over ensembles of many tosses.

FIGURE 12.2. Gottfried Wilhelm von Leibniz (1646–1716): ”I say therefore that
the existent is the being which is compatible with most things, or the most
possible being, so that all coexistent things are equally possible.” Pierre-Simon
Laplace (1749–1827): “The theory of chance consists in reducing all the events
of the same kind to a certain number of cases equally possible...”. Jules Henri
Poincaré (1854–1912): “... it may happen that small differences in the initial
conditions produce very great ones in the final phenomena.”

Now, are there dynamical systems which are random but not chaotic?
Assuming that a dynamical system is defined by some deterministic law, it
would seem quite impossible that there would be no reflection whatsoever of
this law as some kind of order in the variation in time of system trajectories.
The only way we could get a random system would then be to build in the
randomness into the law of the system, which would then no longer be
deterministic. So maybe after all there are no dynamical systems based on
deterministic laws which are random, but only chaotic systems with some
order or fully deterministic systems with a lot of order?

Could it be that if we find some order in a system we believe is random,
such as some ensemble mean values approaching some limit as the size of
the ensemble grows, corresponding to a central limit theorem or law of large
numbers in probability theory, this order in fact signifies that the system
is chaotic instead of random. If we view space-time mean values as some
kind of ensemble mean values, we may get support for such a suspicion.
With this perspective the order in the randomness of coin tossing would
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have the same origin as the order in coin tossing as a chaotic dynamical
system, namely Newtons 2nd law underlying the process of coin tossing,
which regulates the propensity of the coin.

If we observe pointwise unpredictable outputs of a certain system, and
we do not search and find predictable mean value outputs, then we could
come to believe that the system is random and not chaotic. If we then as
probabilists observe some predictability of ensemble mean values of this
system, then we would probably connect this to some (mysterious) Law of
Chance. However, as non-probabilists we might instead from the observed
order suspect that we are in fact dealing with a deterministic chaotic system
based on some law, and we could then find motivation to search for a law
defining the system. The observed order would then express the order built
into the chaotic system by its law, rather than some (mysterious) Law of
Chance.

12.6 NS chaotic rather than random

At any rate, the NS equations do not seem to represent a random dynam-
ical system with solutions jumping around unpredictably like tossed coins
in a probabilistic setting. Therefore, we avoid using probability theory and
statistics in this book. We thus use a deterministic approach and not a
probabilistic one. We do this not only because we do not master proba-
bilistic methods, but also because we do not see any reasons to approach
turbulence using such methods, because we are dealing with a dynamical
system with a known simple law: Newtons 2nd law. We consider dynamical
systems with pointwise outputs being unpredicable and certain space-time
mean value outputs being predicatable and we do not have to proceed to
ensemble mean values. This way we avoid the serious problem of obtaining
input data needed in a statistical approach. The data we need is deter-
ministic input data for the NS equations (f , u0, Ω, T , ν), which we can
regard as mean values, but not data on statistical distributions such as
covariances, which may be extremely difficult to obtain.

To handle uncertainties in data we use a deterministic approach based
on duality, where we compute sensitivites in output to perturbations in
input, only requiring a rough estimate of the variance, thus again avoiding
detailed statistics.

We sum up this discussion by pinpointing an important difference be-
tween a chaotic and a random system as follows: If we have access to only
one trajectory of a chaotic dynamical system, we may still get correct infor-
mation about certain mean values in space-time. In contrast, from knowing
only one trajectory of a random system, we can conclude nothing. In the
standard setting of discrete time it is impossible to draw some conclusion
about the property of a coin by throwing it once. To get information from
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a random system we need ensembles of many trajectories from which we
can form ensemble mean values. We have to throw the coin many times to
get statistical information concerning its properties.

This is a key point directly coupling to computational work. To compute
information about a random system, we have to use Monte Carlo simulation
corresponding to computing many trajectories and taking ensemble mean
values. Alternatively, randomness may be modeled in a deterministic sys-
tem with new independent variables, which is also computationally costly.
In a chaotic system like turbulent flow, it may be sufficient to compute one
trajectory and take mean values in space-time. Obviously the difference in
amount of computational work may be enormous.

Computing solutions of a chaotic system generates seemingly random
pointwise output from deterministic input, which could be viewed as some
kind of a random number generation, and we could analyse the output
using statistical methods. By computation we could thus generate data for
statistics. We may say that computation is cheap while aquiring data by
measurement in general is expensive, and thus computations could help
tackle a main difficulty of statistics, namely how to collect statistical data.

As a final comment on chaotic vs random, we remind that the trajectory
of the life of a certain person may be viewed to be chaotic in the sense that
it is unpredictable pointwise, but this does not mean that it is random. In
fact each life trajectory follows a certain logic (laws) and is far from being
random (most of the time). A person taking all the time random decisions
will not live long.

12.7 Observability vs Computability

The same questions of predictability/computability of mean values vs point
values in space-time, seem to arise in connection with many basic math-
ematical models containing macro-states in the form of mean values of
micro-states, such as the Schrödinger equations or Boltzmann’s equations.
In these cases the macro-states may correspond to observables such as en-
ergy levels or temperature, which are quantities which can be realiably
measured and which represent mean values of micro-states in the form of
point-valued wave functions or velocity distributions. In these models many
different micro-states may produce the same mean value macro-state, and
the pointwise values of the micro-states may not be observables nor pre-
dictable/computable. We may say that only God may have a correct knowl-
edge about the micro-states, while we as human beings can only hope to
observe/predict/compute macro-states. Or with another metaphor: We can
never get full information about the thoughts of another person, but some-
times we may get some gross idea of the state of mind of that person and
predict the action of that person (up to some tolerance of interest).
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12.8 Lorenz system

Lorenz studied a dynamical system in the form of a 3× 3 system u̇ = f(u)
of ordinary differential equations with

f(u) = (−10u1 + 10u2, 28u1 − u2 − u1u3,−
8

3
u3 + u1u2).

One may view Lorenz system as a very simple model for the NS equations
obtained by a Galerkin method with 3 trigonometric basis functions. One
may thus view Lorenz system as a model for the evolution of the weather.
Lorenz showed that solutions of the Lorenz system are very sensitive to
perturbations, e.g. small perturbations in intial data, which makes it im-
possible to predict/compute the solution pointwise correctly over longer
time. More precisely, using double precision it seems inpossible to accu-
rately compute over a time interval longer than 50 time units. Lorenz thus
in a very simple model problem gave an explanation of the observed im-
possibility of predicting the daily weather more than about 3-5 days ahead
depending on the weather conditions.

FIGURE 12.3. A Lorenz trajectory.

Lorenz system has a stationary point at the origin, which is unstable, and
two slightly unstable stationary points P1 and P2 away from the origin. A
trajectory of a solution to the Lorenz system repeatedly shifts from orbiting
P1 to P2 and back again and the number of revolutions around each point
seems to vary in an irregular “chaotic” way, see Fig 12.3. However, a plot
of a solution trajectory is beautiful and partly very ordered, reflecting that
there is some “order in chaos”. A solution of the Lorenz system viewed
as a weather model, may represent a succession of weather periods with
alternating periods of high and low pressure with the lengths of the periods
varying irregularly.

So what could then be the order of Lorenz system, other than that ex-
pressed by the beautiful “butterfly” order of a typical trajectory? One may
expect that over long time the number of revolutions around P1 and that
around P2 will be approximately the same. In Fig 12.4 we plot these num-
bers as functions of time for a trajectory computed over long time. Such a
trajectory is not pointwise correct but would rather have to be viewed as
an ensemble of trajectories over shorter time which are pointwise correct.
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FIGURE 12.4. Number of rotations around P1 and P2 for a Lorenz trajectory
(computations by Anders Logg, TTI Chicago).

At any rate we see that the number of revolutions around P1 and P2 are
approximatey the same.

Summing up, turbulent flow shows features of chaos in the sense that
pointwise quantities are not predictable/computable, which reflects strong
pointwise sensitivity to perturbations, but certain mean values are pre-
dictable/computable, which reflects less sensitivity of mean values, and
thus some “order in chaos”.

Lorenz connected chaos to pointwise unpredictability, reflecting strong
pointwise sensitivity to perturbations. However, Lorenz did not emphasize
the other aspect of chaos which we are proposing, namely predictability
of certain mean values reflecting moderate sensititvity to perturbations,
which distinguishes a chaotic system from a random system.

12.9 Lorenz, Newton and Free Will

The reason Lorenz system attracted so much attention was the discovery
that a seemingly innocent system of ordinary differential equations such as
the Lorenz system with constant coefficients and quadratic non-linearities,
could have pointwise unpredictable solutions. The interest came from the
apparent contradiction with the Newtonian view of the Universe as a dy-
namical system governed by Laws of Nature like Newtons’s Law of Grav-
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itation, for which the future could be determined if the initial conditions
were known to sufficient precision. The eternal philosophical question con-
cerned the possible coexistence of Newtonian mechanics with the idea of a
free will. If the future was determined by the past, there would be no free
will. The Newtonian view now seemed to break down if not even in such a
simple system like the Lorenz system, the future was well determined from
the past.

Of course, the understanding that small causes could have a large effect
is present in Newtonian mechanics, the simplest example being the inverted
pendulum, which is very sensitive to small perturbations in an initial top
position at rest. So, in fact, there is no contradiction between Newtonian
mechanics and the free will: If a small cause can have a large effect, the
future is not pre-determined (as we all know), but can be influenced by
something like a free will.

Summing up, there are two seemingly paradoxical phenomena, which
after all are not paradoxical, but perfectly normal and understandable:
(i) A dynamical system expressing simple laws may have very complex
pointwise chaotic solutions. (ii) There may be some order in the chaos
generated by a dynamical system expressing simple laws.

The NS equations builds on simple laws, and have pointwise chaotic
unpredicatable solutions, while some mean values seem to be predictable
and ordered.

12.10 Algorithmic Information Theory

In algorithmic information theory one makes the distinction between the
length of a computer program (list of instructions), and the length of the
output of the program. A computer program for the solution of a dynamical
system building on a simple law, like the NS equations, may be short, but
the output in the form of a turbulent solution may be long, that is require
a lot of memory to store pointwise, and thus require a lot of computational
work to produce.

A chaotic system would then be a system with short instruction and
long computation producing long pointwise output, from which reliable
short mean value output could be obtained. A chaotic system would thus
transform short input to short mean value output by passing through long
pointwise output, obtained by long computation, following short instruc-
tion. Such a chaotic system requires little data and instruction but a lot
of computation, which is favorable because data and instruction are both
expensive in general, while computation is cheap. In contrast, a random
system would require long data and/or instruction and thus would be ex-
pensive.
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The basic mathematical models of mechanics and physics such as the
equations by Schrödinger, Maxwell and Navier-Stokes, all combine short
instruction/data with long computation, while mathematical models in bi-
ology and economics generally require long instruction/data. The “unrea-
sonble effectiveness of mathematics in the natural sciences” according to
Wigner, may be rooted in this difference.

12.11 Statistical Mechanics and Roulette

Boltzmann invented statistical mechanics in the scientific dead-lock caused
by Loschmidt’s Mystery of irreversibility in reversible Hamiltonian systems.
Einstein in the later half of his life seriously questioned science based on
microscopic games of roulette like statistical mechanics, as expressed in
his famous “God does not play dice”. Einstein was not stupid, but his
critique was obviated by referring to senility, and statistical mechanics is
today viewed as a basis of physics, including quantum mechanics with its
probablistic “Copenhagen interpretation” of the Schrödinger wave function.

However, basing mechanics on microscopic games of roulette has a very
high scientific price: First, it is impossible to experimentally verify the
basic assumptions of microscopic statistics, because the microscopics is not
open to inspection (by definition). Secondly, the basic idea of cause-effect
in science, has to be given up: the microscopic particles are supposed to
“jump” randomely without any cause.

As an alternative to statistical mechanics we propose a new basis of ther-
modynamics which we refer to as Euler/G2, that is a computational version
of the basic laws of conservation of mass, momentum and energy. We can
describe Euler/G2 as a model with deterministic mean-value outputs based
on determinsitic microscopics, for which point value outputs are indeter-
minate. Thus in short, Euler/G2 models output mean-value determinism
coupled with output pointwise indeterminism based on microscopic deter-
minism. Euler/G2 thus may be viewed as a complex game of roulette in
which pointwise outcomes are indeterminate but mean values are determi-
nate.

In contrast, statistical mechanics is based on microscopic indetermin-
ism. To simulate microscopic games of roulette it appears that one would
need microscopics of microscopics, since a game of roulette necessarily is
complex, which is against all logic. With this basic motivation we side up
with Einstein in his scepticism of statistical mechanics (and he is not alone
among famous scientists): Maybe after all, he was not senile when he so
clearly expressed his doubts?
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13
A $1 Million Prize Problem

Leray viewed mathematics as a tool for modelling, and drew his
inspiration from problems in mechanics and physics, such as fluid
dynamics and wave propagation. He was fond of explaining how the
road from mathematics to applications is twoway, and how a purely
mathematical theorem (concering, for instance, the existence and
uniquness of solutions of systems of partial differential equations)
might have profound physical implications. (Ivar Ekeland on Jean
Leray)

Is it by accident that the deepest insight into turbulence came from
Andrei Kolmogorov, a mathematician with a keen interest in the real
world? (Uriel Frisch)

Some proofs command assent. Others woo and charm the intel-
lect. They evoke delight and an overpowering desire to say, ”Amen,
Amen”. (John William Strutt (Lord Rayleigh) 1842-1919)

A child, however, who had no important job and could only see
things as his eyes showed them to him, went up to the carriage.
”The Emperor is naked,” he said. ”Fool!” his father reprimanded,
running after him. ”Don’t talk nonsense!” He grabbed his child and
took him away. (HC Andersen 1805–1875)

13.1 The Clay Institute Impossible $1 Million Prize

At the 2000 Millennium shift, the Clay Mathematics Institute presented
seven $1 million prize problems, as a reflection of the 23 problems for-
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mulated by the famous mathematician Hilbert at the second International
Congress of Mathematicians in 1900 in Paris. The prize problems represent
open important problems of mathematics of today.

One of the prize problems concerns the existence, uniqueness and reg-
ularity of (pointwise) solutions to the Navier–Stokes equations for incom-
pressible flow, that is, precisely the equations (4.1) at focus in this book.

This Prize Problem has resisted the attacks of the sharpest mathematical
minds for many decades. Of course, with our experience from the previous
chapters, it may be natural to connect the difficulty to the presence of
turbulent solutions which are not pointwise well-defined in space-time. This
was pointed out by Jean Leray, who in 1934 proved the existence of weak
solutions, or turbulent solutions in the terminology used by Leray, which
satisfy the Navier–Stokes equations in an average sense, that is with the
residual tested against a suitable set of smooth test functions, as indicated
above.

Proving uniqueness and regularity (which means that the solutions can
be differentiated many times and satisfies the NS equations pointwise in
space-time) of Leray’s weak solutions, would give the $1 million prize. But
nobody has been able to come up with such a proof. Leray himself prob-
ably did not even attempt to prove uniqueness nor regularity of his weak
solutions, because turbulent solutions do not seem to have these qualities.

This leads to the suspicion that the Prize Problem is simply impossible
to solve: The Navier-Stokes equations seem to have turbulent solutions
and such solutions cannot be expected to be neither pointwise uniquely
defined nor regular. So it appears that this is a safe formulation of the
Prize Problem for which the prize will never have to be handed out, but
this was probably not the intention by the Clay Institute.

We shall see below that the Euler equations in general lack pointwise as
well as weak exact solutions, but admit approximate weak solutions, which
carry important information.

FIGURE 13.1. The famous mathematician David Hilbert (1862–1943), Jean
Leray (1906–98) who proved existence of weak solutions, Jacques Salomon
Hadamard (1865–1963) who first studied well-posedness of differential equations,
and Sergei Lvovich Sobolev (1908-1989) who introduced many fundamental con-
cepts in functional analysis underlying the study of partial differential equations.
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13.2 Towards a Possible Formulation

We will now suggest a new formulation of the Prize Problem, which may
not be impossible to solve. In this formulation we relax the uniqueness
question to uniqueness of certain mean value outputs rather than pointwise
uniqueness of solutions, and we do not request a proof of regularity.

To formulate the Prize Problem in this new setting, we will be led to
extend the solution concept not only to Leray’s weak solutions, but further
to approximate weak solutions in quantitative form, as already indicated
above.

The basic ideas follows a standard approach in Functional Analysis and
can be concisely expressed as follows: Writing as above the NS equations
in pointwise form as R(û) = 0 with û = (u, p), we view R(·) as a residual
vanishing pointwise for the solution û. In this setting we seek a strong solu-
tion û which can be differentiated and thus satisfies the equation R(û) = 0
pointwise in space-time.

We now first relax the requirements on û, and define û to be a weak
solution if

((R(û), v̂)) = 0,

for all test functions v̂ in a test space V̂ with norm ‖ · ‖V̂ consisting of
suitably pointwise differentiable functions, and R(û) is assumed to belong
to a space dual to V̂ , and ((·, ·)) denotes a duality pairing. Effectively this
means that we relax the regularity requirements on the solution û and only
ask the equation R(û) to be satisfied in some average sense depending on
the test space V̂ . Typically, ((·, ·)) corresponds to a L2 inner product in
space-time and ((R(û), v̂)) is formally obtained by pointwise multiplication
of R(û) by the test function v̂ and integration in space-time. It is the
integration in space-time combined with the regularity requirements put
on the test functions that relaxes the strong formulation R(û) = 0 to the
weak formulation ((R(û), v̂)) = 0 for all v̂ ∈ V̂ .

Next we relax further and define û to be an ε-weak solution if

|((R(û), v̂))| ≤ ε‖v̂‖V̂ ∀v̂ ∈ V̂ ,

where ε is a (small) positive number. This means that for an ε-weak solution
û, we require the residual R(û) to be smaller than ε in a weak norm which
is dual to the strong norm of V̂ . Choosing ε = 0 would then bring us back
to Leray’s concept of an exact weak solution. Note that we here do not
specify precisely the space of functions where we seek the solution û, but
of course we require that û is such that ((R(û), v̂)) is well defined for all
v̂ ∈ V̂ , or that R(û) belongs to the dual space of V̂ .

The final step is now to choose an output quantity of interest and seek to
estimate the difference in output of two ε-weak solutions. This will lead us to
introduce a certain linearized problem and measure its stability properties



88 13. A $1 Million Prize Problem

by a certain stability factor S. The difference in output of two ε-weak
solutions will then be estimated by 2εS.

Before proceeding to present details of the new possible formulation of
the Prize Problem, we connect to the concept of well-posedness according
to Hadamard.

13.3 Well-Posedness According to Hadamard

The general question of uniqueness directly couples to a question about
well-posedness of a set of differential equations, as first studied by the
French mathematician Jacques Salomon Hadamard (1865–1963). A set of
partial differential equations (like the Navier–Stokes equations) is well-
posed if small variations in data (like initial data) result in small variations
in the solution (at a later time). Hadamard stated that only well-posed
mathematical models could be meaningful: if very small changes in data
could cause large changes in the solution, it would clearly be impossible to
reach the basic requirement in science of reproducibility.

The question of well-posedness may alternatively be viewed as a question
of sensitivity to perturbations. A problem with very strong sensitivity to per-
turbations would not be well-posed in the Hadamard sense. Now Hadamard
proved the well-posedness of some basic partial differential equations like
the Poisson equation, but he did not state any result for the Navier–Stokes
equations.

Of course, believing that solutions to the Navier–Stokes equations may
be turbulent, and observing the seemingly pointwise chaotic nature of tur-
bulence, we could not expect the Navier–Stokes equations to be well-posed
in a pointwise sense: we would expect to see a very strong pointwise sen-
sitivity to small perturbations. But, of course it would be most natural to
ask if certain mean values may be less sensitive, so that the Navier–Stokes
equations would be well-posed in the sense of such mean values. This is
what we will do. The stability factor S may then be viewed to measure the
well-posedness of certain mean values in the sense of Hadamard. Surpris-
ingly maybe, this appears to be a new concept, which one may describe
as output uniqueness of approximate weak solutions as compared to (non-
existent) pointwise uniqueness of strong solutions.

13.4 ε-Weak Solutions

We now define the concept of ε-weak solutions of the NS equations (4.1) in
detail. We define for v̂ = (v, q) ∈ V̂

((R(û), v̂)) ≡ ((u̇, v)) + (u(0), v(0)) + ((u · ∇u, v)) − ((∇ · v, p))
+ ((∇ · u, q)) + ((ν∇u,∇v)) − (u0, v(0)) − ((f, v)),

(13.1)
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where we choose

V̂ = {v̂ = (v, q) ∈ H1(Q)4 : v = 0 on Γ × I}

and ((·, ·)) is the L2(Q)m inner product with m = 1, 3 (or a suitable duality
pairing) over the space-time domain Q = Ω × I , and (·, ·) is the L2(Ω)3

inner product. Here H1(Q) denotes the Sobolev space of functions defined
on Q with first order derivates in space-time in L2(Q), and H1(Q)2 =
H1(Q) × H1(Q) et cet. In order for all the terms in the definition of
((R(û), v̂)) to be defined, we thus ask (for example) that u ∈ L2(I ;H

1
0 (Ω)3),

(u · ∇)u ∈ L2(I ;H
−1(Ω)3), u̇ ∈ L2(I ;H

−1(Ω)3), p ∈ L2(I ;L2(Ω)), f ∈
L2(I ;H

−1(Ω)3), where H1
0 (Ω) is the usual Sobolev space of vector func-

tions being zero on the boundary Γ and square integrable together with
their first order derivatives over Ω, with dual H−1(Ω). As usual, L2(I ;X)
with X a Hilbert space denotes the Hilbert space of functions v : I → X
which are square integrable, with norm ‖v‖L2(I;X) = (

∫

X ‖v(t)‖2
X)1/2.

We note that we could have chosen V̂ differently, asking for more or less
smoothness; e.g. we may demand more smoothness and ask V̂ to be a subset
of the Sobolev space H2(Q)4 of vector functions with square integrable
second order derivatives. The choice of V̂ we made above fits into the G2
formulation to be given below.

We now define û to be an ε-weak solution if

|((R(û), v̂))| ≤ ε‖v̂‖V̂ ∀v̂ ∈ V̂ , (13.2)

where ‖ ·‖V̂ denotes the H1(Q)4-norm. We may here without loss of gener-

ality put in requirements on some smoothness of û, e.g. that û ∈ V̂ , or even
the more stringent requirement that R(û) ∈ L2(Q)4, with R(û) the residual
of (4.1). This is because we use a concept of approximate weak solution,
which allows us to smooth an approximate weak solution with minimal
smoothness requirements to get a smooth approximate weak solution. This
reflects that for any function v ∈ L2(Q), there is a smooth function vε (e.g.
in H1(Q)), such that ‖v − vε‖ ≤ ε, where ‖ · ‖ is the L2(Q)-norm. We also
note that the initial condition u(0) = u0 is imposed approximately through
the variational formulation (13.1).

We now finally define Ŵε to be the set of ε-weak solutions (in V̂ ) for a
given ε > 0. Equivalently, we may say that û ∈ V̂ is an ε-weak solution if

‖R(û)‖V̂ ′ ≤ ε,

where ‖ · ‖V̂ ′ is the dual norm of V̂ . This is a weak norm measuring mean
values of R(û) with decreasing weight as the size of the mean value de-
creases. Point values of R(û) are thus measured very lightly. As indicated,
we could go to an even weaker solution concept, for example by replacing
H1 by H2.
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We could also alternatively define Ŵε to be the set of functions û such
that ((R(û), v̂)) = ε‖v̂‖V̂ for all v̂ ∈ V̂ , with = ε, but we prefer here the
first definition with ≤ ε.

Formally, we would obtain the equation

((R(û), v̂)) = 0

by multiplying the NS equation by v̂, that is, integrating in space-time the
sum of the momentum equation multiplied by v and the incompressibility
equation multiplied by q. Thus, a pointwise solution û to the NS equations
would be an ε-weak solution for all ε ≥ 0, while an ε-weak solution for ε > 0
may be viewed as an approximate weak solution, but not as an approximate
pointwise solution, because its pointwise residual may be large as well as
‖R(û)‖L2(Q), while ‖R(û)‖V̂ ′ is small.

Note that we may view an ε-weak solution û to be a pointwise defined
solution, like a finite element solution, for which the residual R(û) is small
in the weak V̂ ′-norm, but not in the L2(Q)-norm.

13.5 Existence of ε-Weak Solutions by
Regularization

There is a great variety of so called regularized NS equations for which it is
possible to prove existence of pointwise solutions using standard methods
of mathematical analysis. The regularization could be imposed by a higher-
order diffusion term like the biLaplacian with a small coefficient acting on
the velocity, or replacing the velocity-independent Newtonian viscosity ν
by a viscosity ν̂ depending on the norm of the velocity gradient with e.g.

ν̂ = ν + h2|∇u|α,
where |∇u|2 =

∑

i |∇ui|2, α ≥ 1 and h acts as a (small) scaling parameter.
For such regularized NS equations it is possible to prove the existence and
uniqueness of solutions (see e.g [69, 39]).

The question is then if such regularized solutions would be ε-weak so-
lutions, with an ε tending to zero with the regularization? In general we
would be able to answer this question by yes, if we just use a sufficiently
weak solution concept. The easiest case to analyze is regularization with
the biLaplacian, corresponding to introducing the additional viscous term
((κ∆u,∆v)) in the weak form of the NS equations, where κ > 0 is a small
regularization parameter. We denote the corresponding regularized solu-
tion by ûκ, which can be proved to exist by standard methods. By a basic
energy estimate, we would have that ((κ∆uκ,∆uκ)) ≤ C, where C would
depend only on data. Computing ((R(ûκ), v̂)) we would get by Cauchy’s
inequality, assuming C = 1 for simplicity,

|((R(ûκ), v̂))| = |((κ∆u,∆v))| ≤
√
κ‖v̂‖L2(I;H2(Ω)3)
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so that ûκ would be an
√
κ-weak solution with the norm of V̂ including the

L2(I ;H
2(Ω)3)-norm on the velocities.

Further, the original proof of Leray [68] produces a solution which is an
ε-weak solution for ε = 0, if we impose on V̂ a slighly stronger norm on the
velocities than L2(I ;H

1(Ω)3), see [68, 69].
By introducing the notion of an ε-weak solution to the NS equations with

a suitable choice of norms on the test functions, it is thus possible to prove
existence of solutions using standard methods of mathematical analysis.
Below, we shall computationally construct ε-weak solutions using the G2
finite element method (under a certain minor assumption). In general, for a
computed G2 solution Û , we can by evaluating the residual R(Û) determine
the corresponding ε.

To sum up, we may say that the question of existence of ε-weak solu-
tions of the NS equations is easy to settle, analytically or computationally.
By relaxing the requirements on the solution we have made the existence
question easy to answer positively. We now turn to the real issue.

13.6 Output Sensitivity and the Dual Problem

Suppose now the quantity of interest, or output, related to a given velocity
u is a scalar quantity of the form

M(û) = ((û, ψ̂)), (13.3)

where ψ̂ ∈ L2(Q) is a given weight function, which represents a mean-
value in space-time. In typical applications the output could be a drag
or lift coefficient in a bluff body problem. In this case the weight ψ̂ is a
piecewise constant in space-time. More generally, ψ̂ may be a piecewise
smooth function corresponding to a mean-value output.

We now seek to estimate the difference in output of two different ε-weak
solutions û = (u, p) and ŵ = (w, r). We thus seek to estimate a certain form
of output sensitivity of the space Ŵε of ε-weak solutions. To this end, we
introduce the following linearized dual problem of finding ϕ̂ = (ϕ, θ) ∈ V̂
such that

a(û, ŵ; v̂, ϕ̂) = ((v̂, ψ̂)), ∀v̂ ∈ V̂0, (13.4)

where V̂0 = {v̂ ∈ V̂ : v(·, 0) = 0}, and

a(û, ŵ; v̂, ϕ̂) ≡ ((v̇, ϕ)) + ((u · ∇v, ϕ)) + ((v · ∇w,ϕ))

− ((∇ · ϕ, q)) + ((∇ · v, θ)) + ((ν∇v,∇ϕ)),

with u and w acting as coefficients, and ψ̂ is given data.
This is a linear convection-diffusion-reaction problem in variational form,

with u acting as the convection coefficient and ∇w as the reaction coef-
ficient, and the time variable runs “backwards” in time with initial value
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(ϕ(·, T ) = 0) given at final time T imposed by the variational formulation.
The reaction coefficient ∇w may be large and highly fluctuating, and the
convection velocity u may also be fluctuating.

Choosing now v̂ = û− ŵ in (13.4), we obtain

((û, ψ̂)) − ((ŵ, ψ̂)) = a(û, ŵ; û− ŵ, ϕ̂) = ((R(û), ϕ̂)) − ((R(ŵ), ϕ̂)), (13.5)

and thus we may estimate the difference in output as follows:

|M(û) −M(ŵ)| ≤ 2ε‖ϕ̂‖V̂ . (13.6)

By defining the stability factor S(û, ŵ; ψ̂) = ‖ϕ̂‖V̂ , we can write

|M(û) −M(ŵ)| ≤ 2εS(û, ŵ; ψ̂), (13.7)

and by defining
Sε(ψ̂) = sup

û,ŵ∈Ŵε

S(û, ŵ; ψ̂), (13.8)

we get
|M(û) −M(ŵ)| ≤ 2εSε(ψ̂), (13.9)

which expresses output uniqueness of Ŵε.
Clearly, Sε(ψ̂) is a decreasing function of ε and we may expect Sε(ψ̂) to

tend to a limit S0(ψ̂) as ε tends to zero. For small ε, we thus expect to be
able to simplify (13.9) to

|M(û) −M(ŵ)| ≤ 2εS0(ψ̂). (13.10)

Depending on ψ̂, the stability factor S0(ψ̂) may be small, medium, or

large, reflecting different levels of output sensitivity, with S0(ψ̂) increasing
as the mean value becomes more local. Normalizing, we may expect the
output M(û) ∼ 1, and then one would need 2εS0(ψ̂) < 1 in order for two
ε-weak solutions to have a similar output.

Estimating S0(ψ̂) using a standard Grönwall type estimate of the solution

ϕ̂ in terms of the data ψ̂, would give a bound of the form S0(ψ̂) ≤ eKT ,
where K a pointwise bound of |∇w|. In a turbulent flow with Re = 106,
we may have K ∼ 103, and with T = 10 such a Grönwall upper bound of
S0(ψ̂) would be of the form S0(ψ̂) ≤ eKT ∼ e10000, which is an incredibly
large number, larger than a googol= 10100. It would be inconceivable to
have ε < 10−100 and thus the output of an ε-weak solution would not seem
to be well defined.

However, computing the dual solution corresponding to drag and lift co-
efficients in turbulent flow at Re = 106, we find values of S0(ψ̂) which

are much smaller, in the range S0(ψ̂) ≈ 103, for which it is possible to

choose ε so that 2εS0(ψ̂) < 1, with the corresponding outputs thus being
well defined (up to a certain tolerance). We attribute the fact that ϕ̂ and
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derivatives thereof are not exponentially large, to cancellation effects from
the oscillating reaction coefficient ∇w. We shall study this aspect in model
form more closely below. However, the cancellation effects seem to be im-
possible to account for by analytical methods, because (i) knowledge of
the underlying flow velocity u is necessary and (ii) the flow velocity has a
complexity defying analytical description. The only way to get this knowl-
edge is to compute the velocity, and introducing computation, we may as
well compute the dual solution to get a computational hopefully reason-
ably accurate estimate of S0(ψ̂), instead of a using a Grönwall estimate of
no value at all. In practice, there is a lower limit for ε, typically given by
the maximal computational cost, and thus S0(ψ̂) effectively determines the
computability of different outputs.

Note that we may view Wε to be a set of possible (ε-weak) solutions
sharing a similar output up to the corresponding stability factor.

13.7 Reformulation of the Prize Problem

We now consider a couple of different possible alternative formulations of
the Prize Problem. One could simply be our formulations (P) or (P1) from
Chapter 1. It seems that these problems could only be answered on a case
by case basis, so the Prize would have to be reformulated as a collection of
say 1000 $1000 prizes, one for each case. In this book we cover a certain
number of these cases of key interest in applications.

We may compare with the following purely qualitative formulation which
could fit into a tradition of “pure” mathematics dealing with exact solu-
tions:

• (P2) What outputs of Leray’s weak solutions are unique?

In this book we present evidence indicating that (P2) is impossible to an-
swer, because of its purely qualitative nature. Instead we propose the quan-
titative formulaton (P1) involving approximate weak solutions. We could
also formulate this problem as a problem of stability or sensitivity as fol-
lows:

• (P3) Determine output sensitivity of ε-weak solutions with ε > 0,

that is, estimate the stability factor Sε(ψ̂) for ε > 0 for different flows
and different outputs (and different norms for the test functions).

We have seen above that the difference in output given by a function ψ̂ of
two ε-weak solutions is at most 2εSε(ψ̂), which reflects the output sensitiv-
ity in quantitative form. We may thus answer (P1) by answering (P3). One
may refer to (P3) as a question of weak uniqueness as a short for output
sensitivity of approximate weak solutions.
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We remind the reader again that a Leray weak solution corresponds to a
ε-weak solution with ε = 0. If S0(ψ̂) < ∞, one could in purely qualitative

form argue that εSε(ψ̂) = 0 for ε = 0, and output uniqueness of Leray

solutions would follow. However, as we said above, if S0(ψ̂) is very large,
this conclusion could be misleading, because multiplication of 0 by ∞ is ill
defined. We thus would conclude that (P2) may not be a mathematically
sound formulation, while the quantitative version (P3) should be.

In this book we thus only consider ε-weak solutions with ε > 0. In fact
the concept of an 0-weak solution does not make much sense, since already
a weak solution is some kind of approximate solution in the pointwise sense.
We may then as well choose ε > 0, and refrain from the possibly “patho-
logical” case ε = 0!

In this book we address (P1), or (P3), using adaptive finite element meth-
ods with a posteriori error estimation. As indicated above the a posteriori
error estimate results from an error representation expressing the output
error as a space-time integral of the residual of a computed solution multi-
plied by weights which relate to derivatives of the solution of an associated
dual problem. The weights express sensitivity of a certain output with re-
spect to the residual of a computed solution, and their size determine the
degree of computability of a certain output: The larger the weights are, the
smaller the residual has to be and the more work is required. In general
the weights increase as the size of the mean value in the output decreases,
indicating increasing computational cost for more local quantities. The sta-
bility factor S0(ψ̂) is a certain space-time norm of the weights, and gives a
scalar measure of the output sensitivity.

In the next chapter we present computational evidence in a bluff body
problem that the drag coefficient cD, which is a mean value in time of
the drag force, is computable to a reasonable tolerance at a reasonable
computational cost affordable on a PC, while the value of the drag force
at a specific point in time appears to be uncomputable even at a very high
computational cost.

13.8 The standard approach to uniqueness

The standard approach to uniqueness of NS solutions goes as follows: Sup-
pose û and ŵ are two classical pointwise solutions to the NS equations (4.1).
Subtracting the two versions of the NS equations, we obtain the following
equation for the difference v̂ = (v, q) = û− ŵ:

v̇ + (u · ∇)v + (v · ∇)w − ν∆v + ∇q = 0 in Ω × I,
∇ · v = 0 in Ω × I,

v = 0 on Γ × I,
v(·, 0) = u0 − w0 in Ω,

(13.11)
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Multiplying the momentum equation by v and integrating, we obtain for
t ∈ I

1

2

d

dt
‖v(·, t)‖2 + ν‖∇v(·, t)‖2 = −((v · ∇)w, v), (13.12)

where (·, ·) and ‖ · ‖ denote the scalar product and norm in L2(Ω)m for
m = 1, 3, and we used the fact that since ∇·u = 0, we have ((u·∇v), v) = 0.
Estimating the right hand side by K‖v‖2, where K as above is a point-
wise bound for ∇w, we obtain by using a Grönwall estimate the following
standard stability estimate:

‖v(·, T )‖ ≤ exp(KT )‖u0 − w0‖.

We noted above that this estimate is void of content from any practical
point of view if K is large. Now, intense efforts over many years have been
made to come up with alternative stability estimates involving only bounds
on w and not ∇w. This is possible using various Sobolev estimates as e.g
in [69], but will involve moving the derivative in ((v · ∇)w, v) instead to v
and then require using the ν-term in (13.12) in a stability estimate, and
thus bring in an exponential factor with exponent depending on negative
powers of ν, which again will be very large for high Reynolds numbers
corresponding to small ν.

There is a classical type uniqueness result of this form stating uniqueness
if w ∈ Lq(I ;Lp(Ω)) with 3

p + 2
q = 1 [69]. Since one can actually guarantee

that w ∈ Lq(I ;Lp(Ω)) with 3
p + 2

q = 3
2 , it would seem that uniqueness would

lie around the corner, but again the presence of a very large exponential
factor means that this is only an illusion.

The net result seems to be that any conceivable stability estimate of
classical type based on norm estimation of the crucial term ((v · ∇)w, v),
which does not use the oscillating character of the reaction coefficient ∇w,
would necessarily involve very large stability factors and would thus be of
no real value, according to our point of view. However, the Clay Institute
does not seem to share our concern.
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14
Weak Uniqueness by Computation

There’s no sense in being precise when you don’t even know what
you’re talking about. (John von Neumann)

Ces relations se déduisent d’ailleurs des équations de Navier–Stokes
à l’aide d’intégration par parties...j’ai pu démontrer le suivant: les re-
lations en question possédent toujours au moins une solution...Peut-
être cette solution est-elle trop peu régulière pour posséder à tout
instant des dérivées secondes bornées; alors elle n’est pas, au sense
propre du terme, une solution des équations de Navier–Stokes; je pro-
pose de dire qu’elle en constitute “une solution turbulente” (Leray
1934).

14.1 Introduction

To compute approximations of a stability factor Sε(ψ̂) defined by two ε-
weak solutions û and ŵ approximately, we replace both û and ŵ as co-
efficients in the dual problem by a computed ε-weak solution Û , such as
a finite element solution, and then compute an approximate dual velocity
ϕ̂h to get Sε(ψ̂) ≈ Sh(Û ; ψ̂) ≡ ‖ϕ̂h‖V̂ . We may then study Sh(Û ; ψ̂) as
we refine the mesh size h, and we may extrapolate to h = ν to get an
approximation of S0(ψ̂), assuming that h = ν would correspond to a small
ε. If the extrapolated value is not too large, then we would have evidence
of output uniqueness, and if the extrapolated value is very large, we would
get indication of output non-uniqueness. As a crude test of largeness it may
be natural to use S0(ψ̂) >> ν−1/2.
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If the output is a mean value, then ‖ϕ̂h‖V̂ will typically grow slowly with
decreasing h. We may take this slow growth as evidence that it is possible
to replace both û and ŵ by Û in the computation of the solution of the
dual problem: a near constancy indicates a desired robustness to (possibly
large) perturbations of the coefficients û and ŵ.

2 2.5 3 3.5 4 4.5 5 5.5

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

FIGURE 14.1. Drag D(t) (normalized) for a surface mounted cube, as a function
of time, for 5 computational meshes.

14.2 Uniqueness of cD and cL

The computational example is a bluff body benchmark problem, which is
presented in more detail in Chapter 30. We compute the mean value in time
of drag and lift forces on a surface mounted cube in a rectangular channel,
from an incompressible fluid governed by the Navier–Stokes equations (4.1),
at Re = 40 000 based on the cube side length and the bulk inflow velocity.
We compute the mean values over a time interval of a length corresponding
to 40 cube side lengths, which we take as approximations of cD and cL
defined as (normalized) mean values over very long time.

The incoming flow is laminar time-independent with horse-shoe vortex
upstream the cube and a laminar boundary layer on the front surface of
the body, which separates and develops a turbulent time-dependent wake
attaching to the rear of the body. The flow is thus very complex with a
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combination of laminar and turbulent features including boundary layers
and a large turbulent wake, see Figure 14.2.

The dual problem corresponding to cD has boundary data of unit size for
ϕh on the cube in the direction of the mean flow, acting on the time interval
underlying the mean value, and zero boundary data elsewhere. A snapshot
of the dual solution corresponding to cD is shown in Figure 14.3, and in
Figure 14.4 we plot Sh(Û ; ψ̂) as a function of h−1 for a range of adaptively
refined computational meshes, with h the smallest element diameter in the
mesh.

We find that Sh(Û ; ψ̂) shows a slow logarithmic growth, and extrapolat-

ing we find that Sν(Û ; ψ̂) ∼ ν−1/2. We take this as evidence of computabil-
ity and weak uniqueness of cD , and we obtain similar results for the lift
coefficient cL.

14.3 Non-Uniqueness of D(t)

We now investigate the computability and weak uniqueness of the nor-
malized drag force D(t) at a specific time t. In Figure 14.1 we show the
variation in time of D(t) computed on different meshes, and we notice that
D(t) for a given t does not appear to converge with decreasing h: The best
we can say seems to be that 1.3 ≤ D(t) ≤ 1.7.

We now choose one of the finer meshes corresponding to h−1 ≈ 500, and
we compute the dual solution corresponding to a mean value of D(t) over
a time interval [T0, T ], where we let T0 → T . We thus seek to compute the
point value D(T ).

In Figure 14.5 we find a growth of Sh(Û ; ψ̂) similar to |T − T0|−1/2,
as we let T0 → T . The results show that for |T − T0| = 1/16 we have

Sh(Û ; ψ̂) ≈ 10ν−1, and extrapolation of the computational results indicate

further growth of S̃0(ψ̂), as T0 → T and h → ν. We take this as evidence
of non-computability and weak non-uniqueness of D(T ).

14.4 Stability of the dual solution with respect to
time sampling

To get an idea of the dependence of stability factors on the primal solution
Û used to compute the dual solution, we sample the coefficients in the dual
problem with different frequencies in time and compute the corresponding
dual solutions. In Table 5.1 we display different norms of the dual solution
ϕ̂h and notice that different sampling frequencies give very similar stability
factors, and in Fig. 14.6 we plot snapshots of different dual solutions, again
very similar.
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FIGURE 14.2. Surface mounted cube: velocity |U | (upper) and pressure P
(lower), in the x1x2-plane at x3 = 3.5H and in the x1x3-plane at x2 = 0.5H.
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FIGURE 14.3. Surface mounted cube: dual velocity |ϕh| (upper), and dual pres-
sure |θh| (middle), in the x1x2-plane at x3 = 3.5H and in the x1x3-plane at
x2 = 0.5H.
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FIGURE 14.6. Surface mounted cube: snapshots of the dual velocity |ϕh| sampled
4 times per time unit (upper), 2 times per time unit (middle), and once per time
unit (lower), corresponding to “4”, “2”, and “1”, in Table 14.1, in the x1x2-plane
at x3 = 3.5H and in the x1x3-plane at x2 = 0.5H.
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freq. ‖ϕh‖ ‖∇ϕh‖ ‖ϕ̂h‖V̂

8 7.99 646 652
4 8.04 658 663
4∗ 8.14 679 684
2 8.23 693 698
1 8.35 744 749

TABLE 14.1. Surface mounted cube: Norms of the dual solution ϕh linearized at
a primal velocity U sampled with different frequencies (normalized by the inflow
velocity U∞ = 1), with “4∗” being a translated sampling of “4” with the same
frequency.

14.5 Conclusion

We have given computational evidence of weak uniqueness of mean values
such as cD and cL and weak non-uniqueness of a momentary value D(t)
of the total drag. In the computations we observe this phenomenon as a
continuous degradation of computability (increasing stability factor S0(ψ̂))
as the length of the time interval underlying the mean value decreases
to zero. Effectively we seem to be able to compute cD and cL up to a
tolerance of roughly 0.05 taking mean valus in time of length 10, while
the variation of a momentary value D(t) may be almost a factor 10 larger.
Thus the distinction between computability (or weak uniqueness) and non-
computability (weak non-uniqueness) may in practice be just one order of
magnitude in output error, rather than a difference between 0 and 1 (or
∞).

Of course, this is what you may expect to see in a quantified computa-
tional world, as compared to an ideal mathematical world. In particular,
we are led to measure residuals of approximate weak solutions, rather than
working with the exact weak solutions of Leray with zero residuals. A such
quantified mathematical world is in fact richer than an ideal zero residual
world, and thus may be more accessible.
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15
Existence of ε-Weak Solutions by G2

One may be tempted to believe that physical laminar flows cor-
respond to smooth mathematical solutions (of the Navier–Stokes
equations) and turbulent flows to non-smooth solutions (Oseen in
Hydrodynamik ...).

On peut vérifier en outre que l’énergie cinétique totale du liquide
reste bornée; mais il ne semble pas possible de déduire de ce fait que
le mouvement lui-même reste régulier; j’ai même indiqué une raison
qui me fait croire à l’existence de mouvements devenant irréguliers
au bout d’un temps fini; je n’ai malheuresement pas réussi à forger
un exemple d’une telle singularité (Leray 1934).

We will now discuss in a little more detail the Struggle for Exis-
tence.(Darwin)

15.1 Introduction

We now show that we may construct ε-weak solutions of the NS equations
using stabilized Galerkin finite element methods in the form of G2. We
do this in order to highlight a basic property of a G2 solution, which is
designed so as to have a a small residual in a weak sense, and thus may
pass as an ε-weak solution for a certain ε depening on the mesh size. We do
not here give full details of the formulation of G2, e.g. concerning the use
of continuous or discontinuous Galerkin for the time stepping, but focus on
the basic role of the stabilization in G2, and give a complete description of
G2 in Chapter 25.
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In the discussion of the Clay Prize Problem we commented that an alter-
native way of proving existence of ε-weak solutions is to first prove existence
for suitably regularized NS equations, which is possible using standard
methods of mathematical analysis, and to then prove that a regularized
solution passes as an ε-weak solution for some ε depending on the regular-
ization, which tends to zero with the regularization.

15.2 The Basic Energy Estimate for the
Navier–Stokes Equations

We start by deriving a basic stability estimate of energy type for the ve-
locity u of the Navier–Stokes equations (4.1), assuming for simplicity that
f = 0. This is about the only analytical a priori estimate known for the
Navier–Stokes equations. We thus formally assume existence of a (point-
wise) solution (u, p), and derive a bound for the velocity u in terms of given
data.

Scalar multiplication of the momentum equation by u and integration
with respect to x gives

1

2

d

dt

∫

Ω

|u|2 dx + ν
3

∑

i=1

∫

Ω

|∇ui|2 dx = 0,

because by partial integration (with boundary terms vanishing),
∫

Ω

∇p · u dx = −
∫

Ω

p∇ · u dx = 0

and
∫

Ω

(u · ∇)u · u dx = −
∫

Ω

(u · ∇)u · u dx−
∫

Ω

∇ · u|u|2 dx

so that
∫

Ω

(u · ∇)u · u dx = 0. (15.1)

Integrating next with respect to time, we obtain the following basic a priori
stability estimate for T > 0 in terms of the L2-norm of the initial velocity
u0:

Eν(u) ≡ 1

2
‖u(·, T )‖2 +Dν(u, T ) =

1

2
‖u0‖2, (15.2)

where

Dν(u, T ) = ν

3
∑

i=1

∫ T

0

‖∇ui‖2 dt,

and where ‖ · ‖ denotes the L2(Ω)-norm. This estimate gives a bound on
the kinetic energy of the velocity with Dν(u, T ) representing the total dis-
sipation from the viscosity of the fluid over the time interval [0, T ]. We see
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that the growth of this term with time corresponds to a decrease of the
velocity (momentum) of the flow (with f = 0).

The characteristic feature of a turbulent flow is that Dν(u, T ) is compar-
atively large, while in a laminar flow with ν small, Dν(u, T ) is small. With
Dν(u, T ) ∼ 1 in a turbulent flow and |∇u| uniformly distributed, we may
expect to have pointwise

|∇ui| ∼ ν−1/2. (15.3)

15.3 Existence by G2

To generate approximate weak solutions of the NS equations, we use a
finite element method of the form (assuming for simplicity f = 0): Find
Û ≡ Ûh ∈ V̂h, where V̂h ⊂ V̂ is a finite dimensional subspace of piecewise
polynomial functions defined on a computational mesh in space-time of
mesh size h, such that

((R(Û), v̂)) + ((hR(Û), R(v̂))) = 0, ∀v̂ ∈ V̂h, (15.4)

where R(ŵ) ≡ (R1(ŵ), R2(w)), ŵ = (w, r) and

R1(ŵ) = ẇ + U · ∇w + ∇r − ν∆w,

R2(w) = ∇ · w, (15.5)

with elementwise definition of second order terms. We here interpret a
convection term ((U · ∇w, v)) as

1

2
((U · ∇w, v)) − 1

2
((U · ∇v, w)

which is literally true if ∇ · U = 0. With this interpretation we will have
((U ·∇U,U)) = 0, which corresponds to (15.1), even if the divergence of the
finite element velocity U does not vanish exactly. With this interpretation
we obtain choosing v̂ = Û in (15.4) (still assuming f = 0):

Eν(U) + ((hR(Û), R(Û))) ≤ 1

2
‖u0‖2. (15.6)

The finite element method (15.4) is a stabilized Galerkin method with
the term ((R(Û), v)) corresponding to Galerkins method and the term
((hR(û), R(v̂))) corresponding to a weighted residual least squares method
with stabilizing effect expressed in (15.6). We also refer to this method as
General Galerkin or G2, and we thus refer to Û as a G2-solution. The ex-
istence of a discrete solution Û ≡ Ûh ∈ Vh follows by Brouwer’s fixed point
theorem combined with the stability estimate (15.6).

We now return to the main objective of this chapter of showing the
existence of ε-weak solutions to the NS equations. For all v̂ ∈ V̂ , we have
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FIGURE 15.1. Richard Courant (1888-1972) was first to introduce the finite ele-
ment method in 1922, in an existence proof of a version of the Riemann mapping
theorem. Boris Grigorievich Galerkin (1871-1945), russian engineer who intro-
duced the finite element method as a computational tool.

with v̂h ∈ V̂h a standard interpolant of v satisfying ‖h−1(v̂−v̂h)‖ ≤ Ci‖v̂‖V̂ ,
using also (15.4),

((R(Û), v̂)) = ((R(Û), v̂ − v̂h)) − ((hR(Û), R(v̂h)))

≤ Ci‖hR(Û)‖‖v̂‖V̂ +M(U)‖hR(Û)‖‖v̂‖V̂ ,
(15.7)

where M(U) is a pointwise bound of the velocity U(x, t), and Ci ≈ 1 is
an interpolation constant. It follows that the G2-solution Û is an ε-weak
solution with

ε = (Ci +M(U))‖hR(Û)‖ ≤
√
h(Ci +M(U))‖u0‖,

since from the energy stability estimate ‖
√
hR(Û)‖ ≤ ‖u0‖.

Assuming now that M(U) = M(Uh) is bounded with h > 0, and letting
Ci + M(U) ≤ C, it follows that Û is an ε-weak solution with ε = C

√
h,

assuming ‖u0‖ ≤ 1. More generally, we may say that a G2 solution Û is an
ε-weak solution with ε = C‖hR(Û)‖.

We have now demonstrated the existence of an ε-weak solution to the
NS equations for any ε, assuming that the maximum computed velocity
is bounded (or grows slower than h−1/2). More generally, we have shown
that a G2-solution Û is an ε-weak solution with ε = CU‖hR(Û)‖ with
CU = Ci + M(U). Computing Û , we can compute ε = CU‖hR(Û)‖ and
thus determine the corresponding ε.

We conclude that coming up with ε-weak solutions to the NS equations
is easy, if we use G2 and a computer (and find that CU grows slower than
h−1/2).

We now turn to the question of estimation of the error in output of G2-
solutions, which of course as above will bring in the corresponding stability
factor.

Remark. In estimating above ((R(Û ), v̂−v̂h)) we did not properly account
for the diffusion term ((ν∇U,∇(v − vh))). Doing so would introduce an
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additional term which most easily can be estimated by a term of the form
C
√
ν‖v̂‖V̂ , and to bound this term as above we would need that ν ≤ h.

Since ν often is smaller than 10−4 for the problems we focus on in this book,
this would not be restrictive in most cases. For larger ν we can turn the
argument around in a different way, but we do not here enter into details.

15.4 A Posteriori Output Error Estimate for G2

We now let û be an ε-weak solution of the NS equations and let Û be a G2-
solution, which we just showed can be viewed to be an εG2-weak solution,
with εG2 = CU‖hR(Û)‖ >> ε.

As above we get the following a posteriori error estimate for a mean-value
output given by a function ψ̂:

|M(û) −M(Û)| ≤ (ε+ CU‖hR(Û)‖)SεG2
(ψ̂), (15.8)

where SεG2
(ψ̂) is the corresponding stability factor defined as above. Ob-

viously the size of the stability factor SεG2
(ψ̂) is crucial for computability:

the stopping criterion is evidently (assuming ε small):

CU‖hR(Û)‖SεG2
(ψ̂) ≤ TOL,

where TOL > 0 is a tolerance. If SεG2
(ψ̂) is too large, or TOL is too small,

then we may not be able to reach the stopping criterion with available
computing power, and the computability is out of reach.
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16
Stability Aspects of Turbulence in
Model Problems

Merkwürdig ist auch das Versagen der Eindeutigkeitsbeweise in drei
Dimensionen. Diese Fragen sind immer noch nicht befriedigend erklärt.
Est ist schwer zu glauben das die Anfangswertaufgabe zäher Flüssigkeiten
für n = 3 mehr als eine Lösung haben könnte, und der Erledigung der
Eindeutigkeitsfrage sollte mehr Aufmerksamkeit geschenkt werden.
(E. Hopf)

16.1 The Linearized Dual Problem

We have seen that the predictability/computability of a given flow (solution
û = (u, p) of the NS equations) is determined by the stability properties
of the corresponding linearized dual problem. We may thus say that the
secret of computational modeling of turbulent flow is hidden in the stabil-
ity properties of the dual problem, which takes the following form when
linearized around the given velocity u, if we for simplicity leave out the
pressure part of the dual solution: Given ψ find ϕ such that

−ϕ̇− u · ∇ϕ+ ∇u> ϕ− ν∆ϕ = ψ on [0, T ), ϕ(T ) = 0,

where (∇u>ϕ)j =
∑3

i=1 ui,jϕi. This is a linear convection-diffusion-reaction
problem with convection velocity u and reaction coefficient matrix ∇u and
data ψ. We are interested in the stability properties of the dual problem
which concern the size of the stability factor S = ‖ϕ‖/‖ψ‖ where ‖ · ‖
represent some norms, usually different, for ϕ and ψ. The stability factor
S expresses the sensitivity of an output related to ψ.
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We now seek to estimate the size of the stability factor S for different data
ψ corresponding to different outputs. We seek qualitative understanding
and are thus ready to simplify. In reality, of course we just compute the
stability factor S and we do not need to understand anything, but we here
seek some rationale behind the computed values for S.

We then assume that the norm of ‖ϕ‖, which typically involves deriva-
tives of ϕ, can be reflected through the size of ϕ itself through the coupling
to the viscous term in the dual equation. Effectively, we may then leave
out the viscous term. Further, we note that the size of the dual solution
ϕ does not seem to be much affected by the convection, since convection
only shifts ϕ in space but does not change its size. In contrast, the reaction
term with coefficient ∇u> obviously may change the size of ϕ, and thus
may affect the size of S. We thus focus on the stability properties of the
reaction problem:

−ϕ̇+Aϕ = ψ on [0, T ), ϕ(T ) = 0,

where the matrix A = ∇u> depends on (x, t). We are interested in the
size of the dual solution ϕ for different ψ. In a turbulent flow A may have
large coefficients which may change rapidly with (x, t). In general we may
expect that the growth properties of ϕ connect to the spectrum of A with
exponential growth corresponding to eigenvalues with negative real part,
exponential decay to eigenvalues with positive real part, and oscillations
corresponding to the imaginary part of conjugate pairs of eigenvalues.

Let us now freeze x and let λi(t), i = 1, 2, 3, be the eigenvalues of A(x, t).
By (approximate) incompressibility of u and the fact that the sum of the
eigenvalues of a matrix is equal to the sum of its diagonal elements, we
have that

3
∑

i=1

Real part(λi) ≈ 0,

see Fig. 16.1, and thus we may expect that the exponential growth and
decay from the real parts of the eigenvalues will balance with no net growth,
if we let ϕ convect over different x with the convection velocity u.

It remains to understand the possible effect of the oscillating nature
coupled to the imaginary part of the conjugate eigenvalues. We shall see
that this connects to the observation that stability factors decrease as the
length of the mean values in time increases, which we could address to
cancellation in integrals of oscillating functions. We first present a model
case with a pair of conjugate imaginary eigenvalues, in which case the dual
problem for each x is just the harmonic oscillator.
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FIGURE 16.1. Sum of the real parts of the eigenvalues of ∇U , for G2 solutions
Û for a few thousand elements in the turbulent wake of a circular and a square
cylinder, from computations presented in detail in Chapter 30.
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16.2 Rotating Flow

We consider a flow corresponding to one rotating vortex tube oriented in
the x3-direction given by the stationary flow û = (u, p) such that

u(x) = ω(−x2, x1, 0), p =
ω

2
(x2

1 + x2
2),

which satisfies the NS equations with ν = 0 and f = 0, see Fig. 16.2.
Here ω is a moderately large positive number which represents the angular
rotational velocity of the vortex tube. We may think of the vortex tube
having a diameter 1/ω, and we may, very loosely speaking, think of a
turbulent flow as a collection of such rotating tubes. Recalling that the
velocity gradient of a turbulent flow would be of size ν−1/2, or h−1/2 in
a computational simulation with smallest scale h, we could expect that
ω ∼ ν−1/2 or ω ∼ h−1/2.

FIGURE 16.2. Rotational flow u(x) = ω(−x2, x1, 0), and p = ω

2
(x2

1 + x2

2).

16.3 A Model Dual Problem for Rotating Flow

The dual problem corresponding to rotating flow takes the following form
disregarding the convection term and the ϕ3 component as well as the space



16.3 A Model Dual Problem for Rotating Flow 115

dependence:

ϕ̇1 + ωϕ2 = ψ1 on (0, T ],

ϕ̇2 − ωϕ1 = ψ2 on (0, T ],

ϕ1(0) = ϕ2(0) = 0,

(16.1)

where we for simplicity reversed time with the transformation t → T − t.
This is the model of a harmonic oscillator with frequency ω driven by
the force (ψ1, ψ2). We choose ψ1(t) = 1/τ for 0 ≤ t ≤ τ , ψ1(t) = 0 for
τ < t ≤ T , and ψ2 ≡ 0, which (before time reversal) corresponds to the
output

Mτ (u1) =
1

τ

∫ T

T−τ

u1(t) dt, (16.2)

which is a mean value in time of length τ .
Writing (16.1) in matrix form as ϕ̇+Aϕ = ψ on [0, T ], ϕ(0) = 0, where

ϕ = (ϕ1, ϕ2) and A has a pair of imaginary eigenvalues ±iω, we can express
the solution ϕ(t) as a convolution of the data ψ(t) with the the fundamental
solution matrix exp(tA) of the homogeneous problem ϕ̇+Aϕ = 0, as

ϕ(t) =

∫ t

0

exp((t− s)A)ψ(s) ds.

Since exp(tA)11 = cos(ωt), we have for t ≤ τ ,

ϕ1(t) =
1

τ

∫ t

0

cos(ω(t− s)) ds =
sin(ωt)

ωτ
,

and for t > τ ,

ϕ1(t) =
1

τ

∫ τ

0

cos(ω(t− s)) ds =
sin(ωt) − sin(ω(t− τ))

ωτ
.

We now study the dependence of the magnitude of ϕ1(t) as a function
of the size τ of the mean value. We find that

|ϕ1(t)| ≈ 1 for ωτ ≤ 1,

|ϕ1(t)| ≈
1

ωτ
for ωτ large,

and we have that ϕ1(t) increases from zero with slope 1/τ as long as t <
min(τ, 1

ω ) and then levels off into oscillations, so that for ωτ large, ϕ1(t) is
much smaller than for ωτ small, see Fig. 16.3. A short mean value output
thus has a larger stability factor than a long mean value, which expresses
that a short mean value is more sensitive to perturbations than a long mean
value output.

Obviously, the reduction in size of the dual solution going from short to
long mean value comes from considerable cancellation in the integral defin-
ing ϕ1(t) as a convolution of ψ(t) with the oscillating integrand cos(ωt),
which starts coming into play when ωτ > 1 and becomes more pronounced
as ωτ grows larger.
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FIGURE 16.3. Model dual problem for rotational flow; ω = 100, τ = 0.01, 0.1, 0.5.

16.4 A Model Dual Problem for Oscillating
Reaction

To model the effect of the real parts of the eigenvalues summing to zero we
consider the scalar problem

−ϕ̇(t) + cos(t)ϕ(t) = 0, on [0, T ),

with solution

ϕ(t) = exp(sin(T − t))ϕ(T ).

Clearly, the net effect of the oscillating reaction coefficient cos(t) is very
small: ϕ(t) neither grows nor decays.

16.5 Model Dual Problem Summary

The dual problem for the NS equations is a convection-reaction-diffusion
problem in space-time of the form

−ϕ̇− u · ∇ϕ+ ∇u>ϕ− ν∆ϕ = ψ on [0, T ), ϕ(T ) = 0.

Disregarding the diffusion and following the streamlines defined by the
convection, we can view this problem as a collection of reaction problems
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in time of the form

−ϕ̇+Aϕ = ψ on [0, T ), ϕ(T ) = 0,

where A(t) is a 3×3 matrix which varies in time as ∇u>(x, t) varies along a
streamline. The real parts of the eigenvalues of A(t) sum to zero for each t,
and the imaginary parts appear as complex conjugates. We have separately
analyzed the stability properties of such a system as affected by (i) the
real parts of the eigenvalues, and (ii) the imaginary parts of eigenvalues.
Assuming the real parts to oscillate between negative and positive values,
would give no net production. Finally the effect of the imaginary parts
would by a cancellation effect make the dual solution decrease as the length
of the mean value increases. The net effect would be that the stability factor
is large for a small mean value output, and small for a large mean value
output. We now proceed to check if we can see this type of qualitative
behaviour by computing the dual solution for a turbulent flow.

16.6 The Dual Solution for Bluff Body Drag

In Fig. 16.4 we plot the dual solutions for mean values of the momentary
drag D(t) of the surface mounted cube for different lengths of the mean
values. We see that these curves behave just like the ones we just presented
for the model cases of the harmonic oscillator and the oscillating reaction
coefficient problem, except for the fact that in the bluff body problem the
dual solution is “swept out” of the computational domain after some time
resulting in a decay to zero of the dual solution for larger times. Further,
in the bluff body problem we measure derivatives of the dual solution and
thus the stability factors are larger than in the model problem, but their
relative size follow the pattern of the model.

16.7 Duality for a Model Problem

We illustrate the use of duality for error representation in the setting of
a dynamical system u̇ = f(u) on [0, T ], u(0) = 0, with f : R → R. We
consider two solutions u(t) and v(t) with different initial values u(0) and
v(0). We want to analyze the difference in output Mτ (u) −Mτ (v), where
Mτ (u) is defined in (16.2), resulting from the difference u(0)−v(0) in initial
value, assuming we solve the dynamical system for u(t) and v(t) exactly.

By integration by parts we obtain the following representation

Mτ (u) −Mτ (v) = ϕ(0)(u(0) − v(0))

where the dual solution ϕ(t) solves the linear problem

−ϕ̇+ f ′(t)ϕ = ψ on [0, T ), ϕ(T ) = 0,
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FIGURE 16.4. Surface mounted cube: time series of ‖∇ϕ‖ (with the time running
backwards), where the dual solutions corresponds to mean values of size 0.5,1,2,4.

with ψ = 1/τ on [T − τ, T ] and ψ = 0 else, and

f ′(t) =

∫ 1

0

d

ds
f(su(t) + (1 − s)v(t)) ds.

Clearly ϕ(0) is the stability factor expressing the sensitivity of the output
mean value Mτ (u) to changes in input initial value u(0). We can compute
ϕ(0) by first computing the two trajectories u(t) and v(t) forward in time,
and then solving for the dual solution ϕ(t) backwards in time to the initial
time t = 0 to get ϕ(0).

16.8 Ensemble Averages and Input Variance

Although we do not in this book consider statistical approaches to turbu-
lence, we will make a comment on ensembles of solutions corresponding
to ensembles of data. We do this to exhibit an aspect of the dual problem
which is of key importance to understand that a mean value output may be
moderatly sensitive to changes in input mean values, while it may be less
sensitive to input variance. This means that if outputs are mean values,
then we do not need information on input variance or the statistical distri-
bution of input. This is crucial since usually information on input variance
or distribution is lacking. The only thing we can hope for in such a case
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is that a mean value output such as drag is relatively insensitive to input
variance.

We consider two solution ensembles u(t; i) and v(t; i) with initial values
u(0; i) and v(0; i), i = 1, ...N , in the setting of a dynamical system u̇ = f(u)
on [0, T ], u(0) = 0, with f : R → R. For an ensemble w(i), i = 1, ..., N , we
introduce the mean value w and deviation w′(i), i = 1, ..., N , defined by

w =
1

N

N
∑

i=1

wi, w′(i) = w(i) − w,

assuming a uniform density for the ensemble. Using duality we have the
following representation for the time mean value Mτ defined above:

Mτ (u) −Mτ (v) =ϕ(0)
(

u(0) − v(0)
)

+
1

N

N
∑

i=1

ϕ′(0; i)(u′(0; i) − v′(0; i))

where for each pair u(t; i) and vi(t; i) the dual solution ϕ(t; i) solves the
linear problem

−ϕ̇+ f ′(t; i)ϕ = ψ on [0, T ), ϕ(T ) = 0,

with ψ = 1/τ on [T − τ, T ] and ψ = 0 else, and

f ′(t; i) =

∫ 1

0

d

ds
f(su(t; i) + (1 − s)v(t; i)) ds.

Here ϕ(0) is the stability factor expressing the sensitivity of the output
mean value Mτ to changes in input mean value. Further, the deviation
ϕ′(0; ·) expresses the sensitivity of the output mean value to input devia-
tion. We pay particular attention to problems with ϕ(0) being of moderate

size and the deviation ϕ′(0; )̇ being at least one order of magnitude smaller.
In such a problem output mean values would be (i) well determined from
input mean values with (ii) little dependence on input deviation. In par-
ticular, (ii) signifies that the dual solution ϕ(t; i) is relatively insensitive to
the underlying trajectories u(t; i) and v(t; i).

In this book we give evidence that many cases of turbulent flow have the
qualities (i) and (ii), see Chapter 14. Again, (ii) is important in order for
stability aspects to be insensitive to individual trajectories. In the setting
of NS equations, it is natural to view all the different solutions u(t; i) (or
v(t; i)) as members of the same set of approximate solutions Wε for some
ε > 0, and we would then expect the individual outputs Mτ (u(·; i)) to
be close to the mean value Mτ (u). To compute the output it would then
be sufficient to solve for only one trajectory. In this case it would not be
necessary to enter into the statistics of solving for many trajectories u(·; i)
and computing ensemble mean values.
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Moreover, if (ii) is valid, then in fact all the ϕ(0; i) are close to the mean
value ϕ(0). We may thus expect to be able to compute a good approxima-
tion of ϕ(0), or any of the individual stability factors ϕ(0; i), by solving the
dual problem only once with some particular choice of linearization which
would be representative.
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17
A Convection-Diffusion Model
Problem

How can it be that even if everything I do is pointwise wrong (ac-
cording to my critics), yet my mean value comes out right? (Oscar
Wilde)

17.1 Introduction

We discuss some basic aspects of G2 in the setting of a convection-diffusion
model problem. We first comment on the fact that the residual R(û) of an
ε-weak solution û necessarily is pointwise large where the flow is turbulent
and not fully resolved. In fact, a turbulent flow is characterized by the fact
that the stabilization term is not small and thus the residual large point-
wise. We then show that the least squares stabilization of G2 introduces
an artificial viscosity acting as a turbulent diffusion on smallest scales only
and therefore does not degrade the accuracy of mean value outputs.

17.2 Pointwise vs Mean Value Residuals

We have noticed above that even though the residual R(û) of an ε-weak so-
lution û of the NS equations is not small pointwise, its effect on a mean value
output M(û) may be small. We will now discover the same phenomenon
in the following scalar linear constant coefficient stationary convection-
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diffusion-reaction model problem with small viscosity ν:

u,1 + u− ν∆u = f in Ω, u = 0 on Γ, (17.1)

where Ω = (0, 1)2 with boundary Γ, u,1 = ∂u
∂x1

and f is a given (smooth)
function. The solution u = u(x) in general has an outflow boundary layer
at x1 = 1 of width ∼ ν, and characteristic layers at x2 = 0 and x2 = 1
of width ∼ √

ν. With an oscillating inflow value of u(x) at x1 = 0, the
characteristic layers may fill Ω.

Let now Vh be the standard finite element space of continuous piecewise
linear functions on a triangulation of Ω of mesh size h vanishing on Γ, and
let U ∈ Vh be a G2 solution defined by

(U,1 + U, v + hv,1) = (f, v + hv,1) (17.2)

where (·, ·) is the L2(Ω)-norm, and we assume that ν << h so that the
ν-term can be omitted in G2. Further, the stabilizing term was simplified
from h(v,1 +v) to hv,1, as in the streamline diffusion method [27]. Choosing
here v = U gives the following basic energy estimate for U :

‖U‖2 + ‖
√
hU,1‖2 ≤ (1 + h)‖f‖2 ≈ 1

where ‖ · ‖ is the L2(Ω)-norm and we assume ‖f‖ = 1. We notice that in
the case the exact solution u has layers, the stabilizing term ‖

√
hU,1‖2 will

not be small, because U,1 ∼ h−1 in an outflow layer of width ∼ h, and
U,1 ∼ h−1/2 in characteristic layers of width h1/2.

Now, if ν << h, then

R(U) ≈ U,1 + U − f

and thus by choosing v = U in (17.2)

−(R(U), U) ≈ ‖
√
hU,1‖2 >> 0,

which shows that R(U) cannot be pointwise small everwhere in Ω: We
will argue below that R(U) ∼ h−1 in outflow layers and R(U) ∼ 1 in
characteristic layers. Note that ‖

√
hU,1‖2 not small signifies the presence

of unresolved layers where R(U) is not small, which mimics the fact that
in the NS equations the stabilizing term and residual are not small in
unresolved (turbulent) regions.

Now, if we in the model problem take as output M(u) = (u, ψ), where
ψ vanishes in the layers, that is we consider only output away from the
numerical layers, then it follows by the analysis of G2 in [60], that if u is
smooth outside layers then

|M(u) −M(U)| ∼ h3/2,
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which shows that the error in certain outputs may be small even though
the residual R(U) is large pointwise in certain parts of the domain. Of
course, in the model problem this is fully understandable because by the
nature of the convection in the positive x1-direction and the smallness of
the diffusion coefficients, effects in boundary layers are not propagated into
the domain. Alternatively, we may as above in the case of the NS equations
bound the output error in terms of

‖R(U)‖H−1(Ω) ∼ ‖hR(U)‖,

which may be small (∼
√
h), even though R(U) is not small everywhere.

To understand more precisely why the residual R(U) cannot be small in
an outflow layer, we note that the exact solution u with f smooth there
satisfies

u,1 + u− f = ν∆u ∼ 1

ν
(17.3)

if u varies between 0 and 1 in the layer, so that R(u) = 0 results from
cancellation of the two terms u,1 + u1 − f and ν∆u both ∼ 1/ν. In the
numerics this cancellation cannot be realized if h >> ν, and the result is
that R(u) ≈ 1/h in the numerical outflow layer: Roughly speaking, we have
in an outflow layer

U,1 + U1 − f ∼ hU,11 ∼ 1

h
,

which is incompatible with (17.3) if h >> ν, and thus necessarily R(U) ≈
1/h in an outflow layer. A similar argument shows that we may have
R(U) ≈ 1 in a characteristic layer. We may say that the fact that R(U)
cannot be small in layers, is a necessary consequence of the underresolution
with h >> ν, which makes it impossible to numerically capture the cancel-
lation of non-small viscous and non-viscous terms present in the continuous
problem.

We sum up by noting that the underresolution with h >> ν makes it
impossible for R(U) to be pointwise small everywhere, while the fact that
‖R(U)‖H−1(Ω) is small opens for the possibility that the error in a mean
value output is small, if the dual solution is not too large.

17.3 Artificial viscosity from least squares
stabilization

The least squares stabilization in (17.2) effectively introduces the term

(U,1 + U − f, hv,1)

which involves the artificial viscosity (U,1, hv,1). The stabilizing term is
obviously small where U,1 + U1 − f is small, that is outside layers where
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the solution is smooth. The net effect of the least squares stabilization thus
is increased viscosity only in regions where the solution is non-smooth.
Similarly the G2 stabilization in NS has the effect of a turbulent diffusion
acting only on the smallest scales of the flow.

As a comparison we note that simply adding an artificial viscosity term
(U,1, hv,1) without the compensating terms in (U,1 + U − f, hv,1), intro-
duces a perturbation of order h also to smooth parts of the flow, which
significantly degrades the accuracy. Adding artificial viscosity in the form
(U,1, hv,1) corresponds to the simplest version of the classical Smagorinsky
turbulence model in NS.

The least squares stabilization in G2 thus may be viewed as a smart
Smagorinsky model (see Chapter 20), effectively introducing diffusion only
on the smallest scales of the mesh. The rationale is then that the actual size
of the smallest scale of the diffusion is insignificant for certain mean value
outputs, and thus that certain aspects of turbulent flow can be captured
on computational scales which are (much) coarser than the actual physical
scales. This reflects that our World would look the same even if the “fluid
particles” were much bigger than particles on atomic scales.
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18
Reynolds Stresses In and Out

[upon losing the use of his right eye] Now I will have less distraction.
(Leonhard Euler)

18.1 Introducing Reynolds Stresses

The traditional approach to mathematical modeling of turbulence is to
seek modified NS equations satisfied by some mean value (ū, p̄) of the
true velocity-pressure (u, p). In Reynolds Averaged Navier–Stokes equations
RANS the mean value is an ensemble mean, or a time average taken over
long time, while in Large Eddy Simulation LES the mean value is more local
in space-time. The modified equations for the mean-values are sought by
taking mean values of the NS equations to get the Averaged NS equations :

∂ūi

∂t +
∑

j(ūj ūi),j − ν∆ūi + p̄,i +
∑

j τji,j = f̄i,

∇ · ū = 0,
(18.1)

where

τji = ujui − ūj ūi

are the so-called Reynolds stresses. The idea is then to seek to model the
Reynolds stresses in terms of the mean-values (ū, p̄) in a turbulence model
(or subgrid model) to get a set of modified NS equations for the mean value
(ū, p̄). Many turbulence models have been proposed in the literature, see
e.g. [80], but all models only seem to cover the set of test problems they
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were designed for, and thus lack the generality required to be able to model
new problems and make predictions.

So, designing turbulence models of the Reynolds stresses seems to be a
very difficult if not an unsurmountable problem. But do we really need to
model the Reynolds stresses?

18.2 Removing Reynolds Stresses

Suppose that we are interested in some output M(u, p) which itself is a
mean value. Using a turbulence model we would then obtain the output
M(ū, p̄) involving two mean value operations, to be compared with M(u, p)
with only one.

Now, averaging twice seems to be one too much, but what would be
the evidence that we could live without Reynolds stresses? This would be
possible if the effect of the Reynolds stresses on the output M(u, p) would
turn out to be small. Below we shall give computational evidence that this
is true in many cases. More precisely, the computational model we use
contains a stabilizing term, which may be viewed as a simple turbulence
model, and we shall give evidence that the exact nature of this model
has little effect on mean-value outputs. The net result is that very crude
modeling of the Reynolds stresses seems to be sufficient in many cases
of practical importance. We expand on this aspect in the next chapter.
This means that we do not have to introduce any Reynolds stresses at all,
nor model them, even if the flow is turbulent! The stabilizing term in the
computational model will handle all that automatically! In particular, we
settle directly for computing the mean value M(u, p) and avoid introducing
the double mean value M(ū, p̄).

Obviously, avoiding Reynolds stresses greatly simplifies computional tur-
bulence modeling, since any chosen known turbulence model could be ques-
tioned on very good grounds.
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19
Smagorinsky Viscosity In and Out

The lateral transfer of momentum and heat by the non-linear dif-
fusion, which parametrically is supposed to simulate the action of
motions of sub-grid scale, accounts for a significant portion of the
total eddy transfer. Although no direct comparison with the cor-
responding transfer in the real atmosphere is available, intuitively
our small-scale diffusion appears to play too large a role. (Joseph
Smagorinsky, 1963)

19.1 Introducing Smagorinsky Viscosity

The classical Smagorinsky eddy viscosity turbulence model [83] for the in-
compressible NS equations is obtained by replacing the given constant vis-
cosity ν by the artificial turbulent eddy viscosity

ν̃ = ν + Ch2|∇ū|,

where ũ is the velocity of the NS equations with viscosity ν̃, h represents
a smallest scale and C ∼ 0.01. The Smagorinsky turbulence model thus
introduces an additional non-linearity since ν̃ depends on the velocity ũ.
The model may also be formulated with ε(ũ) replacing ∇ũ, and the constant
may be changed, possibly with feed back from ũ in a dynamical model, see
([32]).
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The energy estimate for the NS equations with the Smagorinsky turbu-
lence model gives a bound for the term

∫ T

0

Ch2‖∇ũ‖3 dt,

which indicates that in regions of turbulence |∇ũ| ∼ h−2/3. This is consis-
tent with a smallest scale ∼ h on which the change of ū is ∼ h1/3, which fits
with the Kolmogorov prediction that turbulent velocities are Hölder contin-
uous with exponent 1/3 [31]. Thus h would indeed represent the smallest
scale of the turbulent velocity ū in the Smagorinsky model. Effectively,
the Smagorinsky turbulence model would thus change the smallest scale
from ν3/4 without model to h, assuming h > ν3/4. Further, we may expect
the turbulent viscosity ν̃ ∼ h4/3 in turbulent regions with local Reynold
number ∼ h1/3h/h4/3 ∼ 1.

The Smagorinsky model is the simplest turbulence model and as such
seems to behave reasonably well, e.g. in the sense that it is consistent with
the Kolmogorov estimates. The Smagorinsky model increases the effective
viscosity in regions of turbulence and thereby removes the finest scales of
the original flow, but it also affects coarser scales because of its action
through a Laplacian. to minimize the action of Smagorinsky on coarser
scales, variants of Smagorinsky may be contemplated with more focussed
action only on smallest scales [57].

We recall that the shock-capturing artificial viscosity of G2 adds viscosity
in the form Ch2|R(Û)|, which is very similar to Smagorinsky with R(Û)
replacing ∇U in similarly increased viscosity in turbulent regions. This
similarity is no coincidence, since Smagorinsky developed his model inspired
by the work of von Neumann and Richtmyer on artificial dissipation for
stabilization of numerical methods [63].

Now, numerical methods for the NS equations often are augmented by
e.g. the Smagorinsky turbulence model, following the idea that the numerics
alone will not be capable of modeling turbulence. Doing so the parameter
h in the Smagorinsky model would correspond to the smallest mesh size
in the numerics. In this approach turbulence modeling and stabilization
of numerics are considered as separate issues, and thus the total artificial
viscosity will have a contribution from Smagorinsky artificial vicosity and
a contribution from the artificial viscosity needed to stabilize the numerics.
The question of the relative size of these contributions then arises; if one
dominates the other the dominated viscosity could be removed.

We will now advocate that the Smagorinsky artificial viscosity is too weak
to stabilize the numerics, which effectively means that the artificial viscosity
from least squares stabilization usually will dominate Smagorinsky, at least
on the finest scales where dissipation is needed. Another way to see this is to
recall that shock-capturing alone is not sufficient to stabilize the numerics
very well; least squares stabilization is always needed, and shock-capturing
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FIGURE 19.1. Joseph Smagorinsky (1924-2005) and John von Neumann
(1903-1957).

only in extreme cases. The net result is that Smagorinsky has as little
role to play in least squares numerics, and no role at all if the numerics is
augmented with shock-capturing.

19.2 Removing Smagorinsky Viscosity

We have seen that Smagorinsky viscosity may be of size h4/3, which should
be compared with h in the least squares stabilization. The Smagorinsky
viscosity thus seems to be dominated by the least squares viscosity, at least
on the finest scales where the dissipation is needed.

As indicated, one may pose the question if Smagorinsky may replace the
least squares stabilization, so that Smagorinsky alone would be enough to
both model turbulence and stabilize the numerics. Following this line of
thought we thus consider a method for solving the NS equations based on
Galerkin combined with Smagorinsky. By the analysis of G2, leaving out
the least squares term, we would then be led to estimate a term of the
form ‖hR(Û)‖. Using the available stability from the Smagorinsky model
we would end up with an esimate of the form ‖hR(Û)‖ ≤ Ch1/3 to be
compared with the corresponding G2 estimate with instead h1/2. Thus, it
would seem that Smagorinsky alone could work, but not as well as G2, the
difference being a factor h1/6. This may seem pretty small but may precisely
be what is needed to get that one correct decimal in the computational
output which is possible to get for turbulent flow. Changing from h1/2 to
h1/3 would increase the required number of mesh points in space for the
same accuracy from N to N3/2, thus e.g. from 106 to 109, that is with a
factor of 1000.

Our computational experience indeed shows that Smagorinsky alone is
not sufficient to give good numerics, and that if good numerics such as G2
is used, then Smagorinsky has little role to play. The net result is that we
see no reason to use Smagorinsky in conjunction with G2.
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20
G2 for Euler

As an older friend I must advice you against it for in the first place
you will not succeed, and even if you succeed, no one will believe
you. (Planck to Einstein about the General Theory of Relativity)

Complex spatial structures have never been observed in numerical
simulations of inviscid flow with smooth initial conditions. (Frisch in
Turbulence 1995)

The well-posedness of the Euler equations is one of the most chal-
lenging questions of the present time for both the mathematician
and the numerical analyst. (Saffman 1981)

Although this may seem a paradox, all exact science is dominated
by the idea of approximation. (Bertrand Russel)

20.1 Introduction

We recall the Euler equations (4.2) for incompressible inviscid flow:

u̇+ (u · ∇)u+ ∇p = f in Ω × I,
∇ · u = 0 in Ω × I,
u · n = 0 on Γ × I,

u(·, 0) = u0 in Ω.

(20.1)

The Euler equations are formally reversible: Changing the sign of time t and
the velocity u, obviously leave the equations unchanged. In particular, if û
is a solution to the Euler equations with initial velocity u0 at time t = 0 and
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final value û(T ) at time t = T , then the function v̂(t) = (−u(T−t), p(T−t))
satisfies Eulers equations for t ∈ (0, T ] with initial data v(0) = −u(T ) and
final velocity v(T ) = −u(0). Thus, reversing the velocities u(T ) and letting
time pass backwards, would bring back the velocities to −u(0) from −u(T ).

The basic energy estimate (15.2) with ν = 0 states that the total kinetic
energy 1

2‖u(t)‖2 of a pointwise solution û of (20.1) with ‖ · ‖ the [L2(Ω)]3-
norm, stays constant if f = 0:

1

2
‖u(T )‖2 =

1

2
‖u(0)‖2, (20.2)

which follows by multiplication of the momentum equation by u and in-
tegration. Thus it appears that a system governed by the Euler equations
allows the design of a perpetuum mobile by (somehow) reversing the veloc-
ity at t = 0 and t = T , corresponding to a system bouncing back and forth
for ever. We conclude that if the Euler equations admit a pointwise solu-
tion with pointwise zero residual, then that solution would be reversible
and represent a perpetuum mobile of the first kind, which is a machine
running for ever without consuming any energy. On the other hand, NS
would not allow such a design because kinetic energy would be lost to the
ν-term in the energy balance (15.2), and turned into heat.

We further recall d’Alemberts Mystery stating that a bluff body, subject
to inviscid flow described by the Euler equations, has zero drag. Both a
perpetuum mobile and a bluff body with zero drag are at variance with
observations, and something seems to be seriously wrong with the Euler
equations. But what could it be, since they after all just express Newton’s
2nd Law and incompressibility? Prandtl blamed the assumption of invis-
cid flow with ν = 0, but we have instead pointed to the instability of any
exact solutions of the Euler equations developing into turbulent approxi-
mate solutions. In particular, any conclusion made from an assumption of
existence of an exact pointwise solution may be completely wrong, includ-
ing the energy conservation (20.2) and d’Alembert’s computations of zero
drag.

We have claimed that non-existence of pointwise solutions of the Euler
equations follows from the observation that solutions to the Navier-Stokes
equations in general are turbulent if ν is small, and that it is unthinkable
that these turbulent solutions could converge to a pointwise solution of the
Euler equations as ν tends to zero. The reason is that as we let ν tend to
zero, the corresponding Navier-Stokes solutions develop ever finer scales of
turbulence which is incompatible with convergence to a pointwise solution
of the Euler equations. If the Navier-Stokes solutions had stayed laminar
as ν tends to zero, pointwise convergence would have been possible, but
Navier-Stokes solutions invariably become turbulent if ν is small, and thus
convergence simply cannot take place. We thus have clear evidence that in
general pointwise solutions of the Euler equations are non-existent. For an
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account of the analytical mathematical struggle to come to grips with the
Euler equations, we refer to [23] and references therein.

20.2 Euler/G2 as a Model of the World

If now the Euler equations lack stable pointwise solutions, does it mean
that we have to regard the Euler equations as useless? In fact not; we shall
see that nevertheless G2 can compute approximate weak turbulent solu-
tions, which may supply useful information in cases of very large Reynolds
numbers. G2 will thus automatically compute turbulent solutions with sta-
ble mean value output, instead of unstable pointwise solutions without
meaningful output.

An intriguing aspect of the Euler equations is that no physical constant
is involved: In the NS equations the value of the viscosity ν has to be sup-
plied, and the determination of ν either matematically or experimentally
may be very difficult, while we simply put ν = 0 in Euler, and we may
assume the remaining data f , u0, Ω and T to be known. We show below
that nevertheless we can by G2 compute outputs of physical significance
for Euler. This means that Euler/G2 may be viewed as a universal math-
ematical model of the World, which is fully self-contained, up to the mesh
size parameter h in G2. Below we show that outputs like drag may have
a weak dependence on h, if only h is small enough. This indicates that
the self-contained mathematical model Euler/G2 could be identified with
(a part of) the World, which may be viewed as the end goal of mathe-
matical modeling following the spirit of the late Einstein. We remark that
Einstein’s equations contain a (unknown) “cosmological constant” possi-
bly connecting to the “dark matter/energy”, which physicists today seek
to detect.

FIGURE 20.1. Max Karl Ernst Ludwig Planck (1858-1947) and Albert Einstein
(1879-1955).
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20.3 Solution of the Euler Equations by G2

G2 for the Euler equations takes the form (15.4) with ν = 0 and chang-
ing the velocity boundary conditions in V̂h from no-slip to slip boundary
conditions (assuming also that f = 0). The basic energy estimate for the
corresponding G2 solution Û reads:

1

2
‖U(T )‖2 + ‖

√
hR(Û)‖2

Q =
1

2
‖U(0)‖2, (20.3)

where ‖ · ‖Q is the L2(Q)4-norm with Q = Ω × I . The least squares term

‖
√
hR(Û)‖2

Q corresponds to the the viscous term Dν(u, T ) in the energy
estimate (15.2) for the Navier–Stokes equations. We shall see that in case
of turbulence, the least squares term is not small, while it is for a laminar
solutions.

Similarly, we may obtain an a posteriori error estimate for a certain
output M(Û) such as drag or lift. Since an exact solution û is missing, we
then estimate the difference in output of two different G2 solutions Û and
Ŵ on different meshes as follows:

|M(Û) −M(Ŵ )| ≤ S(‖hR(Û)‖Q + ‖hR(Ŵ )‖Q),

where h represents the mesh size of the corresponding residual respectively,
and S represents a stability factor obtained by solving a dual problem. We
can thus estimate the difference in output between two different G2 solu-
tions in terms of their residuals multiplied with a certain stability factor.
Below we compute bluff body drag for Euler, which is shown to be close to
the drag for NS with large Reynolds number.

The evidence in G2 of non-existence of a pointwise Euler solution is
that ‖R(Û)‖Q is not small, while ‖hR(Û)‖Q may be small. Typically,

‖R(U)‖Q ∼ h−1/2, reflecting that the least squares term ‖
√
hR(Û)‖Q has

a significant contribution in the energy balance (20.3).
Notice that it is the combination of Galerkin and weighted least squares

that produces a reasonable compromise in the case when a pointwise so-
lution is impossible. Only least squares will not work because the residual
cannot be small in the L2(Q)-norm, and from only the knowledge that the
residual is large nothing can be concluded. Further, only Galerkin will not
work either because the residual control is too weak to produce any sensible
output. It is only the combination of Galerkin and weighted least squares
that works. The evidence of success is the presence of the factor h in the
expression ‖hR(Û)‖ and the fact that by (15.6), we have ‖hR(Û)‖ ≤

√
h

if ‖u0‖ = 1. In a pure least squares method the factor h in front of R(Û)
would be missing, and in pure Galerkin one may have R(Û) ∼ 1/h and
thus ‖hR(Û)‖ ∼ 1. Thus neither extreme case can work in general.
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20.4 Drag of a Square Cylinder

As a basic example we consider the problem of computing the drag of
a square cylinder of diameter D = 0.1 centered at x = (0.5, 0.7, 0.2) and
oriented in the x3-direction in a channel of dimension 2.1×1.4×0.4 oriented
in the x1-direction, subject to a uniform inflow velocity (1, 0, 0). We use
slip boundary conditions both on the cylinder and the channel walls. We
use a locally refined tetrahedral mesh with 86 904 mesh points, shown in
Fig. 20.2. The advantage of using a square cylinder, instead of the circular
cylinder studied in Chapter 11 above, is that the separation points occur
at the upstream corners and thus do not change position with decreasing
viscosity or mesh size.

We first determine an (approximate) stationary irrotational solution, not
by solving the Euler equations, but looking for a stationary velocity u = ∇φ
given by a potential φ(x1, x2, x3), where φ = φ(x1, x2, x3) is constant in x3

and solves Laplace’s equation ∆φ = 0 in the domain of the fluid with
∇φ · n = 1 at inflow, ∇φ · n = −1 at outflow, and with homogeneous
Neumann conditions ∇φ ·n = 0 on the channel walls and the cylinder, with
n the outward unit normal. Such a velocity u = (u1, u2, 0) is irrotational,
and since the rotation of (u·∇)u vanishes (and by symmetry the circulation
∫

Γ u · ds = 0 with Γ the intersection of the cylinder with the x3 = 0 plane),
there is a pressure p such that (u ·∇)u+∇p = 0. In other words, û = (u, p)
is a stationary laminar solution of the Euler equations with irrotational
velocity u and with u · n = 0 on the channel walls and the cylinder surface
with approximately equal inflow and outflow velocities (since u2 and u3 are
small on inflow and outflow). The drag of û is close to zero by the above
argument.

Thus û represents a laminar solution with pointwise residual close to zero
and with close to zero drag. By increasing the length of the channel, we
can reduce the pointwise residual to any size. Alternatively, by taking the
inflow velocity equal to that given by the potential φ, we have an exact
solution to Euler equations with close to zero drag.

In practice we compute φ by solving ∆φ = 0 using piecewise linear
finite elements in the three-dimensional fluid volume, and then associate
a corresponding piecewise linear velocity U 0 = ∇φ by interpolation of
the piecewise constant ∇φ to the nodes in the mesh. This produces an
approximate potential solution Ũ0 with R(Ũ0) being small pointwise except
close to the edges of the cylinder.

We compute an approximate solution Û = (U, P ) to the Euler equa-
tions with initial velocity and inflow data given by Ũ0 using G2 in the
form cG(1)cG(1) with continuous linear trial functions in space-time (see
Chapter 25). We find that the computed velocity U(t) remains equal to
Ũ0 only for a few time steps, then develops non-symmetry in x1 while
maintaining two-dimensionality after which it successively develops into
a fully three-dimensional turbulent solution which is far from irrotational.
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This turbulent solution is similar to the turbulent solution of Navier-Stokes
equations with small viscosity and with no slip boundary conditions on the
cylinder presented in [51, 41]. For Euler we compute the drag coefficient to
2.2, which is close to the value 2.1 obtained for Navier-Stokes with viscosity
ν = 10−6.

In Fig. 20.3-20.4 we plot (U, P ) the solution for the first few time steps,
using a very small time step of size 0.1 times the smallest element diam-
eter in the mesh. We find that the instability of the the initial symmetric
solution U(0) = ∇φ is first expressed in a fluctuating pressure until a high
pressure in front of the cylinder is established, which initializes the devel-
opment of a non-symetric velocity eventually going turbulent.

In Fig. 20.5-20.9 we show results starting with zero initial velocity, using
now time steps of the same size as the finest element diameter in the mesh.
We find again the potential solution during the first few time steps with
the same development into a turbulent solution.

FIGURE 20.2. Computational mesh in the x1x2-plane (upper) and the x1x3-plane
(lower).
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20.5 Instability of the pointwise potential solution

We also illustrate the instability of the potential solution by solving the
dual Euler equations, linearized at the potential solution and the developed
turbulent flow respectively. We use as data to the dual problem a source
term in the dual velocity equation being a characteristic function over a
cube in space of side length 0.025 centered at (0.6,0.7,0.2), times 0.025−4.
The source term acts over a time interval of length 0.025 from the final
time (start time in the dual equation), corresponding to the computation
of a small space-time mean value at final time.

In Fig. 20.10 we find that the dual solution corresponding to lineariza-
tion at the potential solution grows exponentially, whereas linearized at
the turbulent solution the dual solution shows a slow growth followed by
decay to zero. This reflects the instability of the potential solution, being
extremely sensitive to perturbations at earlier times, and the destruction
of information in the turbulent flow making the solution insensitive to per-
turbations with respect to the mean value output. We plot the two dual
solutions in Fig. 20.11-20.12.

20.6 Temperature

The total energy e is the sum of the kinetic energy 1
2 |u|2 and the internal

energy i:

e =
1

2
|u|2 + i, (20.4)

where the internal energy i represents heat, which we may assume to be
proportional to the temperature. Conservation of the total energy e is ex-
pressed by the conservation law

ė+ ∇ · (eu+ pu) = 0 in Q, (20.5)

which we can also write:

Dui = −Du

(1

2
|u|2

)

−∇p · u ≡ E(u, p) in Q, (20.6)

where Duv = v̇ + (u · ∇)v is the convective derivative of v based on the
velocity u. We note that for a pointwise solution (u, p) of (20.1) with f = 0,
we have E(u, p) = 0, which follows by multiplication of the momentum
equation by u. However, we know that (stable) pointwise solutions do not
exist, so we cannot say that E(u, p) = 0.

Nevertheless, having computed û = (u, p) from the incompressible Eu-
ler equations, we can solve for the total energy e in the linear equation
(20.5) with u and p given, to obtain the internal energy/temperature i
from (20.4), assuming i0 = 0. Alternatively, we can solve for the internal
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FIGURE 20.3. Magnitude of the computed velocity from initial data U(0) = ∇φ,
for time steps no 1,2,4,5,6,7,20,37.
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FIGURE 20.4. Computed pressure correspondig to the initial data U(0) = ∇φ,
for time steps no 1,2,4,5,6,7,20,37.
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FIGURE 20.5. Magnitude of the computed velocity corresponding to zero initial
data, for time steps 2,4,5,6,7,8,16,32.
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FIGURE 20.6. Magnitude of the computed velocity corresponding to zero initial
data, for time steps 48,64,96,128,160,704,960,1024.
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FIGURE 20.7. Pressure corresponding to zero initial data, for time steps
2,4,5,6,7,8,16,32.
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FIGURE 20.8. Pressure corresponding to zero initial data, for time steps
48,64,96,128,160,704,960,1024.
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FIGURE 20.9. Magnitude of the vorticity corresponding to zero initial data, for
time steps 48,64,96,128,160,704,960,1024.
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FIGURE 20.10. The L2-norm of the dual velocity (left) and dual velocity gradient
(right), linearized at U(0) = ∇φ and turbulent flow respectively.

FIGURE 20.11. Dual velocity |ϕ|, linearized at U(0) = ∇φ, for time
t = 18, 17.75, 17.5, 17.
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FIGURE 20.12. Dual velocity |ϕ| linearized at turbulent flow, for time
t = 18, 17.75, 17.5, 17.



20.7 G2 as Dissipative Weak Solutions 147

energy i in (20.6) with the right hand side E(u, p) given. In Fig. 20.13 we
show the computed total energy, and in Fig. 20.14 we show the correspond-
ing temperature starting from zero temperature at initial time and letting
the inflow temperature be equal to zero. We notice that the temperature
is elevated in the turbulent wake, with the heat being generated by the
turbulent dissipation (represented by the weighted least squares term in
G2). We notice that the generated heat is transported by the turbulent
velocity u in a process of turbulent diffusion of heat, which most likely will
dominate any molecular diffusion of heat (which we effectively set to zero
in the computation). We are thus able to compute a temperature distri-
bution in a turbulent flow with the only information that the coefficients
of viscosity and molecular heat diffusion are very small. This is very good
news since precise quantitative determination of very small viscosities or
heat conductivitities is very difficult both theoretically and experimentally.
From the computations we get the message that the precise values of these
(small) quantities are irrelevant, if the quantities of interest are certain
mean values.

20.7 G2 as Dissipative Weak Solutions

The computations above show that the internal energy i is non-negative,
which we may connect to the sign of the right hand side E(u, p) in (20.6):
If E(u, p) ≥ 0 in Ω × I , then necessarily i ≥ 0 if i0 = 0 in Ω × I . More
precisely, (20.6) states that i can then only increase following the flow. So
can we guarantee that a G2 approximate weak solution (U, P ) satisfies (in
a suitable weak sense)

E(U, P ) ≥ 0 in Q?

Yes, we can prove that
∫

Q

E(U, P )φ dxdt ≥ −C
√
h, (20.7)

for any non-negative test function φ, where C is a positive constant de-
pending on φ. We give a proof below.

The same question is similarly addressed by Duchon-Robert in [25], in-
troducing the notion of a dissipative weak solution (u, p) to the Euler equa-
tions, which is a function (u, p) satisfying the Euler equations in a weak
sense, and in addition satisfies the positivity condition E(u, p) ≥ 0 in Q in a
weak sense. The discussion starts from the observation that a strong (point-
wise) solution (u, p) satisfies E(u, p) = 0 pointwise, as we remarked above.
Further, the observation is made that a limit (u, p) of the Navier-Stokes
solutions (uν , pν) as the viscosity ν tends to zero, will satisfy E(u, p) ≥ 0
weakly, as a consequence of multiplying the momentum equation in Navier-
Stokes by uνφ with φ(x, t) a non-negative test function and integrating, to
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FIGURE 20.13. Total energy e, for time t = 4, 4.5, 5, 5.5, 6, 11, 15, 16.
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FIGURE 20.14. Internal energy i = cvθ, for time t = 4, 4.5, 5, 5.5, 6, 11, 15, 16.



150 20. G2 for Euler

2.5 3 3.5 4 4.5 5 5.5
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

FIGURE 20.15. The mean value of the dissipation intensity of G2 in the turbulent
wake of the flow around a surface mounted cube (see Chapter 30), vs log

10
of the

number of mesh points.

get
∫

Q

E(uν , pν)φ dxdt =

∫

Q

ν|∇u|2φ dxdt +
∑

j

∫

Q

νuj∇uj · ∇φj dxdt,

and noting that by the basic energy estimate (15.2)

∑

j

∫

Q

νuj∇uj · ∇φj dxdt → 0,

as ν tends to zero. We thus have for small ν

E(uν , pν) ≈ ν|∇u|2 in Q, (20.8)

that is, E(uν , pν) is in fact approximately equal to the the intensity of the
viscous dissipation ν|∇u|2. In particular, we expect that E(uν , pν) > 0 for
a turbulent flow with substantial turbulent dissipation.

In this context, we recall Kolmogorov’s conjecture that the intensity of
the turbulent dissipation should have a finite limit as ν tends to zero. By
computation we should be able to check if this is true; preliminary results
indicate that Kolmogorov may be largely right, see Fig. 20.15.

So even if the existence of weak solutions to the Euler equations cannot
be proved, Duchon-Robert propose that it may be reasonable to require a
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weak solution (u, p) of Euler to satisfy E(u, p) ≥ 0 in Q in a weak sense.
The rationale is that limits of NS solutions satisfy this condition, as we
just demonstrated, and therefore “physical solutions” should satisfy this
condition. The proof below that G2 satisfies a variant of the same condition
mimics the proof for NS just given. As indicated above, we have strong
reasons to believe that (stable) weak solutions to the Euler equations do
not exist, and thus that the notion of dissipative weak solution to Euler
may not be useful, but the notion of approximate dissipative weak solution
is.

20.8 Entropy, G2 and Physics

We can view E(u, p) ≥ 0 to express an entropy condition stating that
kinetic energy may be turned into internal energy, that is Dui ≥ 0, but
internal energy cannot be converted back again, that is, we can never have
Dui < 0 with strict inequality. Once kinetic energy has been turned into
internal energy it is “lost” and cannot be retrieved. This is a property of
incompressible flow, where no energy can be stored by compression.

Using (20.8) we can reformulate the basic energy estimate for NS (15.2)
as follows:

1

2
‖uν(T )‖2 +

∫

Q

E(uν , pν) dx dt ≈ 1

2
‖u0‖2, (20.9)

indicating that for a dissipative weak Euler solution actually

1

2
‖uν(T )‖2 <

1

2
‖u0‖2, (20.10)

with substantial loss of total kinetic energy. A G2 solution will of course
have the same property by the basic energy estimate (20.3), but satisfies
the stronger more local positivity condition (20.7).

This reflects the general fact that kinetic energy can be turned into heat
by (some kind of) friction, but cannot be (fully) retrieved. A stone dropped
to the ground gets heated up, but cannot lift itself by cooling off.

The important observation is thus that an approximate G2 solution
(U, P ) to the Euler equations approximately satisfies the entropy condition
E(U, P ) ≥ 0 in Q in a weak sense. We may interprete this as a statement
that “G2 follows Physics”. Below we will turn this around and ask if in
fact instead “Physics follows G2?

We shall in a forthcoming volume on compressible flow meet the same
question with a different notion of entropy.
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FIGURE 20.16. Streamlines for the potential solution of a circular cylinder.

20.9 Analysis of Instability of the Potential
Solution

We have given computational evidence by G2 that the potential solution
to the Euler equations is unstable. We shall now give analytical evidence
of this instability in the model case of flow around a circular cylinder.
We thus focus on the potential solution with velocity u(x) given as the
gradient of the real part φ(x1, x2) = (r+ 1

r ) cos(θ) of the analytic function
w = z+ 1

z with z = x1 + ix2, see Fig. 20.16. The stability is governed by (i)
the linearized Euler equations (8.1), (ii) the dual linearized problem (13.4)
with ν = 0, or (iii) the vorticity equations (20.11):

ω̇ + (u · ∇)ω − (ω · ∇)u = 0 in Ω × I, (20.11)

which we may view as a linear convection-reaction equation for the propa-
gation of the vorticity ω with the fluid velocity u being given. In all cases
(i)-(iii) the crucial term is the reaction term with ±∇u acting as coefficient
in a linear convection-reaction problem. We now compute ∇u near the rear
separation point B given by z = 1. We then write

w(z) = z − 1 + 1 +
1

z − 1 + 1
≈ 1 + (z − 1)2

and thus have

φ(x1, x2) ≈ (x1 − 1)2 − x2
2

and

u(x) ≈ (2(x1 − 1),−2x2, 0)
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and thus the vorticity equation takes the following approximate form close
to B:

ω̇1 + (u · ∇)ω1 = 2ω1

ω̇2 + (u · ∇)ω2 = −2ω2

ω̇3 + (u · ∇)ω3 = 0

(20.12)

We see that ω1 is exponentially increasing with rate exp(2t), which indicates
that the potential flow solution is exponentially unstable.

The same analysis applies to the circular cylinder (without sharp corners)
presented in Chapter 11.

20.10 Proof that Euler/G2 is a dissipative weak
solution

Choosing v̂ = (φÛ )h ∈ V̂h in Euler/G2 according to (15.4), where φ is a
positive test function and the index h indicates interpolation into V̂h, we
get assuming Û is bounded

∫

Q

E(Û)φ dxdt = ((hφR(Û), R(Û)) + ((R(Û ), φÛ − v̂))

+((hR(Û), R(φÛ ) −R(v̂))) + R̃,

where R̃ ≥ −C
√
h with C > 0 depending on first derivatives of φ and the

max of Û . We now use so-called superapproximation to obtain

‖φÛ − v̂‖ ≤ Ch‖Û‖

with the notable feature that we gain one power of h without paying any
first derivative price on Û . This is because φÛ is the product of a smooth
function and a function in the finite element space V̂ . Combined with the
basic energy estimate bounding ‖

√
hR(Û)‖, it follows that

∫

Q

E(Û)φ dxdt ≥ −C
√
h

which proves that G2 is a weak dissipative solution, as desired. This repre-
sents one of the most important proofs in the book. Notice that we assume
Û to be bounded but not derivatives of Û , which would make the proof
meaningless.
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21
Resolution of Loschmidt’s Mystery

There are great physicists who have not understood it. (Einstein
about Boltzmann’s statistical mechanics)

There is apparently a contradiction between the law of increasing
entropy and the principles of Newtonian mechanics, since the latter
do not recognize any difference between past and future times. This
is the so-called reversibility paradox (Umkehreinwand) which was
advanced as an objection to Boltzmann’s theory by Loschmidt 1876-
77. (Translators foreword to Lectures on Gas Theory by Boltzmann).

21.1 Irreversibility in Reversible Systems

In this chapter we present a new approach to resolving Loschmidt’s Mystery
of irreversibility in reversible Hamiltonian systems. We base our solution
on finite precision computation in the form of G2 instead of the standard
approach of statistical mechanics, which we commented on in Chapter 12.
We thus stay within a deterministic Hamiltonian framework and only add
a restriction of finite precision G2 computation, and we do not use any
form of statistics. A World governed by Hamiltonian mechanics combined
with finite precision G2 computation, follows the laws of mechanics as far
as possible taking the finite precision into account, but is not based on
any microscopic game of roulette as statistical mechanics. The difference
of scientific paradigm is fundamental.
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21.2 Euler/G2 as a Model of Thermodynamics

As a model we consider the Euler equations for incompressible inviscid flow,
which is a formally reversible Hamiltonian system expressing conservation
of mass, momentum and energy. We thus consider G2 for the Euler equa-
tions (20.1) augumented with the energy equation (20.5) (assuming f = 0
and no heat conduction).

We recall from the previous chapter that a basic property of an Euler/G2
weak approximate solution Û is that in a weak sense E(Û ) ≥ 0, which
expresses the 2nd Law of Thermodynamics: Since by (20.6) we have in a
weak sense

DU I = E(Û ) ≥ 0

where here I is the Euler/G2 internal energy (heat energy), which expresses
that internal energy once generated cannot be retrieved back into kinetic
energy. For turbulent solutions we have DUI > 0 with strict inequality,
which means that in a turbulent flow necessarily internal energy is gener-
ated, which cannot be retrieved.

Euler/G2 thus gives a model for thermodynamics, where the 2nd Law is
a a consequence of the basic laws of conservation of mass, momentum and
energy. This is a model where the mystery of the 2nd Law has dissappeared!
The reason time is moving foreward is that necessarily flows become turbu-
lent and turbulent flows dissipate kinetic energy into internal heat energy
which cannot be retrieved. We conclude that the reason a perpetum mo-
bile cannot be constructed is the fact that inviscid flow necessarly always
becomes turbulent with kinetic energy dissipating into heat, which cannot
be retrieved.

We have thus resolved Loschmidt’s Mystery in a Euler/G2 model of
thermodynamics. We extend to compressible flow and kinetic gas theory in
[53, 47, 48, 49, 50]. Altogether this gives a theoretical basis of thermody-
namics where the crucial 2nd Law is a consequence of the 1st Law combined
with G2 finite precision computation.

21.3 Euler/G2 vs Physics

Finite precision G2 computation of course appears in digital solution of the
differential equations of deterministic mechanics, but it necessarily also has
to appear in some form in the analog computation performed in the physics
of the real World. We may analyze the consequences of finite precision
computation of digital solution, and then seek to find G2 analogs in physics
following the device of the computer scientist Dijkstra: “Originally I viewed
it as the function of the abstract machine to provide a truthful picture
of the physical reality. Later, however, I learned to consider the abstract
machine as the true one, because that is the only one we can think ; it is
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the physical machine’s purpose to supply a working model, a (hopefully)
sufficiently accurate physical simulation of the true, abstract machine”.

Notice that G2 is not just any model with finite precision, but a model
with specific properties of satisfaction of the basic laws of Newtonian me-
chanics. This makes it more interesting to follow the idea of Dijkstra.

21.4 The World as a Clock with Finite Precision

This brings us back to a deterministic World as a giant Clock in the spirit of
Laplace, but our Clock has G2 finite precision and that changes the game.
In particular, it takes us out of the classical paradox of the existence of
free will in a deterministic World. With finite precision computation, the
future is no longer fully determined pointwise by the present, and there is
room for something like a free will. And there are necessarily irreversible
processess.

We now develop in some more philosophical aspects of Euler/G2 as a
model of the World, which the reader may want to skip in a first reading,
and instead go directly into Secrets.

21.5 Direction of Time

The origins of irreversibility in reversible systems is a main unsolved mys-
tery of mechanics and physics. A Hamiltonian system is reversible in time
and does not have a preferred (forward) direction of time: From a given
configuration both the future and past are equally well determined. The
reversibility follows from the invariance of a Hamiltonian system under a
change of sign of time and velocity. It follows in particular that letting a
Hamiltonian system evolve in time from an initial configuration to a final
configuration and there reversing the velocity and changing the direction
of time, will bring the system back to the initial configuration. As a result,
one may in Hamiltonian mechanics construct a perpetuum mobile of the
first kind, which is a machine that will run forever without consuming any
energy. Both celestial mechanics and quantum mechanics are Hamiltonian
and the motion of the planets in our Solar system as well as the electrons
in an atom represent reversible perpetuum mobile of the first kind.

On the other hand, in the real World there is a preferred direction of
time and we are all familiar with irreversible processess in which initial
configurations cannot be recovered, and the impossibility of constructing a
perpetuum mobile of the first kind, as well as of the second kind supposed
to reversibly convert energy back and forth from heat to mechanical work
without consuming any net energy. The irreversibility is expressed in the
Second Law of Thermodynamics, which states that in an isolated system
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a certain scalar quantity, named entropy, cannot decrease with time. As
a consequence, an isolated system becomes irreversible if its entropy in-
creases, since time reversal would correspond to decreasing entropy, which
is impossible. In a Hamiltonian system the entropy is equal to minus the
total energy being the sum of kinetic and potential energy, and energy con-
servation reflects reversibilty and entropy constancy. The observation that a
perpetuum mobile of the second kind seems impossible, because converting
mechanical energy into heat does not seem to be fully reversible, indicates
the existence of real processes which are irreversible and thus not Hamilto-
nian. Dropping a stone to the ground will convert its potential energy into
heat making the stone warmer, but the reverse process of the stone lifting
itself by getting colder, is impossible. The question is why?

So if now the World ultimately is governed by reversible Hamiltonian
(quantuum) mechanics, the scientific challenge thus becomes to explain
how irreversibility may arise in systems based on reversible Hamiltonian
mechanics. In the late 19th century when the existence of an Aether filling
empty space was still contemplated, the irreversibilty was suggested to pos-
sibly result from some small viscosity of the Aether, but since no one could
ever detect any Aether, this belief faded. Similarly, the idea of putting in
just a tiny bit of friction (coming from somewhere) to explain irreversibility,
is not convincing, since then the planets and electrons would be constantly
retarding a little bit, but they don’t seem to do that. And if there would
be some friction in some system, the challenge would be to explain how
friction can arise in a system governed by Hamiltonian reversible mechan-
ics without friction. Thus the irreversibility paradox can be phrazed: How
can there be friction in a system without friction?

The traditional way to resolve the paradox has been statistical mechan-
ics, which is an expansion of Hamiltonian mechanics using concepts from
statistics and probability. This expansion has a high scientific cost, since
so many new (difficult) questions arise from the use of statistics. Accord-
ingly statistical mechanics has been questionend by many famous scientists
including Einstein, and still is.

Altogether, as far as we can understand, the true origins of irreversibil-
ity in reversible systems has not been given a scientifically convincing ex-
planation. The literature is vast with contributions from mathematicians,
physicists, chemists, engineers, philosophers, linguists, authors of science
fiction and the general public.

21.6 Finite Precision Computation

We now focus on the new mode of explanation based on finite precision
computation in the form of G2, which we advocate. The finite precision
computation appears in two forms: First, it necessarily appears in digital
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FIGURE 21.1. Ludwig Boltzmann (1844-1906) and Jan Josef Loschmidt
(1821-1895).

solution of Hamiltonian equations using computers, which is the objective
of our study. Secondly, it probably appears also in Natures evolution in
time from one state to the next in some form of analog computation.

The solution of the paradox of irreversibility in reversible system based
on finite precision computation, is not trivial in the sense that it may be
blamed simply on something like round-off errors in digital computing or
the inevitable approximations in solving differential equations numerically.
This would be similar to explaining irreversibility as an effect of a slightly
viscous Aether, a mode of explanation we have already rejected.

The solution of the paradox is much deeper and more fundamental and
directly couples to computational turbulence as presented in this book. In
short, the secret we uncover is the following: We consider a set of Hamilto-
nian equations describing the evolution in space/time of a certain system in
Nature. We seek to solve the equations computationally using a numerical
method implemented on a computer. Doing so we meet two different situa-
tions: In the first case, which is the simple standard case without surprise,
the Hamiltonian equations have pointwise solutions which are computable,
and if so we simply compute these solutions and find them to be reversible.
A pointwise solution has a residual which is pointwise zero, obtained by
inserting the solution in the equation, and we can compute approximate
solutions with residuals being small pointwise. Such computed solutions
are approximately reversible by the reversible nature of the equations they
are approximately solving pointwise.

In the second case, which contains the secret, the Hamiltonian equations
do not admit pointwise solutions, which means that there simply are no
(stable) solutions with a residual being zero pointwise. This is the case
with the Euler equations and reflects the appearance of turbulence. In
this second case G2 cannot produce an approximate solution with small
pointwise residual, and reacts by producing an approximate solution for
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which the residual is small in a weak average sense combined with a certain
weighted least squares control of the residual, which turns out to be possible
to achieve. In the case the Hamiltonian equations do not admit pointwise
solutions, which may correspond to the appearence of turbulence, G2 thus
produces an approximate solution with the residual being small in a weak
sense and with a certain weighted least squares control of the size of the
pointwise residual, while the pointwise residual itself is not small.

We have remarked that this is about the best that can be done in the
situation when the Hamiltonian equations do not admit pointwise solutions,
and we have also seen that it is good enough if we as quantities of interest
or output quantities choose certain mean values of the solution, rather than
point values. In the case the Hamiltonian equations do not admit pointwise
solutions, corresponding to turbulence/shocks, we can thus nevertheless
by G2 compute certain mean value outputs accurately. From a physical
point of view, we may say that even though the Hamiltonian equations
cannot be satisfied pointwise, they can be satisfied in an average sense
with the pointwise residual not being too large, and that may be enough
for the system to evolve. The pointwise violation but average satisfaction
of the Hamiltonian laws in this sense, corresponds to a physical system
in pointwise non-equilibrium, but in average local equilibrium with some
control of the pointwise non-equilibrium. In such a physical system the
laws of physics serve as goals, which cannot be satisfied pointwise, and the
search of satisfaction in a suitably approximate sense is what drives the
evolution of the system. It is like the Law in our society, which is never
followed pointwise by all citizens, only in some average sense, but yet has
an important role to secure that society does not fall apart.

21.7 Dissipation

Now, the catch is that the weighted least squares control of the residual in
G2 adds a dissipative term in an energy balance like (20.3), which effectively
makes the system irreversible. This is like a fine or cost arising from not
following the Law pointwise. It is thus the appearance of turbulent/shock
small scales and the resulting impossibility of computing solutions with
pointwise small residuals, which necessarily introduces the irreversibility.
By necessity, a fine has to represent a positive cost; if we would get paid
by breaking the Law, society would quickly collapse. Or if there would be
a negative cost (gain) in changing currency, the monetary system would
explode.

Facing the impossibility of pointwise solution, the system thus reacts by
producing an approximate solution in which some of the energy is lost in
a dissipative least squares term implying irreversibility. Moreover, the size
of the dissipation and the energy loss does not decrease with increasing
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precision: In turbulence the dissipation always occurs on the finest scales
available, but the total amount of the turbulent dissipation (turning into
heat), stays (approximately) constant under scale refinement. A shock in
compressible flow has a similar nature. Mean value outputs thus may show
an independence of the scale of resolution in the computation, while point-
wise solution is impossible even if the computational scale is refined indef-
initely. The more you refine, the more scales you find and there is no end
to this process.

The basic idea is thus that in certain Hamiltonian processes necessarily
small scale features in the form of turbulence/shocks appear, and when
faced with these small unresolvable scales, which physically generate heat,
the system reacts by introducing a dissipative least squares control of the
residual, which implies irreversibility. Thus, in turbulence/shocks, large
scale mechanical energy may be turned into small scale motion, correspond-
ing to generation of heat, and this process is irreversible since the details
of the small scales cannot be kept and thus cannot be recovered.

The key here is to realize that the dissipative damping (i) is necessary,
(ii) is substantial, (iii) is not a numerical artifact which can be diminished
by increasing the precision. The key new fact behind (i)-(iii) is the non-
existence of solutions to the Hamiltonian equations! The appearance of
turbulence/shocks in inviscid compressible is an example of an irreversible
process satisfying (i)-(iii), where inevitably and irreversibly energy is turned
into heat. As is well known, a shock solution is a not pointwise solution
to the Euler equations. As we will show below, neither does turbulence
correspond to pointwise solution.

In G2 the irreversibility arises from the presence of the least squares
control of the residual, which corresponds to a loss of the kinetic/potential
energy which cannot be recovered in G2; reversing time and velocities at
final time in G2 and computing backwards in time will bring in a new
least squares term only adding to the losses already made in the forward
computation. This reflects the difficulty of getting a refund of an already
paid fine.

21.8 Coupling to Particle Systems

The Euler equations for incompressible inviscid flow may be viewed to
model a very large collection of “fluid particles” following Newton’s Second
Law subject to a pressure force maintaining incompressibility.

The incompressible Euler equations represent a formally reversible sys-
tem, which as we have seen in general lacks pointwise solutions. This is
because the laminar pointwise solutions, which do exist, turn out to be
unstable without physical realization, and because the turbulent solutions,
which do appear, are not pointwise solutions but only approximate weak
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solutions. Thus, both computation and Nature will have to go for suitable
approximate solution of the Euler equations. Computation will then rely
on G2, with presumably Nature resorting to something similar, which in-
evitable (because of the least squares residual control in G2) will introduce
a dissipative effect implying irreversibility.

We have thus met a situation, where the equations we want to solve
do not have exact pointwise solutions, (or if they have, then they are un-
stable), while the turbulent solutions which do exist in fact only are ap-
proximate weak solutions and not pointwise solutions, and moreover these
approximate solutions necessarily have a dissipative character resulting in
irreversibility. The paradox of irreversibility in a formally reversible Hamil-
tonian system is thus a consequence of the non-existence of a stable laminar
pointwise (strong) solutions to the Euler equations, which would have been
reversible if they had only existed, and the dissipative nature of the turbu-
lent approximate weak solutions, which do exist computationally and and
for which mean value outputs can be accurately computed.

We note that the non-existence of (stable) exact solutions, changes the
way mathematics for the Euler equations can be presented: With non-
existent exact solutions, the attention has to move to existing approximate
solutions, and thus the computational aspect takes a prime position before
analytical mathematics.

The non-existence of pointwise solutions to the Euler equations, which
may be viewed as a failure of mathematics, in fact may be turned around
into an advantage from a computational point of view: If there were an exact
solution, one could always ask for more precision in computing this solution
requiring finer resolution and higher computational cost, but if there is no
exact solution, then we could be relieved from this demand beyond a certain
point. A key feature in this situation is that the absolute size of the fine
scales no longer are important, and this could save computational work.
In turbulence this means that mean value outputs may be computed on
meshes which do not resolve the turbulent vortices to their actual physical
scale.

In order for a Hamiltonian system to develop turbulence, it has to be rich
enough in degrees of freedom. In particular, the incompressible or compress-
ible Euler equations in less than three space dimensions are not rich enough,
even if the mesh is very fine. On the other hand, turbulence invariably de-
velops in three dimensions once the mesh is fine enough. Our experience
with turbulent solutions of the incompresible Navier-Stokes equations indi-
cates that a mesh with 100.000 mesh points in space may suffice in simple
geometries, while in more complex geometries millions, but not billions, of
mesh points may be needed.
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21.9 Imperfect Nature and Mathematics?

How are we to handle the fact that the Euler equations do not have point-
wise solutions in general? Does this express an imperfection of mathemat-
ics? And what is the consequence in physics? Is Nature simply unable to
satisfy the basic laws laid down in the form of e.g. Newton’s Second Law?
Does this mean that also Nature is imperfect? And if now both mathemat-
ics and Nature indeed are imperfect, what is the degree of imperfection and
how does it show up?

We may make a parallel with the squareroot of two
√

2, which is the
length of the diagonal in a square with side length 1. We know that the
Pythagoreans discovered that

√
2 is not a rational number. This knowledge

had to be kept secret, since it indicated an imperfection in the creation by
God formed as relations between natural numbers according the basic belief
of the Pythagoreans. Eventually this unsolvable conflict ruined their philo-
sophical school and gave room for the Euclidean school based on geometry
instead of natural numbers. Civilization did not recover until Descartes
resurrected numbers and gave geometry an algebraic form, which opened
for Calculus and the scientific revolution.

But how is the Pythagorean paradox of non-existence of
√

2 as a rational
number handled today? Well, we know that the accepted mathematical
solution since Cantor and Dedekind is to extend the rational numbers to
the real numbers, some of which like

√
2 are called irrational, and which can

only be described approximately using rational numbers. We may say that
this solution in fact is a kind of non-solution, since it acknowledges the fact
that the equation x2 = 2 cannot be solved exacly using rational numbers,
and since the existence of irrational numbers (as infinite decimal expansions
or Cauchy sequences of rational numbers) has a different nature than the
existence of natural numbers or rational numbers. The non-existence is thus
handled by expanding the solution concept until existence can be assured.

We handle the non-existence of pointwise solutions to the Euler equa-
tions similarly, that is, by extending the solution concept to approximate
solution in a weak sense combined with some control of pointwise residuals.
Doing so we necessarily introduce a dissipation causing irreversibility. In
this case, the non-existence of solutions thus has a cost: irreversibility. In the
perfect World, pointwise solutions would exist, but this World cannot be
constructed neither mathematically nor physically, and in a constructible
World necessarily there will exist irreversible phenomena as a consequence
of the non-existence of pointwise solutions. The non-existence of pointwise
solution reflects the development of complex solutions with small scales,
and thus the non-existence also relects a complexity of the constructible
World. The perfect World would lack this complexity, so in addition to
being non-existent it would also probably be pretty non-interesting. The
World we live in thus does not seem to be perfect, but it surely is complex
and interesting.
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What is the reason that the resolution of the paradox we are proposing
has not been presented before, if it indeed uncovers the mystery? We be-
lieve it can be explained by the Ideal Worlds that both mathematicians and
physicists assume as basis of their science. In the Ideal World of mathe-
matics, exact solutions to differential equations exist as well as infinite sets,
not just approximate solutions and finite sets, and the World of physics is
supposed to follow laws of physics exactly, not just approximately, unless a
resort to statistics is made (which is a very strong medication with severe
side effects). It thus appears that an imperfect World of mathematics or
physics, where equations cannot be solved exactly or laws of physics can-
not be exactly satisfied, classically is unthinkable at least as a deterministic
World, and thus has recieved little attention by mathematicians and physi-
cists with little background in computational mathematics. Yet, such an
imperfect World seems to be a reality in both mathematics and physics,
and thus should be studied.

21.10 A New Paradigm?

From philosophical point of view, we may say that the traditional paradigm
of both mathematics and physics is Platonistic in the sense that it assumes
the existence of an Ideal World, where equations/laws are satisfied exactly.
We may say that this is an Ideal World of infinities because exact satis-
faction of e.g. the equation x2 = 2 requires infinitely many decimals. This
is the mathematical Ideal World of Cantor, which represents a formal-
ist/logicist school. In strong opposition to this school of infinities, is the
constructivist school, which only deals with mathematicial objects that
can be constructed in a finite number of steps. In the constructivists Con-
structible World, the set of natural numbers does not exist as a completed
mathematical object as in Cantors Ideal World, but only as a never-ending
project where always a next natural number can be constructed if needed,
which follows the suggestions of e.g. Aristotle and Gauss. The Constructible
World is finitary and thus inherently computational, while Cantors Ideal
World is non-finitary and non-computational. In the educational project [1]
and the pamphlett [54], we compare the two schools, and give our vote to
the Constructible World, which today can be explored using the computer,
and we question the existence an Ideal World as always a scientifically
meaningful concept.

21.11 The Prize Problem Again

We have noted that one of the seven Clay Institute Millennium $1 Million
Prize Problems asks for a proof of existence of a pointwise solution to the
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Navier-Stokes equations for incompressible fluid flow, a formulation which
fits into an Ideal World paradigm. We argue that the formulation of the
Prize Problem is unfortunate, and propose instead a reformulation of the
Prize Problem in constructive terms, since in general pointwise solutions
do not exist, while turbulent approximate solutions do.
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22
Secrets of Ball Sports

Football s not a matter of life and death. It is more important than
that. (Bill Shankly)

If a player is not interfering with play or seeking to gain an advantage,
then he should be. (Bill Shankly)

22.1 Introduction

Major ball sports such as football, golf, tennis, and baseball, gather millions
of fans at stadiums and at the TV around the world every day. Can we un-
derstand the physics underlying the stunning performances of Ronaldinho,
Tiger Woods, Roger Federer, Hideki Matsui and the others?

To investigate the physics of ball sports we here consider the flow of
air past a sphere, and in particular we focus on the resulting forces on
the sphere; that is drag and lift of the sphere, with drag being the force
component in the opposite direction of the flow, and lift being the force in a
direction perpendicular to the direction of the flow. Using a moving frame
of reference centered at the sphere, a ball moving through air without any
external wind load corresponds to a stationary sphere in a uniform flow in
the opposite direction of the trajectory of the ball.
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22.2 Dimples of a Golf Ball: Drag Crisis

Drag consists of the pressure drop over the sphere, referred to as pressure
drag, and the viscous friction forces at the surface of the body, referred
to as skin friction. We will see in Chapter 31 that the skin friction is
decreasing with increasing Reynolds number, so that for high Reynolds
numbers typically pressure drag is dominating. Pressure drag is connected
to flow separation, see Chapter 32, where earlier separation in general leads
to higher pressure drag.

The drag coefficient of a sphere for Reynolds numbers of the order 103 −
105 is cD ≈ 0.4, with cD a non dimensional normalization of the drag force
FD, defined by

cD =
1

1
2ρ U

2
∞A

× FD , (22.1)

with U∞ a representative free stream velocity, A a representative area of
the sphere, typically A = πd2/4 with d the diameter of the sphere, and ρ
is the density. The dynamic pressure pdyn is defined as

pdyn =
1

2
ρ U2

∞, (22.2)

and thus the drag coefficient cD = FD/(pdynA) is defined as the ratio of
the drag force and the force produced by the dynamic pressure pdyn times
the area A.

At very high Reynolds numbers, of the order 105 − 106, the boundary
layer at the surface of the ball suddenly undergoes transition to turbulence,
which leads to a delayed separation and a dramatic drop in cD to about 0.1,
referred to as drag crisis. It is the increased momentum near the boundary
in a turbulent boundary layer that delay separation.

In golf we want to be able to drive the ball as far as possible, and thus we
would like to minimize the drag of the golf ball. Now, in driving a golf ball
we do not reach the critical Reynolds numbers leading to transition in the
boundary layers, but it turns out that we can trigger transition at lower
Reynolds numbers by introducing perturbations in the boundary layer, for
example by adding the dimples on the surface. We discuss the role of the
perturbations level for transition further in Chapter 34.

The skin friction of the boundary layer is decreasing with increasing
Reynolds number, and we may model drag crisis by using G2 together
with a skin friction boundary condition, see Chapter 32. Decreasing skin
friction then leads to delayed separation, see Fig. 22.1.

22.3 Topspin in Tennis: Magnus Effect

In a number of ball sports we are familiar with the phenomenon that a
spinning ball seems to experience a force in the direction of the rotation.
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FIGURE 22.1. Vorticity for a sphere before (left) and after (right) drag crisis.

This is what we see in a topspin in tennis, or a curveball in baseball, and
we refer to this phenomenon as the Magnus effect.

FIGURE 22.2. Heinrich Gustav Magnus (1802-1870), John William Strutt/Lord
Rayleigh (1842-1919), and Björn Borg.

The notion of the Magnus effect goes back to Lord Rayleigh, who credited
Heinrich Gustav Magnus for the first explanation of the lateral deflection
of a spinning ball. But the phenomenon was studied already by Newton in
1672, who noted how a tennis ball is affected by spin, and by Robins who
in 1742 showed that a transverse aerodynamic force could be detected on
a rotating sphere (therefore also referred to as the “Robin’s effect”). Lord
Rayleigh showed that for a frictionless fluid the side force is proportional
to the free stream velocity and the rotational speed.

The traditional explanation of the Magnus effect for a spinning sphere
is based on Bernoulli’s law, where the idea is that the fluid velocity on one
side of the sphere is enhanced by the spin of the sphere, and the velocity
on the opposite side is decreased, resulting in a pressure difference over the
sphere, and thus a force, “the Magnus force”, is created.
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More recent studies agree on an explanation coupled to boundary layer
separation, where the separation is delayed on the side of the sphere that
is moving in the same direction as the free stream velocity, while the sepa-
ration occurs prematurely on the side moving against the free stream flow,
resulting in a shift of the wake toward the side moving against the free
stream velocity, causing a deflection of the flow momentum and a resulting
force in the opposite direction, by conservation of momentum.

In Fig. 22.3 we show a G2 solution of a rotating sphere, where we note
the shifted wake, and also the low pressure on the side moving with the
free stream velocity, consistent with Bernoulli’s law predicting low pressure
where the velocity is high. We also note the deflection of the flow due to
the shifted wake, and thus we may rationalize the Magnus effect either by
the pressure difference over the sphere, or by conservation of momentum
and the deflection of the flow by the assymetric wake.

FIGURE 22.3. Vorticity for a still (left) and a rotating (right) sphere.

22.4 Roberto Carlos: Reverse Magnus Effect?

At certain conditions what is known as the reverse Magnus effect has been
noted for smooth spheres, with a force acting in the opposite direction of
the rotation of the sphere.

This appears to be caused by transition in the boundary layer on one
side of the sphere only, the side with the highest relative velocity, which
leads to a delayed separation on that side, resulting in a shift of the wake
toward the opposite direction as for the “regular” Magnus effect.

For a typical shot in football (soccer), the Reynolds number is of the
order 105, thus in the region close to drag crisis. It is speculated in the
reverse Magnus effect being involved in the famous free-kick of Brazil’s
Roberto Carlos against France in 1997 [17], where the ball initially seems
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to be moving around the defenders away from the goal, before curving back
to end up behind the stunned French goalkeeper Barthez.

FIGURE 22.4. The Brazilian Roberto Carlos free-kick against France in 1997.

22.5 Pitch in Baseball

Baseball has received a lot of attention among fluid dynamicists, see e.g.
[10, 5]. When the pitcher throws the ball, assuming no wind, the only forces
acting on the ball in the air is gravity and the aerodynamic forces of lift
and drag. Using different spins and velocities the pitcher has an arsenal of
throws to challenge the batter.

For example, a curveball is thrown with a spin such that the axis of
rotation is not perpendicular to the ground, rotating away from the pitcher,
resulting in a Magnus force down and away from the batter.

A knuckleball is thrown with a very slow rotation and with a velocity
corresponding to a flow near drag crisis. Transition to turbulence in parts
of the boundary layer is triggered by the seams of the ball, whereas other
parts of the boundary layer remain laminar, leading to slightly wobbling
ball with a trajectory which is hard to predict by the batter.
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23
Secrets of Flight

The difficulties which obstruct the pathway to success in flying-
machine construction are of three general classes: (1) Those which
relate to the construction of the sustaining wings; (2) those which re-
late to the generation and application of the power required to drive
the machine through the air; (3) those relating to the balancing and
steering of the machine after it is actually in flight. (Wilbur Wright
1901)

In Fig. 23.1 we simulate take-off of an aircraft, by slowly increasing the
angle of attack of a wing from 0 to 17 degrees, with stall at approximately
16 degrees. We clearly see the pressure difference over the wing leading to
a lift force which increases with the angle of attack until the stall angle,
where lift decreases for increasing angle of attack.
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FIGURE 23.1. Simulation of take-off for a 3d wing using Euler/G2, with increas-
ing angle of attack from 0 to 17 degrees.
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24
Summary so far

My feeling is that many mathematicians and graduate students are
intrigued by what they hear about problems of the mechanics of an
incompressible fluid, but don’t study them because they don’t know
enough physics and fear to make fools of themselves. What they
don’t know, I think, is how abysmally little we actually know about
fluids, and how it would be hard to act more the fool than many
have already done. I believe the difficulty arises first, over an inflated
nomenclature that burdens the subject and, second, over a lack of
understanding about how ignorant we can be in our technological
society and how close to the surface many problems lie.... In spite of
the profound mathematical methods we use to attack the problems,
we know very little about fluids, we can tell the physicist almost
nothing of what he wants to know, and interesting problems abound.
(Marwin Shinbrot, 1973)

Our conciousness does not reflect the molecular chaos of the phe-
nomena but exerts an integrating function with respect both space
and time, from results the apparent homogeneity and continuity of
the phenomena. (Weyl)

Blind fate could never make all the planets move one and the same
way in orbs concentric. (Newton)

24.1 Outputs of ε-weak solutions

We have introduced the concept of ε-weak solutions to the NS equations.
To estimate the difference in output of two ε-weak solutions û and ŵ,
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M(û)−M(ŵ), with M(û) ≡ ((û, ψ̂)) defined by a function ψ̂, we introduce
a linearized dual problem with coefficients depending on u and w and es-
timate derivatives of the solution of the dual problem in a corresponding
stability factor Sε(ψ̂), to get

|M(û) −M(ŵ)| ≤ 2εSε(ψ̂).

We next note that a G2-solution Û is an CU‖hR(Û)‖-weak solution, and
this way we obtain an a posteriori output error estimate of the form

|M(û) −M(Û)| ≤ (ε+ CU‖hR(Û)‖)SεG2
(ψ̂),

with SεG2
(ψ̂) a corresponding stability factor, and εG2 = CU‖hR(Û)‖. Sim-

plifying, assuming ε small (and CU ≤ 1), the a posteriori error estimate
takes the form

|M(û) −M(ŵ)| ≤ ‖hR(Û)‖S0(ψ̂), (24.1)

and the corresponding stopping criterion would be

‖hR(Û)‖S0(ψ̂) ≤ TOL.

If the stability factor S0(ψ̂) is not too large and the tolerance TOL not too
small, then we may be able to reach the stopping criterion with available
computer power.

We have pointed out a basic feature of the a posteriori error estimate
resulting from the properties of G2, namely the presence of the factor h
multiplying the residual R(Û). If S0(ψ̂) is not too large, this means that we
may reach the stopping criterion without the residual R(Û) being pointwise
small. We may thus compute an accurate mean value output from a discrete
solution with a pointwise large residual. In a turbulent flow we may expect
(and actually see in computations) that pointwise R(Û) ∼ h−1/2. This
evidence strongly indicates that the mere idea of a pointwise solution to a
turbulent flow will have to be refuted. As already pointed out above, this is
in direct opposition to the Clay Institute formulation of it’s Prize Problem
concerning existence, regularity and uniqueness of pointwise solutions to
the NS equations.

24.2 Chaos and Turbulence

We have been led to the following essential aspects of a dynamical system
with chaotic solutions such as the NS equations: (i) strong sensitivity of
pointwise outputs, (ii) weak sensitivity of mean value outputs, and (iii)
weak sensitivity of stability factors.

To identify these features for a given dynamical system, we would first
compute one trajectory u(t) pointwise. We would then solve the correspond-
ing dual problem linearized at u(t) with data corresponding to pointwise
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output to find a large stability factor, and with data corresponding to a
mean value output to find a stability factor which is not large. This would
give evidence of (i) and (ii). In particular we would get the information that
the mean value output would be insensitive to solution perturbations, and
thus that we could expect to be able to compute the mean value output
from only one solution trajectory.

There would be one piece of information missing, namely (iii) which
represents insensitivity of the mean value stability factor to the choice of
solution trajectory underlying the linearization in the dual problem. To
get evidence of this insensitivity, we would have to compute a couple of
different solutions u(t) by introducing some perturbations and then solve
the corresponding dual problems. The evidence would then be that the
corresponding stability factors would be insensitive to the perturbations.
In particular, we would get the signal that the more precise nature of the
perturbations would be insignificant.

Below we will present evidence that turbulent flow has the features (i)-
(iii) and thus carries the basic features of the type of chaos we suggest
above.

The result is that a mean-value output may be observable/computable to
a tolerance of interest under statistical perturbations of input of unknown
nature, while a point value is not.

In a turbulent flow a lot of detailed information is destroyed in dis-
sipation, which thermodynamically connects to a substantial increase of
entropy. In order for a mean value in turbulent flow to be well defined,
it cannot have other than a weak dependence on the destroyed informa-
tion, and indeed we observe this to be a real phenomenon since we find
mean value aspects of turbulent flow to be computable without resolving
all details of the flow. Thus certain aspects of turbulent flows may be com-
putable, in fact, sometimes more easily computable than laminar flows,
which may show a stronger dependence on details.

This is in contrast to a conventional standpoint, where turbulent flow
may seem to be uncomputable, without turbulence models which are diffi-
cult if not impossible to design. In this book thus we give concrete evidence
that turbulent flow is computable, in fact often computable on a PC within
hours.

We finally recall that we avoid introducing Reynolds stresses by avoiding
taking mean values twice: Choosing a mean value output makes it unneces-
sary to average the NS equations. Avoiding Reynolds stresses also relieves
us from modeling Reynolds stresses in turbulence models.
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24.3 Computational Turbulence

We may say that the secret of computational turbulence is to understand
how it may be possible to compute mean value outputs, while point-value
outputs are not computable. We have noted that this can be exaplaind by
the stability properties of the dual solution, which by cancellation effects
is smaller for mean-value outputs than for point-values. Thus we may say
that the secret lies in the cancellation in the dual problem, which may be
observed to take place by simply computing the dual solution. We may
also analyze the cancellation effect in simple model problems, but it seems
impossible to mathematically analyze this cancellation effect in any realistic
situation. Thus we may get a glimpse of the secret, but we seem to be unable
to capture the whole truth by mathematical analysis. Our lifes may carry
a similar secret: we may observe what we experience/compute as we go
along and we may understand some aspects, but the full truth will remain
hidden.

24.4 Irreversibility

We have unfolded the secret of irreversibility in reversible systems in the
special case of incompressible inviscid flow governed by the Euler equa-
tions solved by G2. We have seen that the irreversibilty is a necessary
consequence of the non-existence of stable pointwise solutions of the Eu-
ler equations and the dissipative nature of G2 when computing approxi-
mate solutions. We may phraze our result as a proof of the Second Law of
Thermodynamics from the First Law (the Euler equations) combined with
finite precision in the form of G2. We have remarked that Euler/G2 is a
parameter-free mathematical model of (a part of) the World in the spirit
of Einstein.
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25
G2 for Navier-Stokes Equations

The scientist should listen to every reasonable suggestion, but judge
objectively. He should not be biased by appearances; have a favorite
hypothesis; be of a fixed school of thought; or have a master in mat-
ters of knowledge. He should remember constantly that the progress
of knowledge if often hampered by the tyrannical influence of dogma.
(G.A. Tokaty)

25.1 Introduction

We now proceed to present G2 applied to the NS equations in detail. G2 is
a weighted least-squares stabilized Galerkin finite element method in space-
time. G2 is adaptive with automatic choice of the mesh in space-time based
on a posteriori error estimation of outputs with stability factors/weights
obtained by solving linearized dual problems. The stabilization of G2 acts
as an automatic turbulence model in the form of a generalized artificial
viscosity model acting selectively on the smallest scales of the mesh.

G2 may be described as an Adaptive DNS/LES method, where adaptively
the flow is resolved in DNS in certain parts of the domain and in other parts
is underresolved in a LES with an automatic turbulence model. G2 may
compute mean value outputs using LES in large parts of the domain such
as the turbulent wake of a bluff body, and using DNS only to capture
certain critical local flow features such as boundary layer separation and
transition. The adaptive combination of LES and DNS in G2 opens for
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a breakthrough in computational simulation of turbulent flow: With G2
Adaptive DNS/LES the number of mesh points may be orders of magnitude
smaller than using non-adaptive or ad hoc refined meshes.

The a posteriori error estimation in G2 gives objective evidence that
the basic idea of LES, which is to simulate turbulent flow on computa-
tional scales which are coarser than the actual physical scales using a rel-
atively simple turbulence model, indeed is largely functional. The reason
LES works couples to a cancellation effect in the associated dual prob-
lem allowing the residual of a G2 solution to be quite large in turbulent
regions. Intuitively, LES may be motivated by the fact that the actual
smallest scale of dissipation of turbulent energy may be insignificant for
mean value outputs: it suffices to capture the correct level of the turbulent
energy dissipation which can be done on coarser scales than the physical
scales. Another signal to the same effect is that quantities such as drag may
change very slowly with the Reynolds number over large intervals, which
opens the possibility of correctly computing e.g. drag without fully resolv-
ing the flow thus computing with an effective Reynolds number which is
smaller than the actual one.

Altogether, G2 offers a general flexible methodology for the discretization
of the NS equations applicable to a great variety of flow problems from
creeping viscous flow to slightly viscous turbulent flow, including free or
moving boundaries.

25.2 Development of G2

Stabilized space-time finite element methods, including moving meshes,
were developed by Hughes, Tezduyar, and Johnson, with co-workers, see
e.g. [15, 56, 60, 36, 35].

A posteriori error estimation is traditionally done with respect to an
energy-norm, naturally induced by the underlying differential operator, re-
sulting in estimates in terms of computable residuals. For surveys and ref-
erences on this approach we refer to [86, 4]. Although, in most applications
the energy-norm does not provide useful bounds on the error in quantities
of real physical interest. Another approach is to use duality arguments to
obtain bounds on the error in other norms, such as the L2-norm, or the
error in various functionals of the solution, such as drag or lift forces for ex-
ample. The idea of using duality arguments in a posteriori error estimation
goes back to Babuška and Miller [6, 7, 8] in the context of postprocessing
’quantities of physial interest’ in elliptic model problems.

A framework for more general situations has since then been system-
atically developed by Eriksson & Johnson and Becker & Rannacher, with
coworkers, see e.g. [29, 27, 11, 12, 61, 62]. For an overview of adaptive finite
element methods based on duality including references, we refer to the sur-
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vey articles [27, 12, 34]. For incompressible flow, applications of adaptive
finite element methods based on duality have been used to compute quan-
tities of interest such as the drag force for stationary benchmark problems
in [11, 33, 38, 14].

In [46] turbulent flow in 3d is first considered, and the extension of this
framework to LES is investigated in [40]. The generalization to G2 for
turbulent flow by Hoffman & Johnson is first presented in [51, 41, 52], with
applications to flow around a surface mounted cube and a square cylinder,
followed by other applications in [44, 42, 45, 43].

25.3 The Incompressible Navier-Stokes Equations

We start by recalling the incompressible Navier-Stokes (NS) equations ex-
pressing conservation of momentum and incompressibility of a unit density
Newtonian fluid with constant kinematic viscosity ν > 0 enclosed in a
volume Ω in R

3: Find û = (u, p) such that

u̇+ u · ∇u− ν∆u+ ∇p = f in Ω × I,
∇ · u = 0 in Ω × I,

u = w on ∂Ω × I,
u(·, 0) = u0 in Ω,

(25.1)

where u(x, t) = (ui(x, t)) is the velocity and p(x, t) the pressure of the
fluid at (x, t), and f , w, u0, I = (0, T ), is a given driving force, Dirichlet
boundary data, initial data and time interval, respectively. The quantity
ν∆u − ∇p represents the total fluid force (modulo the external force f),
and may alternatively be expressed as

ν∆u−∇p = ∇ · σ(û), (25.2)

where σ(û) = (σij(û)) is the stress tensor, with components σij(û) =
2νεij(u) − pδij , composed of the stress deviatoric 2νεij(u) with zero trace
and an isotropic pressure: Here εij(u) = (ui,j +uj,i)/2 is the strain rate ten-
sor, with ui,j = ∂ui/∂xj , and δij is the usual Kronecker delta, the indices
i and j ranging from 1 to 3.

A Neumann type boundary condition, corresponding to the boundary
stress being prescribed, takes the form σ · n = g, where (σ · n)i =

∑

j σijnj

and g = (gi) is a given boundary stress with gi the force component in the
xi-direction, and n is the unit outward normal to Γ.

We usually seek to normalize the reference velocity and length scale in
(25.1) to be of unit size, in which case the Reynolds number Re ≈ ν−1.



184 25. G2 for Navier-Stokes Equations

25.4 G2 as Eulerian cG(p)dG(q)

We now present G2 in the special case of Eulerian tensor product space-
time meshes and extend below to Lagrangian and Arbitrary-Lagrangian-
Eulerian (ALE) space-time meshes. We start by presenting G2 in the form
cG(p)dG(q) with continuous polynomials of degree p is space and discon-
tinuous polynomials of degree q in time.

Let 0 = t0 < t1 < ... < tN = T be a sequence of discrete time steps
with associated time intervals In = (tn−1, tn] of length kn = tn − tn−1 and
space-time slabs Sn = Ω × In, and let Wn ⊂ H1(Ω) be a finite element
space consisting of continuous piecewise polynomials of degree p on a finite
element mesh Tn = {K} on Ω of mesh size hn(x) with W 0

n the functions in
Wn vanishing on ∂Ω. We introduce for q ≥ 0 the following spaces of finite
element functions defined on the slab Sn:

V 0
n = {v ∈ H1(Sn)3 : v(x, t) =

q
∑

j=0

(t− tn)jUj(x), Uj ∈ [W 0
n ]3},

Qn = {q ∈ H1(Sn) : q(x, t) =

q
∑

j=0

(tn − tn)jqj(x), qj ∈ Wn},

and finally introduce the velocity space V 0 =
∏

n V
0
n and the pressure space

Q =
∏

n Qn defined on the union of space-time slabs.
We now define G2 for (25.1) with w = 0 in the form of cG(p)dG(q): Find

Û = (U, P ) ∈ V 0 ×Q, such that for n = 1, 2, ..., N,

(R(Û), v̂)n + SDδ(Û ; v̂)n = 0, (25.3)

for all v̂ = (v, q) ∈ V 0
n ×Qn, with the Galerkin term

(R(Û), v̂)n ≡(U̇ + (U · ∇)U, v)n − (P,∇ · v)n + (q,∇ · U)n

+ (2νε(U), ε(v))n + ([Un−1], vn−1
+ ) − (f, v)n,

(25.4)

and the stabilizing weighted least squares term

SDδ(Û ; v̂)n ≡ (δ1(R̄1(U ; Û) − f), R̄1(U ; v̂))n + (δ2R̄2(U), R̄2(v))n, (25.5)

where for v̂ = (v, q)

R̄1(w; v̂) = v̇ + w · ∇v + ∇q − ν∆v,

R̄2(w) = ∇ · w, (25.6)

with the Laplacian defined elementwise, δ1 = κ1(k
−2
n + |U |2h−2

n )−1/2 in the
convection-dominated case ν < Uhn and δ1 = κ1h

2
n otherwise, δ2 = κ2hn
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if ν < Uhn and δ2 = κ2h
2
n otherwise, with κ1 and κ2 positive constants of

unit size, and

(v, w)n =

∫

In

(v, w) dt, (v, w) =
∑

K∈Tn

∫

K

v · w dx,

(ε(v), ε(w)) =

3
∑

i,j=1

(εij(v), εij(w)).

Further, [vn] = vn
+−vn

− is the jump across the time level tn with vn
± the limit

from right (+) and left (−) of v(t) as t→ tn, and we choose U0
− ∈ V 0

1 as an
interpolant of u0. In the case of Dirichlet boundary conditions the viscous
term (2νε(U), ε(v))n may equivalently occur in the form (ν∇U,∇v)n =
∑3

i=1(ν∇Ui,∇vi)n.

25.5 Neumann Boundary Conditions

A Neumann boundary condition of the form σ · n = g on a part ΓN of the
boundary is implemented in variational form by restricting the functions in
W 0

n to vanish only where (homogeneous) Dirichlet conditions are imposed
and supplementing the right hand side with an integral of g · v over ΓN .
This implements the Neumann boundary condition in weak form through
the presence of the term (−P,∇ · v)n + (2νε(U), ε(v))n = (σ, ε(v))n on the
left hand side, which when integrated by parts generates an integral over
ΓN of (σ · n) · v.

25.6 No Slip and Slip Boundary Conditions

The homogeneous Dirichlet velocity boundary condition u = 0 is referred
to as a no slip boundary condition expressing that the fluid adheres to the
boundary. A non homogeneous Dirichlet boundary condition, such as a
given inflow velocity, is imposed in the velocity trial space for U , while the
velocity test space is left unchanged with homogeneous Dirichlet boundary
conditions.

A slip boundary condition corresponds to setting the normal component
of the velocity U · n to zero at the boundary and models a boundary with
neglible friction which the flow cannot penetrate.

25.7 Outflow Boundary Conditions

To simulate an outflow boundary condition we may use a Neumann con-
dition with g = 0 corresponding to zero force at outflow as in outflow into
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a large empty reservoir. If we let the viscous term appear variationally in-
stead in the form (ν∇U,∇v)n, then the corresponding Neumann boundary
condition (with g = 0) takes the form ν∇u · n − pn = 0. which acts as
an approximate transparent outflow boundary condition, attempting to let
the flow leave the domain with little obstruction (also referred to as a “do
nothing” boundary condition [78]).

25.8 Shock Capturing

In extreme situations with very large velocity gradients, occuring e.g when
a jet impinges on a wall, we may add residual dependent shock-capturing
artificial viscosity, replacing ν by ν̂ = max(ν, κ3|R(Û)|h2), where R(Û) =
∑4

i=1 Ri(Û) with

R1(Û) = |R̄1(U ; Û) − f |,
R2(Û) = νD2(U),

R3(Û) = |[Un−1]|/kn on Sn,

R4(Û) = |∇ · U |,

(25.7)

where

D2(U)(x, t) = max
y∈∂K

(hn(x))−1|[∂U
∂n

(y, t)]| (25.8)

for x ∈ K, with [·] the jump across the element edge ∂K, and κ3 is a
positive constant of unit size. R1(U, Û)+R2(Û) bounds the residual of the
momentum equation, with the Laplacian term bounded by the second order
difference quotient D2(U) arising from the jumps of normal derivatives
across element boundaries. Note that R1(U, Û) is defined elementwise and
that with piecewise linears in space, the Laplacian ∆U is zero.

25.9 Basic Energy Estimate for cG(p)dG(q)

Choosing v̂ = Û in (25.3), we obtain the following basic energy stability
estimate for cG(p)dG(q) analogous to (15.2) (assuming f = 0):

‖U(·, T )‖2 +Dν(U, T ) +

N−1
∑

n=0

‖Un
+ − Un

−‖2 + SDδ(Û ; Û) = ‖U0‖2. (25.9)

If q > 0 then the term SDδ(Û ; Û) gives a weighted least squares control of
the residual R(Û) of Û . In the case q = 0, the residual R(Û) is controlled
by SDδ(Û ; Û) combined with the jump term giving weighted least squared
control of the discrete time derivate (Un−Un−1)/kn. The momentum resid-
ual control is thus in the case q = 0 enforced by separatate control of a
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discrete time derivative of U through the jump term combined with control
of (U · ∇U) + ∇P − ν∆U through the SDδ-term.

Altogether, the basic energy estimate for cG(p)dG(q) gives control of
‖
√
hR(Û)‖2 in terms of data, where h respresents the mesh size in space-

time, which expresses a fundamental property of G2.

25.10 G2 as Eulerian cG(1)dG(0)

We now specialize to G2 in the form of cG(1)dG(0) with continuous piece-
wise linears in space (p = 1) and with piecewise constants in time (q = 0)
corresponding to the backward Euler method for time-stepping. We thus
seek an approximate velocity U(x, t) such that U(x, t) is continuous and
piecewise linear in x for each t, and U(x, t) is piecewise constant in t for
each x. Similarly, we seek an approximate pressure P (x, t) which is con-
tinuous piecewise linear in x and piecewise constant in t. Thus we seek
Un ∈ V 0

n = W 3
0n and Pn ∈ Qn = Wn for n = 1, ..., N , with

U(x, t) = Un(x) x ∈ Ω, t ∈ (tn−1, tn],

P (x, t) = Pn(x) x ∈ Ω, t ∈ (tn−1, tn].
(25.10)

such that

(
Un − Un−1

kn
, v) + (Un · ∇Un + ∇Pn, v + δ1(U

n · ∇v + ∇q)) + (∇ · Un, q)

+ (ν∇Un,∇v) = (fn, v + δ1(U
n · ∇v + ∇q)) ∀(v, q) ∈ V 0

n ×Qn.

(25.11)

where δ1 = 1
2 (k−2

n + |U |2h−2
n )−1/2 in the convection-dominated case ν <

Uhn. Note that if kn ≈ hn/|U |, which is a natural choice of time step re-
specting a CFL-condition, then δ1 ≈ hn/|U |. The stabilized form of the
cG(1)dG(0) method is obtained by replacing v by v+ δ1(U

n · ∇v +∇q) in
the terms (Un · ∇Un + ∇Pn, v) and (fn, v). In principle, we should make
the replacement throughout, but in the present case of the cG(1)dG(0),
only the indicated terms get involved because of the low order of the ap-
proximations. The perturbation in the stabilized method is of size δ1, and
thus the stabilized method has the same order as the original method (first
order in h if k ∼ h).

Letting v vary in (25.11) while choosing q = 0, we get the discrete mo-
mentum equation:

(
Un − Un−1

kn
, v) + (Un · ∇Un + ∇Pn, v + δ1U

n · ∇v)

+ (ν∇Un,∇v) = (fn, v + δ1U
n · ∇v) ∀v ∈ V 0

n ,
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and letting q vary while setting v = 0, we get the discrete pressure equation:

(δ1∇Pn,∇q) = −(δ1U
n · ∇Un,∇q) − (∇ · Un, q) + (δ1f

n,∇q) ∀q ∈ Qn.

The backward Euler first order accurate time stepping in cG(1)dG(0) in
general is too dissipative for time dependent flow at high Reynolds numbers,
but may be used to solve stationary problems by time-stepping.

25.11 Eulerian cG(1)cG(1)

The cG(p)cG(q) method is a variant of cG(p)dG(q) using the continu-
ous Galerkin method cG(q) in time instead of a discontinuous Galerkin
method dG(q). With cG(1) in time the trial functions are continuous piece-
wise linear in time and the test functions piecewise constant in time. We
now present G2 in the form of cG(1)cG(1) which is less dissipative than
cG(1)dG(0), and which is the method used in for all problems presented in
the book.

G2 in the form cG(1)cG(1) for (25.1) with w = 0 reads: For n = 1, ..., N ,
find (Un, Pn) ≡ (U(tn), P (tn)) with Un ∈ V n

0 ≡ [Wn
0 ]3 and Pn ∈ Wn,

such that

((Un − Un−1)k−1
n + Ūn · ∇Ūn, v) + (2νε(Ūn), ε(v)) − (P n,∇ · v)

+ (∇ · Ūn, q) + SDδ(Ū
n, Pn; v, q) = (f, v) ∀v̂ ∈ V n

0 ×Wn,
(25.12)

where Ūn = 1
2 (Un + Un−1), and

SDδ(Ū
n, Pn; v, q) ≡ (δ1(Ū

n·∇Ūn+∇Pn−f), Ūn·∇v+∇q)+(δ2∇·Ūn,∇·v).
(25.13)

This method corresponds to a second order accurate Crank-Nicolson time-
stepping. We note that in the stabilizing SDδ-term the time derivative U̇
is missing, which is a consequence of the piecewise constancy of the test
functions. This corresponds to a (small) inconsistency up to the term δU̇ .
This inconsistency seems to be fully acceptable in the case of turbulent
flow, since then the residual R(Û) anyway is not small.

25.12 Basic Energy Estimate for cG(1)cG(1)

To easily obtain an energy estimate for cG(1)cG(1), we assume that the
nonlinear term (Ūn · ∇Ūn, v) in fact appears in the form

1

2
((Ūn · ∇Ūn, v) − (Ūn · ∇v, Ūn)),
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which would be equivalent if Ūn was divergence free. Choosing now v = Ūn

and q = P on Sn in (25.12), we obtain (assuming f = 0):

‖U(·, T )‖2 +Dν(U, T ) + SDδ(Û ; Û) = ‖U0‖2. (25.14)

As in the case of dG(0) the stabilizing term SDδ(Û ; Û) does not include
the time derivative U̇ , but in this case there is no jump term to directly
give control of U̇ . Instead we may obtain control of ‖

√
hU̇‖2 in terms of

SDδ(Û ; Û) by choosing v = U̇ in the discrete momentum equation, and
thus also cG(1)cG(1) includes the basic weighted least squares control of
the residual R(Û) in G2.

25.13 Slip with Friction Boundary Conditions

Studied already by Navier [75] and Maxwell [73], the slip with friction and
penetration with resistance boundary condition for a boundary Γslfr with
normal n and two orthogonal tangential vectors τ1, τ2 takes the form

u · n+ α nTσn = 0, (25.15)

u · τk + β−1nTστk = 0, k = 1, 2, (25.16)

with the stress tensor σ = σ(û), and where we use matrix notation with all
vectors v being column vectors and the corresponding row vector is denoted
vT .

Here α is a penetration parameter and β is a friction parameter, both
positive functions defined on the boundary. A no slip boundary condition
corresponds to (α, β) → (0,∞), and a slip boundary conditions to (α, β) →
(0, 0). By increasing β we increase the resistance at the boundary, and by
increasing α we increase the penetration of the boundary.

We can implement (25.15)-(25.16) weakly by decomposing the test func-
tion v into components aligned with the normal and tangent directions:

v = (v · n)n+
2

∑

k=1

(v · τk)τk, (25.17)

see e.g. [58] for an algorithm for determining two linearly independent tan-
gent vectors. We then have

∫

Γslfr

(σ · n) · v ds =

∫

Γslfr

nTσn(v · n) +

2
∑

k=1

nTστk(v · τk) ds

= −
∫

Γslfr

α−1(u · n)(v · n) −
2

∑

k=1

β(u · τk)(v · τk) ds. (25.18)
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The derivation of the weak formulation of (25.1) underlying the cG(1)cG(1)
method (25.12) formally involves partial integration of (25.2), resulting in
the term

(2νε(Un), ε(v)) − (P n,∇ · v) = (σ(Un, Pn), ε(v)), (25.19)

in the left hand side of (25.12), together with a surface integral

∫

Γslfr

(σ(Un, Pn) · n) · v ds. (25.20)

This surface integral is zero in (25.12), since the test function v ∈ V n
0

satisfies a homogeneous Dirichlet condition.
To implement the boundary conditions (25.15)-(25.16), we seek a solution

(Un, Pn) ∈ [Wn]3 × Wn for n = 1, ..., N , satisfying (25.12) for (v, q) ∈
[Wn]3×Wn, with the surface integral (25.20) subtracted from the left hand
side of (25.12). Substituting the surface integral by (25.18) then corresponds
to a weak implementation of the boundary conditions (25.15)-(25.16). We
here assume that there exists a unique solution to this problem.

We stress that one has to be careful when implementing this boundary
condition; one needs to use normals and tangent vectors that are defined
for each node in the mesh, not for each face (or edge in 2 dimensions).
The reason is that in the case the boundary Γslfr is not a flat surface,
the degrees of freedom in certain nodes will be forced to satisfy conditions
in too many directions. For example, in the case of a slip condition with
(α, β) = (0, 0), the degrees of freedom in a node will be forced to satisfy a
non penetration condition in several linearly independent directions, which
may result instead in a no slip boundary condition.

By choosing v̂ = Û in (25.12), we note that (25.18) corresponds to
penalty terms for the L2-norms of the normal and tangential components
of the velocity at the boundary, with penalty parameters α−1 and β, and
that the energy balance (15.6) is modified by adding the time integrals of
the terms

‖α−1/2u · n‖Γslfr
+

2
∑

k=1

‖β1/2u · τk‖Γslfr
(25.21)

to the left hand side of (15.6).
We may also model friction with respect to a non zero velocity w at the

boundary simply by changing (u · τk) into ((u− w) · τk) in (25.18).
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26
Discrete solvers

26.1 Fixed point iteration using multigrid/GMRES

To compute a G2 solution Û , we have to solve a nonlinear system of al-
gebraic equations for each time-step. We now briefly discuss the solution
of the nonlinear system of equations generated by cG(1)cG(1). We solve
the system for (Un, Pn) on slab Sn using fixed-point iteration with the
convection velocity given by the previous iteration. Assuming the nodal
values (Un,j , Pn,j) in iteration j have been computed, we compute new
nodal values (Un,j+1, Pn,j+1) by solving a linearized version of G2 of the
form:

AUn,j+1 + knBP
n,j+1 = knF

n,

−B>Un,j + CPn,j+1 = Gn,
(26.1)

where A = Mn + knNn − knν∆n, where Mn is a mass matrix, the matrix
Nn represents a discrete analog of the convection term with velocity Un,j ,
∆n represents a discrete Laplacian, B is a discrete gradient, B> a discrete
divergence, C = −δ1∆n, and finally F n and Gn represent terms given by
data including Un−1. We here first solve for P n,j+1 in terms of Un,j in
the second equation using a multigrid method, and then solve for Un,j+1

in the first equation using GMRES. The resulting fixed point iteration
converges under a CFL-condition (that is Unkn

hn
< 1 is small enough), and

if also kn/δ1 is small enough. Since typically δ1 ≈ hn/U
n, convergence is

thus achieved under a CFL-condition. In the typical applications of non-
stationary high Reynolds number turbulent flow presented in this book,



192 26. Discrete solvers

convergence is usually obtained in a few iterations, assuming the CFL-
condition is satisfied.

For further reading on solution algorithms for algebraic systems related
to the discretization of NS equations, we refer to [85, 26].
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27
G2 as Adaptive DNS/LES

I came to realize that exaggerated concern about what others are
doing can be foolish. It can paralize effort, and stifle a good idea.
One finds that in the history of science almost every problem has
been worked out by someone else. This should not discourage anyone
from pursuing his own path. (Theodore von Kármán 1881-1963)

27.1 An a posteriori error estimate

We now derive an a posteriori error estimate for cG(1)cG(1) following the
route layed out in Chapter 3 with a mean value output M(·) defined by a

given function ψ̂. Recalling (13.5) we can express the difference in output
between two ε-weak solutions û = (u, p) and ŵ = (w, r) as

M(û) −M(ŵ) = ((R(û), ϕ̂)) − ((R(ŵ), ϕ̂)), (27.1)

where ((·, ·)) is a space-time inner product, ϕ̂ is the solution to the dual

problem (13.4) with data ψ̂, and we define the output by

M(ŵ) ≡ ((ŵ, ψ̂)). (27.2)

With ŵ = Û , where Û is a cG(1)cG(1) solution given by (25.12), we may
add (25.12) to (27.1), to get

M(û)−M(Û) = ((R(û), ϕ̂))− ((R(Û), ϕ̂− Φ̂))+

∫ T

0

SDδ(Û , Φ̂) dt, (27.3)
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with Φ̂ a function in the test space of cG(1)cG(1), and the stabilizing form
given by (25.13).

Assuming sufficient regularity of the dual solution ϕ̂ to satisfy the re-
quirements of Lemma 27.2 and Lemma 27.3 below, we obtain the following
a posteriori error estimate of a space-time mean value output of the form
(27.2):

Theorem 27.1 If Û = (U, P ) solves (25.12), û = (u, p) ∈ Ŵε is an ε-weak

solution (with ε small), and ϕ̂ = (ϕ, θ) solves (13.4) with data ψ̂, then we

have the following error estimate for the output M(û) = ((û, ψ̂)):

|M(û) −M(Û)| ≤ εSε(ψ̂) +

N
∑

n=1

{
∫

In

∑

K∈Tn

|R1(Û)|K · ω1 dt

+

∫

In

∑

K∈Tn

|R2(U)|K ω2 dt+

∫

In

∑

K∈Tn

R3(U) · ω3 dt

+

∫

In

∑

K∈Tn

|SDδ(Û ; ϕ̂)K | dt }

with the stability factor defined by Sε(ψ̂) ≡ ‖ϕ̂‖V̂ , and the strong residuals
given by

R1(Û) = U̇ + (U · ∇)U + ∇P − ν∆U − f,

R2(U) = ∇ · U, (27.4)

R3(U) =
1

2
h
−1/2
n,K max

S⊂∂K
(|[(ν∇U)1 · nS ]|, ..., |[(ν∇U)3 · nS ]|),

where (M)i denotes the i:th row of the matrix M , SDδ(·; ·)K is a local
version of the stabilizing form (25.13), and the dual weights are given by

ω1 = Ck
n,Kkn|ϕ̇|K,∞ + Ch

n,Kh
2
n,K |D2ϕ|K ,

ω2 = Ck
n,Kkn|θ̇|K,∞ + Ch

n,Kh
2
n,K |D2θ|K ,

ω3 = Ck
n,Kknh

1/2
n,k |ϕ̇|∂K\∂Ω,∞ + Ch

n,Kh
2
n,k|D2ϕ|K ,

where hn,K is the diameter of element K in the mesh Tn, D2 measures sec-
ond order derivatives with respect to x, and Ch

n,K , C
k
n,K represent interpo-

lation constants, |w|K ≡ (‖w1‖K , ‖w2‖K , ‖w3‖K) with ‖w‖K = (w,w)
1/2
K ,

and we let the dot denote the scalar product in R
3.

The stability factor Sε(ψ̂) and the dual weights ωi here characterize out-

put sensitivity of the output M(û). In practise we approximate Sε(ψ̂) and
ωi by computing solutions of the corresponding dual problem linearized at
Û . Taking the linearization error into consideration, we should modify the
definitions of Sε(ψ̂) and ωi by taking the maximum over all linearizations
in the corresponding spaces of ε-weak functions.
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In Chapter 30 we derive a posteriori error estimates for the error in
computing a force acting on a body in a flow, which is a special case of
Theorem 27.1 for a particular choice of weight function ψ̂.

27.2 Proof of the a posteriori error estimate

To prove Theorem 27.1, we first use the definition of the ε-weak solution
û, to get

|((R(û), ϕ̂))| ≤ ε‖ϕ̂‖V̂ .

For the remaining terms in (27.3), we use partial integration to obtain
a scalar product of the strong residuals (27.4) and an interpolation error
in the dual solution. Integration by parts in the viscous term results in
non zero boundary integrals over interior element boundaries ∂K \ ∂Ω, for
each t, since ∇U is piecewise constant in x over the elements, and thus
discontinuous over interior element boundaries. This is not the case for the
pressure term since the pressure is continuous in x over element boundaries,
and so is the interpolation error ϕ− Φ.

To estimate the element boundary integrals we use a standard finite ele-
ment technique, where we first rewrite the sum of interior element boundary
integrals as a sum of jumps of the form [ν∇U · nS ] in normal derivative
over all interior faces S in Tn, with nS being a globally defined unit normal
vector associated with the face S. We then attribute half of the jump to
each of the two elements sharing the face and rewrite the sum again over
the elements K ∈ Tn, to get

|M(û) −M(Û)| ≤ εSε(ϕ̂) +

N
∑

n=1

{|(U̇ + (U · ∇)U + ∇P − ν∆U − f, ϕ− Φ)n|

+ |(∇ · U, θ − Θ)n| + |
∫

In

∑

K∈Tn

∫

∂K\∂Ω

1

2
[ν∇U · nS ] · (ϕ− Φ) ds dt|

+

∫

In

∑

K∈Tn

|SDδ(Û ; ϕ̂)| dt}.

To estimate the interpolation error ϕ − Φ over the space-time domain
Ω × In we introduce ϕ̄, a temporal average of ϕ over In, defined by

ϕ̄(x) =
1

kn

∫

In

ϕ(x, s) ds. (27.5)

Theorem 27.1 then follows from the following interpolation estimates:
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27.3 Interpolation error estimates

Lemma 27.2 For (v, w) ∈ L2(In; [L2(Ω)]3×L2(Ω)), (ϕ, θ) ∈ L2(In; [H2
0 (Ω)]3×

H2(Ω)), with (ϕ̇, θ̇) ∈ C(In; [L2(Ω)]3×L2(Ω)), and (Φ,Θ) ∈ W 3
0n×Wn con-

stant in time, we have

|(v, ϕ− Φ)n| ≤
∫

In

∑

K∈Tn

|v|K · (Ck
n,Kkn|ϕ̇|K,∞ + Ch

n,Kh
2
n,K |D2ϕ|K) dt,

|(w, θ − Θ)n| ≤
∫

In

∑

K∈Tn

|w|K(Ck
n,Kkn|θ̇|K,∞ + Ch

n,Kh
2
n,K |D2θ|K) dt,

where hn,K is the diameter of element K ∈ Tn, and D2 measures second
order derivatives with respect to x.

We prove the first inequality:

|(v, ϕ − Φ)n| ≤ |(v, ϕ− ϕ̄)n| + |(v, ϕ̄ − Φ)n| = I1 + I2.

Using the mean value theorem, with η, ζ ∈ In, we get for (x, t) ∈ Ω × In
that

ϕ(x, t) − ϕ̄(x) = ϕ(x, t) − ϕ(x, ζ) = ϕ̇(x, η)(t − η) ≤ Ckn max
η∈In

|ϕ̇(x, η)|.

Cauchy-Schwarz inequality on each element gives

I1 ≤
∫

In

∑

K∈Tn

|v|K · (Ck
n,Kkn max

η∈In

|ϕ̇(η)|K) dt.

For I2, both ϕ̄ and Φ are constant in time. We first use Cauchy-Schwarz
inequality on each element, and then a standard interpolation estimate in
x of the form ‖h−2

n,K(ϕ̄i − Φi)‖K ≤ C‖D2ϕi‖K , for each t ∈ In, to get

I2 ≤
∫

In

∑

K∈Tn

|v|K · (Ch
n,Kh

2
n,k|D2ϕ|K) dt.

The proof of the second inequality in the lemma is similar to the proof of
the first inequality.

Lemma 27.3 For w ∈ L2(In; [L2(Ω)]3), ϕ ∈ L2(In; [H2
0 (Ω)]3), ϕ̇ ∈ C(In; [H1(Ω)]3),

and Φ ∈W 3
0n constant in time, we have

|
∫

In

∑

K∈Tn

∫

∂K\∂Ω

w · (ϕ− Φ) ds dt|

≤
∫

In

∑

K∈Tn

|w|∂K\∂Ω · (Ck
n,Kkn|ϕ̇|∂K\∂Ω,∞ + Ch

n,Kh
3/2
n,k |D2ϕ|K) dt,

where hn,K is the diameter of element K ∈ Tn, and D2 measures second
order derivatives with respect to x.
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We have

|
∫

In

∑

K∈Tn

∫

∂K\∂Ω

w · (ϕ− Φ) ds dt| ≤ |
∫

In

∑

K∈Tn

∫

∂K\∂Ω

w · (ϕ− ϕ̄) ds dt|

+|
∫

In

∑

K∈Tn

∫

∂K\∂Ω

w · (ϕ̄− Φ) ds dt| = I1 + I2.

For I1 we use the Cauchy-Schwarz inequality for each element, then (27.6),
to get

I1 ≤
∫

In

∑

K∈Tn

|w|∂K\∂Ω · (Ck
n,Kkn max

η∈In

|ϕ̇(η)|∂K\∂Ω) dt.

I2 is estimated by the Cauchy-Schwarz inequality for each element, and the

standard interpolation estimate ‖h−3/2
n,K (ϕ̄i − Φi)‖∂K\∂Ω ≤ C‖D2ϕi‖K , for

each t ∈ In, to get

I2 ≤
∫

In

∑

K∈Tn

|w|∂K\∂Ω · (Ch
n,Kh

3/2
n,k |D2ϕ|K).

27.4 G2 as Adaptive DNS/LES

To formulate an adaptive algorithm for G2 for a given output, we start
from the a posteriori error estimate given by Theorem 27.1 written in the
form:

|M(û) −M(Û)| ≤
∑

K∈Tk

EK ≡
∑

K∈Tk

eK
D,h + eK

M,h ≡ eD,h + eM,h, (27.6)

where eD,h represents the discretization error from the Galerkin part of G2,
and eM,h represents a modeling error from the stabilization in G2. We here
assume that the error contribution from the ε-weak solution û is neglible
compared to eD,h + eM,h.

The adaptive algorithm, which we refer to as Adaptive DNS/LES, can
now be formulated as follows:

Algorithm 27.1. [Adaptive DNS/LES]. Given an initial coarse com-
putational space mesh T 0, start at k = 0, then do

(1) Compute approximation to the primal problem using T k.

(2) Compute approximation to the dual problem using T k.

(3) If
∑

K∈Tk

Ek
K < TOL then STOP, else:
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(4) Mark a fraction of the elements in T k for refinement, based on the
size of Ek

K,h.

(5) Refine the mesh T k using a standard mesh refinement algorithm,
which gives a new refined mesh T k+1.

(6) Set k = k + 1, then goto (1).

By refining the mesh size h, also the time step k and the stabilization SDδ

are refined implicitly, since both k and δ depend on h. The stabilization may
thus be thought of as being implicitly modified as we refine the mesh. But
the a posteriori error estimates also allow for a direct adaptive modification
of both the time step k and the stabilization SDδ, by locally refining k and
δ, respectively.

There are many potential optimizations of the adaptive algorithm, such
as using dynamically changing meshes, adaptively refining the order of the
approximation spaces in hp-methods [38], adaptively refined time steps, and
using techniques of multi adaptivity [70], with adaptive choice of different
time steps in different parts of the domain.

A pertinent question in this context is the choice of the parameter δ in
the SDδ-term. The rule is to choose δ(x) ∼ h(x), but how do we know that
this is correct? It is in fact possible to choose δ to be larger, at the expense
of possibly having to refine more to decrease in particular the modeling
error eM,h. However, choosing δ smaller eventually makes the numerics
explode and the discretization error eD,h becomes large. We are thus lead
to adaptively choosing δ so that both eD,h and eM,h are small, or more
generally to adaptively choose the form of the stabilization SDδ, as a form
of adaptive modeling.

Also, the efficiency of the algorithm depend on how large fraction of
the elements that are refined at each step. If we refine few elements each
iteration, we may expect to avoid unnecessary refinement in areas not so
crucial for the output error, but on the other hand we risk to end up with
an unnecessary large number of iterations. In the computations below we
usually refine a fraction of about 5%-30% of the elements in each iteration.

27.5 Computation of multiple output

Often one is interested in several different output from one single com-
putation. The objective is then to construct an adaptive method to con-
trol the errors in all the different output, and there are various ways to
achieve this. Assuming we are interested in a number of different output
Mk(û) ≡ ((û, ψ̂k)), with k = 1, ..., N , we first note that to evaluate the
sum of the errors

∑

k |Mk(û) −Mk(Û)|, the straight forward way is to use
the linearity of the dual problem (13.4) to compute solutions ϕ̂k to the
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corresponding N dual problems

a(û, Û ; v̂, ϕ̂k) = ((v̂, ψ̂k)), ∀v̂ ∈ V̂0.

Although, with N large this could be quite expensive. A cheaper way is
to instead compute the error ê = û− Û from the error equation

a(û, Û ; ê, ŵ) = ((R(Û), ŵ)), ∀ŵ ∈ V̂0, (27.7)

with the R(Û) the residual defined by (4.1). The error equation (27.7) is
independent of k, and we can then evaluate the error in each output Mk

from the scalar product with the corresponding data ψ̂k, that is

Merr
k = Mk(û) −Mk(Û) = Mk(ê) = ((ê, ψ̂k)).

For adaptive mesh refinement we need error indicators for each element
individually, which is not possible to obtain only from the errorM err

k . Using
the linearity of the dual problem we note that we obtain the sum of the
output errors M err

k as

∑

k

Merr
k =

∑

k

Mk(û) −Mk(Û) = ((R(Û), ϕ̂− Φ̂)) +

∫ T

0

SDδ(Û ; Φ̂) dt,

(27.8)

where ϕ̂ is the solution to a dual problem with data
∑

k ψ̂k. Now, if we
know the signs of the errors M err

k , we may use this to avoid cancellation
in (27.8) by using the linearity of the dual problem to get

∑

k

|Merr
k | =

∑

k

(sgn Merr
k )Merr

k = ((R(Û), ϕ̂− Φ̂)) +

∫ T

0

SDδ(Û ; Φ̂) dt,

(27.9)
where ϕ̂ now is the solution to a dual problem with data

∑

k(sgn Merr
k )ψk .

One approach is then to solve the error equation (27.7), see [37], from which
sgn Merr

k can be obtained.

27.6 Mesh refinement

In each step of the adaptive algorithm a certain fraction of the elements
are marked for refinement. Depending on the geometry of the elements in
the mesh, various algorithms are avaliable for refining the mesh.

For example, in the case of a tetrahedral mesh, one may choose to subdi-
vide each marked tetrahedron into 8 new smaller tetrahedrons, which may
correspond to subdividing each triangular element face into 4 new triangles.
This type of regular subdivision is not unique, and there are different ways
to choose which way to subdivide. In addition, to avoid so called hanging
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nodes, one has to refine an additional number of tetrahedrons neighboring
the marked elements.

The design and analysis of mesh refinement algorithms is an active area of
research that we will not go into further in this book. The algorithms used
for the computations in this book are described at the FEniCS homepage:
(http://www.fenics.org).
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28
Implementation of G2 with FEniCS

G2 methods for various differential equations, including the NS equations,
are implemented in FEniCS.

FEniCS was initiated in 2003 by research groups at Chalmers University,
University of Chicago and Toyota Technological Institute at Chicago in-
cluding Johan Hoffman, Claes Johnson, Robert Kirby, Anders Logg, Ridg-
way Scott and others. FEniCS builds on the earlier DOLFIN project by
Hoffman and Logg [55], and Analysa by Scott [9]. FEniCS can be freely
downloaded from the project homepage: http://www.fenics.org.

FEniCS is organized as a collection of sub projects/components, with
DOLFIN [2] being the C++ interface of FEniCS, providing a consistent
PSE (Problem Solving Environment) for solving ordinary and partial dif-
ferential equations. In addition, a Python interface PyDOLFIN is also avali-
able.

FEniCS currently hosts the following independent projects:

• FFC FEniCS Form Compiler: translates a differential equation in
mathematical notation into efficient computer code for element stiff-
ness matrices.

• FIAT : computes finite element basis functions.

• FErari : optimizes computation of element stiffness matrices.

• Ko: automates the simulation of mechanical systems.

• Sieve: data structures for parallel representation of meshes.
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• DOLFIN : applications master program

Linear algebra in FEniCS uses PETSc [3].
Features of DOLFIN today include: a simple, consistent and intuitive

object-oriented API, automatic and efficient evaluation of variational forms
through FFC, automatic and efficient assembly of linear systems, support
for general families of finite elements, including continuous and discontinu-
ous Lagrange finite elements of arbitrary order on triangles and tetrahedra
through FIAT, support for arbitrary mixed elements, including Taylor-
Hood, high-performance parallel linear algebra through PETSc with sim-
ple C++ wrappers, triangular and tetrahedral meshes, including adaptive
mesh refinement and mesh hierarchies, multi-adaptive mcG(q)/mdG(q)
and mono-adaptive cG(q)/dG(q) ODE solvers, and support for a range of
output formats for post-processing, including DOLFIN XML, MATLAB,
Octave, OpenDX, GiD, Tecplot and Paraview/VTK.

The method cG(1)cG(1) presented in Chapter 25 is implemented in
DOLFIN as a module, including demo examples.

We refer to the FEniCS homepage (http://www.fenics.org) for an up
to date account of FEniCS and the various components.
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29
Moving Meshes and ALE Methods

29.1 Introduction

The space-time formulation of G2 naturally opens the possibilty of allow-
ing the space mesh to move in time in Lagrangian or Arbitrary Lagrangian
Eulerian (ALE) methods, as generalizations of the Eulerian method pre-
sented in Chapter 25 with the space mesh being fixed in time. Letting
the nodes of the space mesh move with the fluid velocity corresponds to a
Lagrangian Characteristic Galerkin method, while moving the space nodes
with a different velocity gives an ALE method. G2 as ALE thus includes
both Eulerian and Lagrangian methods as special cases.

Lagrangian or ALE methods are useful to handle problems with free
or moving boundaries where the geometry in space changes with time. In
such problems the space-time mesh may change continuously in time by
letting the boundary nodes move according to specification and letting
the internal nodes follow in ALE using mesh smoothing, combined with
occasional remeshing with projection into the new mesh to avoid too strong
mesh distortion.

29.2 G2 formulation

We consider the incompressible NS equations on a general space-time do-
main Q = {(x, t) : x ∈ Ω(t), t ∈ I = (0, T ]}, with the space domain Ω(t)
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with boundary Γ(t) occupied by the fluid at time t changing with t:

u̇+ (u · ∇)u− ν∆u+ ∇p = f in Q,
∇ · u = 0 in Q,

u(·, 0) = u0 in Ω(0),
(29.1)

combined with boundary conditions on Γ(t) for t ∈ I modeling a free
boundary or a boundary with prescribed motion. We start by assuming
Γ(t) has a prescribed motion given by a prescribed velocity u on Γ(t), and
we return to the case of a free boundary below.

To define G2 for (29.1) let 0 = t0 < t1 < ... < tN = T be a sequence of
discrete time steps with associated time intervals In = (tn−1, tn] of length
kn = tn − tn−1 and define the space-time slabs Sn = {(x, t) ∈ Q : t ∈ In}.
Let Wn ⊂ H1(Ω(tn−1)) be a finite element space consisting of continuous
piecewise polynomials of degree p on a mesh Tn = {K} of mesh size hn(x).
Let for a given velocity field β on Sn satisfying the velocity boundary
condition, the particle paths x(x̄, t̄) be defined by

dx

dt̄
= β(x, t̄) t̄ ∈ In,

x(x̄, tn) = x̄, x̄ ∈ Ω(tn−1),
(29.2)

and introduce the corresponding mapping F β
n : S̄n → Sn defined by (x, t) =

F β
n (x̄, t̄) = (x(x̄, t̄), t̄), where x = x(x̄, t̄) satisfies (29.2), and S̄n = Ω(tn−1)×
In. Define for a given q ≥ 0, the spaces

V̄ β
n = {v̄ ∈ H1(S̄n)3 : v̄(x̄, t̄) =

q
∑

j=0

(t̄− tn)jUj(x̄), Uj ∈ [Wn]3},

Q̄β
n = {q̄ ∈ H1(S̄n) : q̄(x̄, t̄) =

q
∑

j=0

(t̄n − tn)jqj(x̄), qj ∈ Wn},

together with their analogs in (x, t)-coordinates:

V β
n = {v : v̄ ∈ V̄ β

n }, Qβ
n = {q : q̄ ∈ Q̄β

n}, (29.3)

where v(x, t) = v̄(x̄, t̄) and q(x, t) = q̄(x̄, t̄) and (x, t) = F β
n (x̄, t̄).

Defining finally V β ×Qβ =
∏

n V
β
n ×Qβ

n, we can now formulate the G2-

method as a generalization of (25.3) as follows: Find Û = (U, P ) ∈ V β×Qβ

satisfying the boundary conditions, such that for n = 1, 2, ..., N,

(U̇ + (U · ∇)U, v)n − (P, div v)n + (q, divU)n + (2νε(U), ε(v))n

+ SDδ(Û ; v̂)n + ([Un−1], vn−1
+ ) = (f, v)n ∀v̂ = (v, q) ∈ V β

0n ×Qβ
n,

(29.4)

where V β
0n satisfies homogeneous Dirichlet boundary conditions, and

SDδ(Û ; v̂)n ≡ (δ1(a(U ;U, P ) − f), a(U ; v, q))n + (δ2divU, div v)n (29.5)
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where a(w; v, q) = v̇ + w · v + ∇q − ν∆v with the Laplacian defined ele-
mentwise, δ1 = κ1(k

−2
n + |U |2h−2

n )−1/2 in the convection-dominated case
ν < Uhn and δ1 = κ1h

2
n otherwise, δ2 = κ2hn if ν < Uhn and δ2 = κ2h

2
n

otherwise, with κ1 and κ2 positive constants of unit size, and (·, ·)n indi-
cates integration over Sn.

The Eulerian version of G2 is obtained choosing β = 0, which means
that the mesh does not move in time. G2 in the form of a characteristic
Galerkin method is obtained by choosing β = U which means that the mesh
moves with the computed fluid velocity. Choosing β differently gives various
ALE-methods, with the mesh and particle velocity being (partly) different;
for example we may move the mesh with the particle velocity at a free
boundary, while allowing the mesh to move differently inside the domain. In
extreme situations with very large velocity gradients, we may add residual
dependent shock-capturing artificial viscosity as in the Eulerian formulation
(25.3). G2 for Stokes equations is obtained by omitting the nonlinear terms
(U · ∇)U and (U · ∇)v, and setting δ1 = κ1h

2, δ2 = κ2h
2.

Since in the local Lagrangean coordinates (x̄, t̄) on each slab Sn with
β = U ,

∂Ū

∂t̄
≡ ∂

∂t̄
U(x(x̄, t̄), t̄) = U̇ + U · ∇U,

the convection term U · ∇U effectively dissappears in the characteristic
Galerkin method, when expressed in the characteristic coordinates (x̄, t̄),
and thus the discrete equations on each time step effectively correspond to
a Stokes problem, choosing δ1 = κ1h

2
n.

29.3 Free boundary

A free boundary Γ(t) has homogeneous Neumann boundary conditions cor-
responding to zero boundary stress and moves with the velocity of the fluid.
The velocity on a free boundary is thus not specified but free to vary in
the variational formulation of G2. We also add a least squares stabilization
of the discrete boundary stress to the left hand side of the G2 formulation
(29.5), of the form

< δ3 σ(u, p) · n, σ(v, q) · n >n, (29.6)

where

< v,w >n=

∫

In

∫

Γ(t)

v · w ds dt, (29.7)
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29.4 Laplacian Mesh Smoothing

In ALE methods with the mesh velocity and fluid velocity possibly being
different, we may use various techniques of mesh modification to guarantee
that the space mesh does not get tangled or too distorted with negative
effects on conditioning of the discrete equations and on interpolation ac-
curacy. In mesh smoothing the nodes of the mesh are moved in order to
improve a certain mesh quality measure, without changing the connectivity
of the mesh.

Laplacian mesh smoothing is based on solving a discrete Laplacian equa-
tion representing a spring model of the mesh, or on a diffusion model possi-
bly with a variable diffusion coefficient. In its simplest form Laplacian mesh
smoothing amounts to an iteration over the nodes in the mesh, where each
node is moved to the geometric center of its neighbors.

Laplacian mesh smoothing is suitable when small deformations of the
mesh suffice to improve the quality. In Section 29.6 we present a different
mesh modification strategy which can handle the large deformations arising
in the case of moving objects.

29.5 Mesh Smoothing by Local Optimization

We also present a mesh smoothing algorithm, where for each node we
optimize the shape of the tetrahederons surrounding the node. A point
x = (x1, x2, x3) in a tetrahedron E can be written as a linear combina-
tion of the coordinates p = (p1, ..., p4) of the nodes (N1, ..., N4) of E using
barycentric coordinates a = (a1, ..., a4), as follows

x = a1p1 + ...+ a4p4, (29.8)

with a1 + ...a4 = 1. We can express the barycentric coordinates a of x in
the form

a = Ax+ b, (29.9)

where A is a 4 × 3 matrix. We now aim to minimize the cost functional
F(N), given by

F(N) =
∑

E∈E(N)

κ(ATA), (29.10)

for node N , where E(N) are the elements that contain the node N and
κ(ATA) is the condition number of the 3 × 3 matrix ATA. This loosely
corresponds to minimizing the difference between the elements E and the
equilateral reference element.

We now seek the entries of the matrix A. We denote by ni the outward
normal vector corresponding to the face opposite the local node Ni, given



29.5 Mesh Smoothing by Local Optimization 207

by any pairwise vector product of edge vectors on this face. The following
equality

(x− pi) ·
ni

ci
= (1 − ai) =

{

0 x = pi,
1 x = pj , j 6= i,

(29.11)

gives the entries of matrix A in (29.9) as

a1(x) = (−n1

c1
) · x+ (1 + p1 · n1

c1
),

a2(x) = (−n2

c2

) · x+ (1 + p2 · n2

c2

),

a3(x) = (−n3

c3

) · x+ (1 + p3 · n3

c3

),

a4(x) = (−n4

c4
) · x+ (1 + p4 · n4

c4
),

(29.12)

where
c1 = (p2 − p1) · n1,
c2 = (p1 − p2) · n2,
c3 = (p1 − p3) · n3,
c4 = (p1 − p4) · n4.

(29.13)

Based on the cost functional F(N) there are various ways to set up a
minimization algorithm. For example, we may use the following algorithm:
For k = 0 and S = {all free nodes in the mesh}, do

(1) If k = max no iterations STOP, else

(2) Find node N ∈ S with largest cost functional F(N)

(3) Find coordinates of N that minimize the cost functional F(N)

(4) Remove N from S

(5) Goto (1)

To minimize F(N) we may use a Conjugate gradient method, where we,
for example, use the QR-algorithm to find the eigenvalues of ATA in the
evaluation of the cost functional F(N).

To illustrate the method we consider a simple example with a flat 3d
object that we rotate slightly in a tetrahedral mesh, see Figure 29.1. We
find that after only a few iterations the maximal condition numbers are
reduced by a factor 10, through moving the nodes with the highest cost
functional.

In Figure 29.2 we rotate the flat object π/4 radians, where we find that
for this large deformation the Laplacian mesh smoothing is not enough to
ensure geometric quality of the elements in the mesh. Again we find that
a few iterations of the local smoothing algorithm significally improves the
mesh quality.
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FIGURE 29.1. Locally distorted mesh before (upper left) and after (upper right),
100 iterations of the local optimization algorithm. The weighted l2-norm (lower
left) and the max-norm (lower right), of the square root of the condition numbers
of ATA as functions of number of iterations.
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FIGURE 29.2. Rotated object mesh before (upper left) with Laplacian mesh
smoothing, and after 100 iterations of the local optimization algorithm (upper
right). The weighted l2-norm (lower left), and the max-norm (lower right) of the
square root of the condition numbers of ATA as functions of number of iterations.
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29.6 Object in a box

The mesh smoothing techniques of the previous sections may be very effi-
cient for small deformations of the mesh, but for a mesh undergoing large
deformations these techniques may not be enough. We then need a strategy
to handle large deformations of the mesh.

One common approach is to simply remesh (generate a new mesh) if
the mesh deformation cannot be handled by standard mesh smoothing
techniques. The downside of this approach is the cost of remeshing, as well
as the loss of accuracy from projecting the solution from the old mesh to
the new mesh.

We now present a mesh moving strategy for the case of an object moving
through the mesh, which we refer to as object in a box, where the goal is to
(i) allow for large deformations of the mesh while still keeping good mesh
quality, and (ii) avoid remeshing.

The idea is that we split the computational domain Ω(t) into two parts:
(i) a box Ωb(t) ⊂ Ω(t) that fits (ii) a regular background mesh that fills
the rest of the domain Ω(t) \Ωb(t). Within the box Ωb(t) we may have an
unstructured mesh around the object. When the object moves, the main
part of the mesh deformation is handled by translation of the box, or π/2
radians rotation of the box, on the regular background mesh. The remaining
deformation, which then is small, is taken by the mesh inside the box and
is handled through regular mesh smoothing techniques such as the ones
presented above.

The key ingredients are then the algorithms for translation and rotation
of the box Ωb, which we now describe.

We illustrate the box translation algorithm in Figure 29.3, where the
moving object is a thin plate with dimension 0.25 × 0.0625 × 0.25 in a
cubic domain Ω = [0, 1] × [0, 1] × [0, 1] that is moving in negative x2-
direction within a box Ωb = 0.5× 0.5625× 0.5. We find that as the plate is
moving, the box Ωb follows and the mesh outside the box is not deformed.
Inside the box the small deformations are handled through Laplacian mesh
smoothing, and good mesh quality is kept. The algorithm for translation
of the box in direction xi takes the following form:

Algorithm 29.1. [Box translation in direction xi] With a box Ωb =
[xmin

1 , xmax
1 ]× [xmin

2 , xmax
2 ]× [xmin

3 , xmax
3 ], and with hreg

i the mesh size
of the regular background mesh outside the box, do

(1) For all nodes in Ωb: xi = xi + hreg
i .

(2) For all object nodes: xi = xi − hreg
i .

(3) For all nodes in Ωb such that xi = xmax
i +hreg

i : xi = xi − (xmax
i −

xmin
i + hreg

i ).

(4) For all nodes in the box: apply mesh smoothing.
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(5) Update connectivity for Ωb and the rest of the mesh.

In Figure 29.4 we illustrate box rotation using Algorithm 29.2, with
Laplacian mesh smoothing, where now the box Ωb is equal to the whole
computational domain Ω.

Algorithm 29.2. [Box rotation around axis ei] With a box Ωb =
[xmin

1 , xmax
1 ]× [xmin

2 , xmax
2 ]× [xmin

3 , xmax
3 ], and with hreg

i the mesh size
of the regular background mesh outside the box, do

(1) Rotate the object −π/2 radians around the axis ei, using mesh
smoothing inside the box Ωb.

(2) Rotate all nodes in Ωb π/2 radians around the axis ei.

(3) Update connectivity for Ωb and the rest of the mesh.

The update of the connectivity after rotation takes some consideration
to match the two parts of the mesh. The nodes typically match, but not
the elements in general. For example, with rectangular elements there is no
problem, but for tetrahedrons the element faces do not match.

There are several ways to approach this. We may use special matching
elements at the box boundary, such as pyramids using tetrahedrons inside
the box and rectangular elements in the rest of the structured domain.
Another approach is to use a discontinuous method locally, allowing non
matching element faces on the box boundary.

The global object in a box algorithm takes the form:

Algorithm 29.3. [Object in a box] At time step k do

(1) If the global translation coordinate φt
i for the object in the direction

xi is larger than the tolerance TOLt
i(h

reg
i ), then translate the box

in that direction using Alogrithm 29.1.

(2) If the global rotation coordinate for the object φr
i around the axis

ei is larger than the tolerance TOLr
i , then rotate the box in that

direction using Alogrithm 29.2.

(3) Move the object according to given mesh velocity.

(4) Smooth the mesh inside the box.

(5) Solve the equations for time step k.

29.7 Sliding mesh

Variants of the object in a box method are possible. For example, comput-
ing the flow in a rotating turbine, a rotating cylinder may be used, which
is referred to as a sliding mesh method.
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FIGURE 29.3. Box translation with Laplacian smoothing, for an
0.25 × 0.0625 × 0.25 object inside a 0.5 × 0.5625 × 0.5 box.
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FIGURE 29.4. Box rotation with Laplacian smoothing, for an 0.25×0.0625×0.25
object inside a 1 × 1 × 1 box.
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FIGURE 29.5. Mesh for moving 0.25 × 0.0625 × 0.25 object inside a channel.

FIGURE 29.6. Magnitude of the velocity |u| for moving 0.25 × 0.0625 × 0.25
object inside a channel.
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30
Bluff Body Flow

Flow visaulization has from early times played an important part in
research, always yielding qualitative insight, and recently also quan-
titative results. (Milton Van Dyke)

30.1 Introduction

A basic flow of great practical importance is bluff body flow, occuring in
a large number of situations including vehicles moving through air/water
such as cars, boats and airplanes, or flow of air/water around bodies at
rest such as buildings, bridges, off-shore structures or cables. One of the
basic problems of bluff body flow is to compute the drag coefficient cD ,
which is a normalized mean value in time of the momentary drag force at
time t, which is the total force at time t acted upon the body by the fluid.
Similarly, the lift coefficient cL is a normalized mean value in time of the lift
(force) acting in a direction perpendicular to the flow. The drag coefficient
of a car or airplane directly couples to the fuel consumption, and the lift
coefficient of an airplane to its load carrying capacity, both of which are of
prime concern.

The flow around a bluff body at higher Reynolds numbers is turbulent
in a wake attaching to the rear of the body. As the shape of the body
gets more streamlined, the wake gets smaller and the drag decreases. A
non-streamlined body like a T-Ford may have cD ≈ 1, a modern more
streamlined car may have cD ≈ 0.3, and a streamlined airfoil at subsonic
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speed may have cD ≈ 0.01. The drag has a contribution from the pressure
distribution on the body surface, the pressure drag or form drag, and a con-
tribution from the viscous forces, the skin friction. For a non-streamlined
body skin friction is a small fraction of the total drag, while for an airfoil
it may contribute up to 50 percent.

Bluff body flow exhibits basic phenomena such as boundary layer flow,
separation, and transition from laminar to turbulent flow, to which we also
devote separate chapters below.

In this chapter we present a set of benchmark problems for which ex-
perimental reference data are available, including a surface mounted cube,
cylinders with square and circular cross sections and a sphere. The bluff
body is placed in a channel with a given inlet flow, which may be viewed
to model a wind tunnel test.

We first define the quantity of interest, drag or lift, then state an alter-
native expression for this quantity, and derive a corresponding a posteriori
error estimate, and then we proceed to present computational results. The
results indicate that the adaptive method is very efficient in terms of the
number of mesh points needed to approximate the quantity of interest to an
accuracy corresponding to the precision in experiments. For further details
of the computations we refer to [51, 41, 44, 42].

30.2 Drag and Lift

We consider a body with surface Γ0 placed in a horisontal channel and
surrounded by a fluid flow û = (u, p) which we assume is satisfying the NS
equations, to start with in a pointwise sense. The mean value in time over
a time interval I = [0, T ] of the total fluid force acting on the body surface
in a direction ψ = (ψ1, ψ2, ψ3), is given by

N(σ(û)) ≡ 1

|I |

∫

I

∫

Γ0

3
∑

i,j=1

σij(û)njψi ds dt, (30.1)

where σ(û) is the stress on Γ0 given by û. If ψ is directed along the channel
in the direction of the flow, then N(σ(û)) is a mean value in time of the
drag force. If ψ is directed upwards, then N(σ(û)) is a mean value in time
of the lift force. The drag and lift coefficients are normalized versions of
N(σ(û)) over a long time interval.

30.3 An Alternative Formula for Drag and Lift

Below we will use an alternative expression for the force N(σ(û)) which
naturally fits with both a weak formulation and a G2 discretization, where
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the boundary integral over Γ0 is replaced by a volume integral over the
volume Ω surrounding the body occupied by the fluid. To this end we
extend ψ to a function Φ defined in Ω and being zero on the remaining
boundary Γ1 = Ω \ Γ0 of the fluid volume. Multiplying the momentum
equation in (25.1) by Φ and integrating by parts, we get assuming a zero
Dirichlet boundary condition on Γ1,

N(σ(û)) =
1

|I |

∫

I

(u̇+ u · ∇u− f,Φ) − (p,∇ · Φ)

+(2νε(u), ε(Φ)) + (∇ · u,Θ) dt, (30.2)

where we have also added an integral of ∇ · u = 0 multiplied by a function
Θ. Obviously, this representation does not depend on Θ, or the particular
extension Φ of ψ. We note that the alternative expression (30.2) is more
naturally defined for an ε-weak solution to the NS equations û, than the
original expression (30.1) involving derivatives of u on the boundary.

Similarly we define the drag force Nh(σ(Û)) correspondning to a com-
puted G2 approximation Û = (U, P ) by

Nh(σ(Û )) =
1

|I |

∫

I

(U̇ + U · ∇U − f,Φ) − (P,∇ · Φ) (30.3)

+(2νε(U), ε(Φ)) + (∇ · U,Θ) + SDδ(Û ; Φ̂) dt,

where now Φ and Θ are finite element functions with Φ = ψ on Γ0 and
Φ = 0 on Γ1. Note in particular that we have here included the stabilization
term SDδ in (30.3) to make Nh(σ(Û)) independent of the choice of Φ̂ =
(Φ,Θ) in the finite element test space.

30.4 A posteriori error estimation

We introduce the following dual problem: Find ϕ̂ = (ϕ, θ) with ϕ = ψ on
Γ0 and ϕ = 0 on Γ1, such that

−ϕ̇− (u · ∇)ϕ+ ∇U · ϕ− ν∆ϕ+ ∇θ = 0, in Ω × I,
∇ · ϕ = 0, in Ω × I,

ϕ(·, T ) = 0, in Ω.
(30.4)

For û ∈ Ŵε an ε-weak solution to the NS equations, we derive a represen-
tation of the error N(σ(û))−Nh(σ(Û )) by subtracting (30.3) from (30.2),
with Φ̂ = (Φ,Θ) a finite element function in the test space of cG(1)cG(1),
to get

N(σ(û)) −Nh(σ(Û )) =
1

|I |

∫

I

(u̇+ u · ∇u,Φ) − (p,∇ · Φ)

+(2νε(u), ε(Φ)) + (∇ · u,Θ)− ((U̇ + U · ∇U,Φ) − (P,∇ · Φ)

+(2νε(U), ε(Φ)) + (∇ · U,Θ) + SDδ(Û ; Φ̂)) dt. (30.5)
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With ϕ̂ the solution to the dual problem (30.4), we also have, assuming
Dirichlet boundary conditions for the velocity:

1

|I |

∫

I

(u̇+ u · ∇u, ϕ) − (p,∇ · ϕ) + (2νε(u), ε(ϕ)) + (∇ · u, θ)

−((U̇ + U · ∇U,ϕ) − (P,∇ · ϕ) + (2νε(U), ε(ϕ)) + (∇ · U, θ)) dt

=
1

|I |

∫

I

−(ϕ̇, e) + (u · ∇e+ e · ∇U,ϕ) − (p− P,∇ · ϕ) (30.6)

+(2νε(e), ε(ϕ)) + (∇ · e, θ) dt = 0,

using partial integration with ϕ(T ) = e(0) = 0, where e = u−U , and that
(u · ∇)u − (U · ∇)U = (u · ∇)e + (e · ∇)U . By (30.5) and (30.6), we thus
have that

N(σ(û)) −Nh(σ(Û )) =
1

|I |

∫

I

(U̇ + U · ∇U,ϕ− Φ)

−(P,∇ · (ϕ− Φ)) + (∇ · U, θ − Θ) + (2νε(U),∇(ϕ− Φ))

−SDδ(Û ; Φ̂) − ((u̇+ u · ∇u, ϕ− Φ)

−(p,∇ · (ϕ− Φ)) + (∇ · u, θ − Θ) + (2νε(u),∇(ϕ− Φ))) dt

=
1

|I |

∫

I

(R(Û), ϕ̂− Φ̂) − SDδ(Û ; Φ̂) − (R(û), ϕ̂− Φ̂) dt,

adding and subtracting (f, ϕ− Φ), where we define

(R(ŵ), v̂) ≡(ẇ + w · ∇w − f, v) − (r,∇ · v)
+ (∇ · w, q) + (2νε(w), ε(v)),

(30.7)

for ŵ = (w, r) and v̂ = (v, q).
We have now proved the following error representation, where we express

the total output error as a sum of error contributions from the different
elements K in space (assuming here for simplicity that the space mesh is
constant in time), and we use the subindex K to denote integration over
element K so that (·, ·)K denotes the appropriate L2(K) inner product:

Theorem 30.1 If û = (u, p) is an ε-weak solution to the Navier-Stokes
equations, Û = (U, P ) is a cG(1)cG(1) solution, ϕ̂ = (ϕ, θ) is the dual
solution satisfying (30.4), and Φ̂ = (Φ,Θ) is a finite element function in the
test space of cG(1)cG(1) satisfying Φ = ψ on Γ0 and Φ = 0 on Γ1 = ∂Ω\Γ0,
then

N(σ(û)) −Nh(σ(Û )) =
∑

K∈Tn

EK ,
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where EK = eK
D + eK

M + eK
ε , with

eK
D =

1

|I |

∫

I

(RK(Û), ϕ̂− Φ̂)K dt,

eK
M =

−1

|I |

∫

I

SDδ(Û ; Φ̂)K dt,

eK
ε =

−1

|I |

∫

I

(RK(û), ϕ̂− Φ̂)K dt,

where (RK(·), ·)K is a local version of (R(·), ·), defined by (30.7).

We may here view eK
D as a Galerkin error contribution from G2 on ele-

ment K, eK
M as a modeling error contribution from stabilization in G2, and

eK
ε as an error contribution from the ε-weak solution û characterizing the

weak uniquness of û.
From the error representation in Theorem 30.1, there are various possibil-

ities to construct error indicators and stopping criterions for an adaptive
algorithm. Using interpolation estimates of the type presented in Chap-
ter 25, with Φ̂ a finite element interpolant of ϕ̂, we may estimate eK

D as
follows

eK
D ≤ 1

|I |

∫

I

(

(|R1(Û)|K + |R2(Û)|K) · (Chh
2|D2ϕ|K + Ckk|ϕ̇|K)

+ ‖R3(Û)‖K(Chh
2‖D2θ‖K + Ckk‖θ̇‖K)

)

dt,

where the residuals Ri are defined by

R1(Û) = U̇ + U · ∇U − ν∆U + ∇P − f,

R2(Û) = νD2(U),

R3(Û) = ∇ · U,
(30.8)

with

D2(U)(x, t) =
1

hn(x)
max
y∈∂K

|[∂U
∂n

(y, t)]|, (30.9)

for x ∈ K, with [·] the jump across the element edge ∂K,D2 denotes second
order spatial derivatives, and we write |w|K ≡ (‖w1‖K , ‖w2‖K , ‖w3‖K),

with ‖w‖K = (w,w)
1/2
K , and let the dot denote the scalar product in R

3.
The next step involves replacing the exact dual solution ϕ̂ by a computed

approximation ϕ̂h = (ϕh, θh) obtained by, for example, G2 on the same
mesh as we use for the primal problem. Doing so we are led to the following
a posteriori error estimate (omitting the ε-term):

|N(σ(û)) −Nh(σ(Û ))| ≈ |
∑

K∈Tn

EK,h| (30.10)
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where EK,h = eK
D,h + eK

M,h with

eK
D,h =

1

|I |

∫

I

(

(|R1(Û)|K + |R2(Û)|K) · (Chh
2|D2ϕh|K + Ckk|ϕ̇h|K)

+ ‖R3(Û)‖K · (Chh
2‖D2θh‖K + Ckk‖θ̇h‖K)

)

dt,

eK
M,h =

1

|I |

∫

I

SDδ(Û ; ϕ̂h)K dt,

where we have replaced the interpolant Φ̂ by ϕ̂h. Again we may view eK
D,h

as the error contribution from the Galerkin part of G2 on element K, and
eK

M,h as the contribution from the stabilization in G2 on element K.
Note that we may view the ε-weak solution û as an approximate solution

using maximal computational resources, and we may thus assume that
eK

ε << eK
D + eK

M , and therefore drop eK
ε . With this interpretation the term

eK
ε in Theorem 30.1 characterizes a best possible accuracy for the output
N(σ(·)) with the avaliable computational resources.

In the computations below we use Ck = 1/2 and Ch = 1/8 as constant
approximations of the interpolation constants in Theorem 30.1. These val-
ues are motivated by a simple analysis on reference elements, using Taylor’s
formula. More detailed approximation of interpolation constants is possible
using a computational approach for each element individually.

Non-Dirichlet boundary conditions, such as slip boundary conditions at
lateral boundaries and transparant outflow boundary conditions, introduce
additional boundary terms in the error representation in Theorem 30.1, but
since the dual solution in the bluff body examples in this chapter is small
at such non-Dirichlet boundaries, we neglect the corresponding boundary
terms in the computations below.

We use Algorithm 27.1 for adaptive mesh refinement in space (with for
simplicity the same space mesh for all time steps) based on the a posteriori
error estimate (30.10).

30.5 Surface Mounted Cube

The flow past a surface mounted cube may serve as a very simple model of
the flow of air around a moving car, or the flow past a building, for example.
In this model the incoming flow is laminar time-independent forming a
horse shoe vortex upstream the cube, and a laminar boundary layer on the
front surface, which separates and develops a turbulent wake attaching to
the rear face of the cube. The flow is thus very complex with a combination
of laminar and turbulent features including boundary layers and a large
turbulent wake, see Figure 30.1.

In the model problem the cube side length is H = 0.1, and the cube
is centrally mounted on the floor of a rectangular channel of length 15H ,
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height 2H , and width 7H , at a distance of 3.5H from the inlet. The cube is
subject to a Newtonian flow governed by the NS equations with kinematic
viscosity ν = 2.5 × 10−6 and a unit inlet bulk velocity corresponding to a
Reynolds number of 40 000, using the dimension of the cube as character-
istic dimension. The inlet velocity profile is interpolated from experiments,
we use no slip boundary conditions on the cube and the vertical channel
boundaries, slip boundary conditions on the lateral channel walls, and a
transparent outflow boundary condition.

30.5.1 The drag coefficient cD

The drag coefficient cD is a long-time mean value of a normalized drag
force. We seek an approximate drag coefficient c̄D over a finite time interval
I = [0, T ] with fully developed flow û, defined by

c̄D ≡ 1

ρ 1
2U

2
∞A

×N(σ(û)), (30.11)

where T = 40H , U∞ = 1 is a bulk inflow velocity, A = H × H = H2 is
the cube area facing the flow, N(σ(û)) is defined by (30.1), and we assume
constant unit density ρ = 1. We compute an approximate drag coefficient

c̄hD =
1

ρ 1
2U

2
∞A

×Nh(σ(Û)), (30.12)

with Nh(σ(Û)) defined by (30.3) and Û a cG(1)cG(1) approximate solu-
tion. We use an adaptive algorithm based on a normalized version of the a
posteriori error estimate (30.10).

In Figure 30.2 we display chD as a function of the number of mesh points in
space. We obtain chD ≈ 1.55, with the value seemingly being well captured
up to ±0.03 already using less than 105 mesh points. In each step of the
adaptive process we refine roughly 30% of the space elements. The drag
contribution from the stabilizing terms in (30.3) is notable on coarse meshes
but decreases to less than 5% on the finer meshes. The a posteriori error
estimate gives a tolerance of ±0.3, which seems to be an over-estimate by
a factor of 10, which can be attributed to the presence of absolute values
in the error estimation.

30.5.2 Dual solution and a posteriori error estimates

Snapshots of the dual solution and the adaptively refined computational
mesh are shown in Figure 14.3 and in Figure 30.3. The initial mesh is
uniform and very coarse, 384 mesh points, and we find that the adaptive
method automatically captures the turbulent wake and the horse-shoe vor-
tex.
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FIGURE 30.1. Surface mounted cube: Magnitude of velocity (upper), and pres-
sure color map, with isosurfaces for negative pressure, illustrating the horse shoe
vortex.
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FIGURE 30.2. Surface mounted cube: c̄h
D (’o’), and the corresponding approxi-

mations without the contribution from the stabilizing term (’:’), as functions of
the 10-logarithm of the number of mesh points.

FIGURE 30.3. Surface mounted cube: computational mesh refined with respect to
mean drag, in the x1x2-plane at x3 = 3.5H and in the x1x3-plane at x2 = 0.5H.
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In Figure 30.4 we plot the a posteriori error estimates eD,h =
∑

K eK
D,h

and eM,h =
∑

K eK
M,h from (30.10), as well as the true error based on the

computational approximation on the finest mesh. For the modeling error
eM,h we use a conservative estimate where we have set the absolute values
inside the sums in space and time.

We find that once the value for c̄hD is stabilized, the a posteriori error
estimates indicate that it may be hard to further increase the precision in
cD, which couples to the discussion above of a lower bound on the tolerance.
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FIGURE 30.4. Surface mounted cube: log10-log10 plot of the a posteriori error
estimates eD,h (’o’) and eM,h (’x’), and the true error (’*’) based on cD = 1.55
(the solution on the finest mesh), as functions of the number of mesh points in
space.

30.5.3 Comparison with reference data

We know of no experimental reference values of cD, but in [16] a DNS using
about 70×106 degrees of freedom gives cD ≈ 1.42 with the same data as in
our computations using G2. The stabilizing terms in (30.3) is not used in
the evaluation of cD, and the result should thus be compared to the curve
of somewhat lower values in Figure 30.2, resulting in a good agreement.

In [67] results using LES are reported where the computational setup is
similar to the one we use here, except the numerical method, the length of
the time interval, and the length of the channel. Using LES with different
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meshes and subgrid models, approximations of cD in the interval [1.14, 1.24]
are reported, thus significantly lower values.

We note that we reach the stable value of cD ≈ 1.5 using about 50 000
mesh points in space, which means that the adaptive method is very ef-
ficient in terms of the number of degrees of freedom, making the compu-
tations possible using a standard PC. In addition, we have an estimated
accuracy from the a posteriori error estimates, and a set of results for a
hierarchy of refined computational meshes reflecting convergence in output.

30.6 Square Cylinder

We now consider a square cylinder at Reynolds number 22 000, based on the
cylinder diameter D = 0.1 and the unit inflow velocity in the streamwise
direction. The computational domain is a channel of size 21D×14D×4D in
the x1-direction with the cylinder directed in the x3-direction and centered
at (x1, x2) = (5D, 7D). We use no slip boundary conditions on the cylinder,
slip boundary conditions on the lateral channel walls, and a transparant
outflow boundary condition.

Characteristics of this flow are a turbulent wake of approximate diameter
1D attached to the trailing face of the cylinder, and two opposite shear
layers periodically shedding vortices, see Figure 30.5. In addition, we have
a cycle-to-cycle variation, so called phase jitter, due to turbulence and 3D
instabilities in the shear layers, which is illustrated in Figure 30.6 as a
time series of the vorticity showing the changing wake, with the shorter
wake, with more pronounced vortex shedding, corresponding to high drag
in Figure 30.7.

30.6.1 Computing mean drag: time vs. phase averages

We seek to compute the mean drag force N(σ(·)) of the square cylinder,
and we here choose an averaging time interval of length 100D, starting
at fully developed flow. The length of the time interval directly couples to
computability and output uniqueness ofN(σ(·)), with a longer time interval
resulting in a more well determined mean drag force which is cheaper to
compute from an accuracy point of view. On the other hand, for a longer
time interval the computational cost of course increases for each iteration
of the adaptive algorithm.

Phase jitter complicate the computation of time averages, since the time
averages are highly dependent of the size and location of the time interval,
and thus a very long time interval is needed for a well determined mean drag
force. This has lead to alternative ways to represent averages. For example,
one may consider so called phase averages, where a number of shedding
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FIGURE 30.5. Velocity |U | (upper), and pressure P (lower), in the x1x2-plane
at x3 = 2D.
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FIGURE 30.6. Time evolution of vorticity |∇×U |, in the x1x2-plane at x3 = 2D.
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cycles are chosen as “typical” for the flow, over which mean values are
computed.

We now seek the drag coefficient cD, which we approximate by c̄D, de-
fined by (30.11), with its computational version c̄hD given by (30.12), where
we set U∞ = 1 based on the inflow velocity, and the area A = 4D ×D =
4D2. In Figure 30.7 we plot computed approximations c̄hD as we refine ap-
proximately 30% of the elements in the mesh each iteration, where we also
include approximations without the stabilizing term in (30.3). For the finer
meshes we get a c̄hD in the interval 2.0-2.4, and a value about 5% lower for
the formulation without the stabilizing term. The large variation in c̄h

D can
be explained by effects of phase jitter and a relatively short time interval,
as noted above. In Figure 30.7 we plot the trajectory of the normalized
drag force for the finest mesh, where we notice the variations in amplitude
and local mean of the drag.

30.6.2 Dual solution and a posteriori error estimates

A snapshot of the dual solution is shown in Figure 30.8. We note that the
dual solution, with velocity boundary data on the cylinder in the stream-
wise direction, is of moderate size, and in particular is not exploding as
pessimistic worst case analytical estimates may suggest, but rather seems
to behave as if the net effect of the crucial reaction term (with large os-
cillating coefficient ∇U) is only a moderate growth. We also note that
ϕ̂h = (ϕh, θh) is concentrated in space, thus significantly influencing the
adaptive mesh refinement.

The resulting computational mesh after 9 adaptive mesh refinements is
shown in Figure 30.9. The initial space mesh is uniform and coarse, and
without the dual weights in the a posteriori error estimate the mesh would
come out quite differently. We notice in particular that the adaptive method
automatically captures the turbulent wake, which is essential for accurately
computing drag.

In Figure 30.10 we plot the a posteriori error estimates eD,h and eM,h

from (30.10), as well as an estimate of the true error based on the com-
putational approximations on the finest meshes, suggesting that 2.2 may
be a good candidate for a representative value of cD. The modeling error
eM,h consists of sums in space and time of integrals over the space-time
elements, and in the evaluation of eM,h in Figure 30.10 we have set the
absolute values inside the sums in space and time. The same goes for the
discretization error, and thus error cancellation is not possible, leading to
conservative error estimates.

30.6.3 Comparison with reference data

Various reference values for this problem are reported, including mean drag.
Experimental reference values for cD are reported in the interval 1.9-2.1,
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FIGURE 30.7. Square cylinder: Normalized drag force as a function of time af-
ter 9 mesh refinements (upper), and c̄h

D (’o’), the corresponding approximations
without the contribution from the stabilizing term in (30.3) (’*’), and the ap-
proximation with 2% white noise in inflow velocity (’�’), as functions of the
10-logarithm of the number of mesh points in space (lower).
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FIGURE 30.8. Square cylinder: dual velocity |ϕh| (upper), and dual pressure |θh|
(lower), in the x1x3-plane at x2 = 7D and in the x1x2-plane at x3 = 2D.
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FIGURE 30.9. Square cylinder: computational mesh after 9 adaptive mesh re-
finements with respect to mean drag, in the x1x3-plane at x2 = 7D and in the
x1x2-plane at x3 = 2D.
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FIGURE 30.10. Square cylinder: log10-log10 plot of the a posteriori error estimates
eD,h (’o’) and eM,h (’x’), and the true error (’*’) based on cD = 2.2, as functions
of the number of mesh points in space.

where the experiments are carried out under slightly different conditions
than the computations, such as a slightly lower Reynolds number, a longer
cylinder, and a turbulence level of 2% in the inflow velocity. In a collection
of results from different research groups [79], LES results are reported in
the interval 1.66-2.77, and RANS results in the interval 1.6-2.0.

To test the sensitivity in inflow data, we compare our results with a
computation with 2% white noise added to the inflow velocity. These results
are plotted in Figure 30.7, giving similar values for cD, although somewhat
lower, closer to the experimental results.

We find that apart from drag we are also able to capture the correct
frequency of the oscillating wake, characterized by the Strouhal number St,
defined as the dimensionless number

St =
fL

U∞
, (30.13)

where f is the frequency, L is a length scale (here equal to the cylinder
diameter: L = D), and U∞ is a velocity scale (here U∞ = 1).

In this study, the computation of chD corresponds to the interval [10, 20] in
Figure 30.7. We can see that translating this interval suitably would result
in a lower chD, within the tolerance of the experimental reference values. We
note that again we reach the targeted value for the drag coefficient using
very few mesh points.
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30.7 Circular cylinder

The flow past a circular cylinder is a classical problem of fluid dynamics.
In our model we consider a circular cylinder of diameter D and length 4D,
in the direction of the x3-axis, subject to a unit streamwise velocity inflow
condition in a channel along the x1-axis of length 21D and height 14D. We
use no slip boundary conditions on the cylinder, slip boundary conditions
on the lateral walls of the channel, and a transparant outflow boundary
condition at the end of the channel.

The flow past a circular cylinder depends on the Reynolds number. For
Re very low (Re less than 4-5) we have creeping flow without separation and
with high viscous drag. Inreasing the Reynolds number the flow separates
to form a steady, symmetric wake of recirculating flow, and further increas-
ing Re beyond 30-48 leads to the onset of an oscillation of the wake that
periodically sheds alternating vortices gradually developing downstream, a
so called von Kármán vortex street. Theodore von Kármán in 1911 inves-
tigated the stability of two rows of vortices, showing that such vortices are
generally unstable with respect to small perturbations and that the only
stable arrangement is that with h/l = 0.281, with h and l being the vertical
and streamwise distances between the center of the vortices, see Fig. 30.11.

FIGURE 30.11. Theodore von Kármán (1881-1963), and a von Kármán vortex
street for Re = 100.

The flow for higher Reynolds numbers is characterized by transition to
turbulence in different parts of the flow. First the wake undergoes transi-
tion, then the shear layers, and finally the boundary layers. The different
regimes are characterized by different separation and different shedding fre-
quencies. For Re < 100, cD is proportional to Re−1, for 100 < Re < 105 we
have cD ≈ 1, while for Re > 105 we find that the cD first drops significantly
and then rises back again. The drag reduction near Re = 105 is commonly
referred to as drag crisis, where the boundary layer undergoes transition,
leading to a delayed separation with a smaller wake, corresponding to a
drastic reduction of the drag. We come back to the problem of simulating
drag crisis in Chapter 32.
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A G2 approximation of the flow past a circular cylinder is plotted in
Fig. 30.12 for Re = 100. We find that the flow is two dimensional for
this low Reynolds number, and we clearly see the vortex shedding. For
Re = 3900, we find in Fig. 30.13 that we still have vortex shedding, but
now the flow is three dimensional, and we have a large turbulent wake
attached to the cylinder, see Fig. 30.14.

30.7.1 Comparison with reference data

The flow past a circular cylinder at various Reynolds numbers is probably
the most well documented bluff body flow, with an extensive amount of
experimental and computational results avaliable, see e.g. [87, 81].

In Fig. 30.15 we plot computational approximations of the drag coeffi-
cients using G2 for Reynolds numbers 100 and 3900, where we refine 10%
and 5% of the elements in each iteration, respectively. The normalization is
now U∞ = 1 and A = 0.1×0.4 = 0.04. For Re = 100 we get a c̄h

D somewhat
lower than 1.5, which is within the tolerance of experimental results, and
for Re = 3900 we have c̄hD slightly less than 1.0, which is consistent with
experiments. We also capture the correct Strouhal numbers, with St ≈ 0.16
for Re = 100 and St ≈ 0.22 for Re = 3900, where we average over a time
interval I = 35D/U∞.

We study the surface pressure on the cylinder as a function of an angle
starting from the upstream stagnation point of the cylinder, in the form of
a pressure coefficient cp, defined by

cp =
p− p∞

ρ 1
2U

2
∞

, (30.14)

where U∞ and p∞ are the free stream velocity and the free stream pressure,
respectively, and we assume constant unit density ρ = 1.

The normalization of cp in (30.14) couples to Bernoulli’s Law, stating
that for an incompressible irrotational inviscid fluid at steady state, we
have

1

2
|u|2 + p = C, (30.15)

with C an constant. If Bernoulli’s law is valid, we then have cp = 0 in
the free stream, and cp = 1 at the upstream stagnation point with zero
velocity. Typically, upstream the cylinder the flow is almost steady, and
thus Bernoulli’s law should be valid for ν small. On the other hand, for ν
large, corresponding to small Reynolds numbers, Bernoulli’s law may not be
valid, and thus cp may differ from 1. In Figure 30.16 we plot the pressure
coefficients for Re = 100 and Re = 3900, both matching experimental
results.
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FIGURE 30.12. Circular cylinder at Re = 100: magnitude of velocity |U | (upper),
and pressure P (lower).
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FIGURE 30.13. Circular cylinder at Re = 3900: magnitude of velocity |U | (up-
per), and pressure P (lower).
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FIGURE 30.14. Magnitude of vorticity isosurfaces for 3,5,10,20,...,100, for a cir-
cular cylinder at Re = 100 (upper), and Re = 3900 (lower).
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FIGURE 30.15. Circular cylinder: approximative drag coefficient as a function of
the 10-logarithm of the number of mesh points in space, for Re = 100 (upper)
and Re = 3900 (lower).
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FIGURE 30.16. Circular cylinder: Pressure coefficient cp as a function of an angle
starting at the stagnation point, for Re = 100 (upper) and Re = 3900 (lower).
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FIGURE 30.17. Circular cylinder at Re = 100: magnitude of dual velocity |ϕh|
(upper), and dual pressure |θh| (lower).
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FIGURE 30.18. Circular cylinder at Re = 3900: magnitude of dual velocity |ϕh|
(upper), and dual pressure |θh| (lower).
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FIGURE 30.19. Circular cylinder: Computational mesh for Re = 100 (upper),
and Re = 3900 (lower).
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FIGURE 30.20. Circular cylinder: A posteriori error estimates eD (’o’) eM (’x’),
for Re = 100 (upper) and Re = 3900 (lower).
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30.7.2 Dual solution and a posteriori error estimates

In Fig. 30.17-30.18 we plot the dual solutions corresponding to approxima-
tion of drag, and in Fig. 30.19 we plot the resulting computational meshes.

Studying the different meshes, we note that the mesh corresponding to
Re = 100 is almost symmetric in the streamwise direction, and that the
mesh refinement is spread wider vertically for this laminar flow than for
the turbulent flow corresponding to Re = 3900. For Re = 3900, the mesh
refinement is concentrated to the boundary layer of the cylinder and to the
turbulent wake.

Overall, the mesh refinement is more localized for the higher Reynolds
number, which is consistent with the dual problem being convection dom-
inated, whereas the dual problem for the lower Reynolds number is more
viscous and thus spreads the data more. For example, this results in a
larger sensitivity to boundary conditions for low Reynolds numbers than
for large.

In Fig. 30.20 we plot the a posteriori error estimates, where we find
that the convergence rate is faster for Re = 100 than for Re = 3900, in
particular the convergence with respect to the discretization error is slower
for Re = 3900.

30.8 Sphere

The next example is the flow around a sphere with diameter D = 0.1,
centered at (5.5D, 7.5D, 7.5D), in a channel of dimension 10D×15D×15D.
We use no slip boundary conditions on the sphere, unit streamwise inflow
velocity, slip boundary conditions on the lateral walls, and a transparant
outflow boundary condition at the end of the channel.

A typical benchmark problem for turbulent flow in the literature con-
cerns the case of Re = 10 000, and here the experiences from using G2 is
very much the same as for the circular cylinder. We plot the solution in
Fig. 30.22, and in Fig. 30.21 we plot the approximation of cD as we refine
5% of the elements in each iteration of the adaptive algorithm.

For the sphere we have cD ≈ 0.40, which thus is less than half the drag
of the cylinder, and in Fig. 30.22 we find that the wake behind the sphere
is smaller than for the cylinder, consistent with lower drag.

30.8.1 Comparison with reference data

Using less than 30 000 nodes we capture the experimental reference value
cD ≈ 0.40, and for the finer meshes using less than 105 nodes we capture
the correct frequency St ≈ 0.20. Compared to LES computations with ad
hoc mesh refinement [20, 19, 21], G2 is about a factor 10-40 times cheaper
in terms of the number of mesh points.
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30.8.2 Dual solution and a posteriori error estimates

In Fig. 30.22 we plot snapshots of a dual solution and in Fig. 30.23 we
plot the resulting computational mesh, where we note that again mesh
refinement is concentrated to the boundary layers and the turbulent wake.
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FIGURE 30.21. Sphere: approximative drag coefficient as a function of the 10-log-
arithm of the number of mesh points in space.



248 30. Bluff Body Flow

FIGURE 30.22. Sphere: magnitude of velocity and pressure (upper), and magni-
tude of dual velocity and pressure (lower).
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FIGURE 30.23. Sphere: computational mesh refined with respect to drag.
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31
Boundary layers

“Prandtl’s contribution of the boundary layer was to realize that we
can view the flow as being divided into two regions. The bulk of the
flow can be regarded as a potential flow essentially the same as that
studied by the mathematicians. Only in a small region near the body
do viscous effects dominate.” (On Ludwig Prandtl 1875-1953)

A common feature of fluid flow is the appearance of boundary layers,
which are thin regions adhering to the boundary where the tangential fluid
velocity rapidly changes from being zero at the boundary to taking on a
non-zero value inside the fluid volume. Boundary layer flow represents shear
flow, notably with strong shear because the tangential velocity gradient is
large in the direction normal to the boundary. In Chapter 34 we shall see
that laminar flows with strong shear are unstable and turn turbulent in
a process of transition from laminar to turbulent flow. This process takes
some time and therefore a boundary layer may stay laminar over some
distance in the direction of the flow before transition. Boundary layers
thus may be laminar or turbulent and the precise location in space-time
for transition may be sensitive to surface roughness or inflow perturbations.

The generic model case of boundary layer flow is represented by flow
over a (horisontal) flat plate with no-slip velocity boundary conditions. In
this chapter we briefly recall some of the material concerning this model
problem usually presented in texts on fluid dynamics based on heuristics
of qualitative dimensional analysis or experiments. A goal of this heuristics
has been to design wall models which can be used in conjunction with the
NS equations instead of no-slip conditions to model the flow in turbulent
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boundary layers without resolving the flow. The design of wall models is
a part of turbulence modeling and carries the same difficulties, see [80] for
an overview.

We compare the heuristics with some computational results using G2
without using any wall model. We find that we can simulate the transition
in the boundary layer from laminar to turbulent flow on a PC, and we are
able to compute the correct drag in the turbulent boundary layer found in
experiments.

For bluff body flow, the contribution to drag from skin friction of the
boundary layer is small, since drag is dominated by the pressure drop.
However, the general flow pattern including the size and form of the turbu-
lent wake and the location of boundary layer separation may significantly
influence the drag. In Chapter 30 we found that we were able to compute
the coorect drag and capture the large scale features of the flow, such as the
separation, without resolving the boundary layers to their physical width.

Although, the problems in Chapter 30 are all flows with laminar sep-
aration, that is the boundary layer stays laminar before separation. For
very high Reynolds numbers the boundary layer undergoes transition to
turbulence before separation, which delays the separation of the boundary
layer. We discuss this phenomenon further in Chapter 32, where we offer
a solution with a very simple wall model, based on a friction boundary
condition. Transition to turbulence is further discussed in Chapter 34.

31.1 Flat plate laminar boundary layer

We consider fluid flow of viscosity ν over a flat horisontal plate with a lead-
ing edge facing a constant inflow velocity U∞. We estimate the thickness δ
of a laminar boundary layer at a distance l from the leading edge assuming
balance of the inertia and viscous forces estimated by

Fviscous = |ν∆u| ≈ νU∞

δ2
,

Finertia = |u · ∇u| ≈ U2
∞

l
,

(31.1)

which gives δ ∼ (νl/U∞)1/2, or more precisely with a heuristic constant,

δ = 5

√

νl

U∞
. (31.2)

We see that qualitatively speaking, the boundary layer thickness increases
as the viscosity and the distance from the leading edge increase, and de-
creases as the inflow velocity increases.
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31.2 Skin friction for laminar boundary layers

We noted in Chapter 30 that a bluff body drag force has a contribution
from skin friction, which is the friction force from the viscous stresses at the
boundary, and from pressure drag, which relates to the pressure drop over
the bluff body. For a flat horisontal plate the pressure does not contribute to
the drag, and the drag is then equal to the skin friction, which we normalize
to a skin friction coefficient cf by dividing by 1/2× ρAU2

∞, with constant
unit density ρ = 1, and A = bl the area of the plate with b the width and
l the length. We note the difference compared to Chapter 30, where we
normalized the bluff body drag coefficient cD by an area based on the cross
section of the object normal to the flow.

The shear stress τ0 on the plate is given by

τ0 = ν

(

∂u1

∂x2

)

0

(31.3)

with x2 the direction perpendicular to the plate, and u1 the streamwise ve-
locity component. Estimating (∂u1/∂x2)0 ∼ U∞/δ, we obtain τ0 ∼ ν U∞/δ,
and using (31.2) we get

τ0 ∼
√

νU3
∞

l
. (31.4)

The total drag force D on the plate is then τ0bl, which, with b the width
of the plate, would then be

D ∼ b
√

νU3
∞l, (31.5)

with the total drag being proportional to b, ν1/2, U
3/2
∞ and l1/2. For the skin

friction coefficient (or drag coefficient) for laminar boundary layer flow, we
then obtain with a heuristic constant

cf =
D

1
2 bl U

2
∞

= 1.328

√

ν

U∞l
. (31.6)

31.3 Skin friction for turbulent boundary layers

There are various attempts to derive models for the boundary layer thick-
ness and skin friction for turbulent boundary layers, where the models are
typically based on assumptions on the turbulent mean velocity profile and
fit to experimental data.

For a flat plate, one may introduce a type of Reynolds number

Rel = U∞l/ν, (31.7)

which is based on the length of the plate l, and typically one finds in
experiments that the skin friction cf for a turbulent boundary layer is
proportional to Re−0.2

l [81], that is a very weak dependence on Rel.
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FIGURE 31.1. Transition to turbulence in a boundary layer computation, intro-
ducing Taylor-Görtler type perturbations (see Chapter 34) of amplitude 0.1 at
the inflow.

31.4 Computing skin friction by G2

As an example, we consider a flow over a flat plate with U∞ = 1, b = 1, and
ν = 10−4. We assume a laminar boundary layer thickness δ = 0.2, which
corresponds to

l =

(

δ

5

)2
U∞

ν
=

(

0.2

5

)2
1

10−4
= 16, (31.8)

using (31.2), corresponding to a Reynolds number Rel = 1 × 16/10−4 =
1.6 × 105. The corresponding skin friction of the laminar boundary layer
would be

cf = 1.328

√

10−4

1 × 16
≈ 3.3 × 10−3.

We note that this is orders of magnitude lower than the drag for the bluff
body problems in Chapter 30, for which the pressure drop dominates. For
a turbulent boundary layer, one finds in experiments that cf at Rel ≈ 105

is about 5 × 10−3 [81].
We now compute a boundary layer flow in a channel of dimension 12×1×

1 using G2. We initialize the computation with a linear streamwise velocity
profile in a boundary layer of thickness 0.2 at the floor of the channel, given
by initial and inflow data. The mesh is of dimension 129× 33 × 33 nodes,
with 21 nodes vertically for 0 < x2 ≤ 0.2 and 12 nodes vertically for
0.2 < x2 ≤ 1. We introduce small rotational perturbations of size 0.1, and
notice transition from laminar to turbulent flow at a certain distance from
the inlet. Perturbations of this type are referred to as Taylor-Görtler type
perturbations. We will come back to the problem of transition to turbulence
in more detail in Chapter 34.

We now use the techniques of Chapter 30 to compute the drag (equal to
skin friction) over the floor of the channel viewed as a plate. Using (30.3)
to approximate drag gives a drag force D ≈ Nh(σ(Û)), and normalizing
with the relevant plate area, we have

cf ≈ Nh(σ(Û))
1
2U

2
∞bl

, (31.9)
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where we get cf ≈ 3× 10−3 for the laminar part of the boundary layer and
cf ≈ 5×10−3 for the turbulent part, thus in accordance with experimental
findings [81].

31.5 Summary

We have in this chapter given a glimpse into laminar/turbulent boundary
layer flow including transition from laminar to turbulent flow. Using G2 we
were able to simulate transition to turbulence in a flat plate boundary layer,
where we found that our approximations of the skin friction coefficient cf

was in accordance with experimental data, both in the case of a laminar
and a turbulent boundary layer.
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32
Separation

The scientist describes what is; the engineer creates what never was.
(Theodore von Kármán 1881-1963)

Separation in a boundary layer occurs where the tangential flow velocity
changes sign and recirculation occurs. Similarly, a separated flow may reatt-
tach where the tangential velocity changes sign in the opposite direction.
Alternatively, we may define separation/reattachment to occur where the
streamwise shear stress at the boundary changes sign. Separation is caused
by a positive pressure gradient in the streamwise direction, resulting in a
force opposing the flow with a retarding effect. If the opposing pressure
force is strong enough over a sufficiently long time, the tangential velocity
may change sign and separation will occur. We note that there is no sepa-
ration in a flow over a flat plate, since the streamwise pressure gradient is
negative.

In bluff body flow the drag depends critically on the location of sep-
aration, with an earlier separation (following the direction of the flow)
increasing the drag because of a lower pressure in the wake and a larger
pressure drop over the body. If the boundary layer undergoes transition to
turbulence before separation, the separation is delayed, corresponding to
drag crisis, with a significant reduction of the drag.

Separation is also connected to the Magnus effect causing a tennis ball
with top spin to curve down (as skillfully exploited by Björn Borg).
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32.1 Drag reduction for a square cylinder

For the bluff body problems with sharp corners in Chapter 30, the surface
mounted cube and the square cylinder, the flow separates at the sharp
leading edge of the body, to form a large turbulent wake resulting in high
drag, as compared to the rounded geometries of the circular cylinder and
the sphere with smaller wakes. For the surface mounted cube we have cD ≈
1.5 and for the square cylinder cD ≈ 2.2.

But why is the drag so much lower for the surface mounted cube than
for the square cylinder? One main difference between the two is the no-
slip boundary condition on the channel floor for the surface mounted cube,
implying that the difference in drag should connect to the presence of a
boundary layer upstream the surface mounted cube, which has no equiva-
lent for the cylinder. The presence of the boundary layer leads to separation
and the formation of a horse-shoe vortex upstream the surface mounted
cube, with less pressure build-up on the leading face of the cube compared
to the cylinder.

To check the validity of this explanation of the difference in drag, we
artificually introduce a boundary layer ahead of the square cylinder flow
by inserting a horisontal plate in front of the cylinder. As expected the
plate makes the flow separate ahead of the cylinder, causing cD to drop
from 2.2 to 1.4, see Fig. 32.1-32.2. The plate also causes the frequency in
the wake oscillation to increase from St ≈ 0.14 to St ≈ 0.16.

32.2 Drag crisis

In Fig. 32.3 we plot the drag coefficient cD of a circular cylinder as a func-
tion of Reynolds number, as obtained from experimental results presented
in the literature. We note that for Re < 100, cD is proportional to Re−1,
for 100 < Re < 105 we have cD ≈ 1, while for Re > 105 we find that cD
first drops significantly and then rises back again. The drag reduction near
Re = 105 is commonly referred to as drag crisis, which is related to tran-
sition to turbulence in the boundary layers causing a delayed separation.
Simulation of drag crisis is a major challenge of turbulence simulation.

To resolve the very thin boundary layer of a high Reynolds number flow is
too expensive, and thus many different wall-models have been proposed to
capture the effect of the boundary layer without resolving it to its physical
scale, see [80] for an overview.

Assuming the main effect of the boundary layer on the flow is the skin
friction, we propose in [43] a simple approach to model the effect of the un-
resolved boundary layer, based on a slip with friction boundary condition,
see Chapter 25, which may be viewed as a very simple wall-model. The
problem is then to choose a suitable friction coefficient β. We now go on to
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FIGURE 32.1. Isosurfaces for the magnitude of the vorticity for the cube (upper),
the cylinder (middle), and the cylinder with a plate (lower).
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FIGURE 32.2. Magnitude of the velocity for the cylinder with and without the
plate (upper), and a time series of the corresponding (normalized) drag forces
when introducing the plate (lower).
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present results from [43] using friction boundary conditions for simulating
drag crisis.

In [58, 59] such a boundary condition is used to study reattachement of
a low Reynolds number flow past a surface mounted cube in 2d and 3d as a
function of the friction parameter β, and it is found that the reattachement
is delayed with decreasig friction, as could be expected.

FIGURE 32.3. cD for a circular cylinder as a function of Reynolds number.

32.3 Drag crisis for a circular cylinder

We now turn to the issue of modeling drag crisis for a circular cylinder
of diameter D and length 4D, with the cylinder in the direction of the
x3-axis, subject to a unit streamwise velocity inflow condition (in the x1-
direction) in a channel of length 21D, width 4D, and height 14D. We
use slip boundary conditions on the lateral walls of the channel, and a
transparant outflow boundary condition at the end of the channel.

For very high Reynolds numbers the viscous ν-term in the computational
method (25.12) is neglible if we do not resolve the finest scales of the flow,
and may be dropped from the equation, corresponding to a cG(1)cG(1)
method for the Euler equations. Apart from the boundary conditions, the
dissipation in the flow is then only due to the stabilizing term in (25.12),
with the energy dissipation expressed in (15.6).

The main computational challenge that remains is to capture the correct
separation of the flow and the correct dissipation in the boundary layer.
Flow separation is determined by the force balance in the momentum equa-
tion, where an adverse pressure gradient in the flow direction results in a
force in the opposite direction which reduces the momentum. When this
retarding force has reduced the momentum to zero near the boundary the
flow separates. The skin friction of the boundary layer is reducing the mo-
mentum near the boundary, and thus high skin friction leads to an ear-
lier separation. And conversely, when the skin friction decreases with the
Reynolds number, the separation is delayed since the momentum near the
boundary increases.
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FIGURE 32.4. Drag crisis: magnitude of the velocity for G2 solutions for ν = 0;
β = 2 × 10−2 with cD ≈ 0.7 (upper left), β = 1 × 10−2 with cD ≈ 0.5 (upper
right), β = 5× 10−3 with cD ≈ 0.45 (lower left), and the mesh with 80 000 mesh
points (lower right), in the x1x2-plane for x3 = 0.2.
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The idea underlying the model of the boundary layer is here that for
flow separation, the important characteristic of the boundary layer is skin
friction, and thus that it should be possible to capture a correct separation
of the boundary layer as long as we have correct skin friction.

For the problems in Chapter 30 the flow separates from a laminar bound-
ary layer, corresponding to a relatively high skin friction, where it is possible
to capture the separation using no slip boundary conditions (corresponding
to β = ∞).

The criterion for choosing β should be that the skin friction in the com-
putation should be the same as in the physical problem. In Chapter 31 we
found that experimental results indicate that skin friction has a very weak
dependence on the Reynolds number, proportional to Re−0.2 in the case of
a flat plate, and thus a certain value for β should be characteristic for a
rather wide range of Reynolds numbers. Experimental results also indicate
that once we have drag crisis the separation is again rather stable for a
range of Reynolds numbers. The exact Reynolds number for when the sep-
aration point starts to move downstream seems to be hard to determine,
which is probably due to its relation to the transition to turbulence in the
laminar boundary layers, which in turn depends on the level of perturba-
tions in the boundary layer, which is very hard to determine in a realistic
problem, see Chapter 34. Thus, there is a range of Reynolds numbers, close
to where transition in the boundary layers occur, for which the separation
of the flow is very hard to predict. From an engineering point of view it is
then important to take both the sub-critical and the super-critical scenario
into account.

Our model is here a cG(1)cG(1) method for the Euler equations together
with a slip with friction boundary condition. Letting the friction parameter
β go from large to small values, we find that the separation point is moving
downstream. For β = 10−2 we are able to capture the delayed separation
of a drag crisis with cD ≈ 0.4, see Fig 32.4.

32.4 The Magnus effect

We consider the circular cylinder, now rotating counter-clockwise with
an angular velocity corresponding to a unit magnitude of the velocity at
the surface. The result of a computation using 62 000 nodes is shown in
Fig. 32.5, where we clearly see an asymmetric separation of the flow, and
an asymmetric pressure distribution, resulting in a downward force com-
ponent, with cL ≈ −1.5 and cD ≈ 1.

This phenomenon of a rotation resulting in a transversal force, is referred
to as the Magnus effect. The Magnus effect has been given different expla-
nations, with the traditional one being that the velocity at the surface of
the cylinder is enhanced on one side of the cylinder and decreased on the
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FIGURE 32.5. Asymmetric separation of a rotating cylinder (with the rotation
counter-clockwise).
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other side, which by Bernoulli’s law leads to an assymetric pressure and a
resulting transversal force. A more recent explanation is based on an assy-
metric boundary layer separation, where the separation is delayed on the
side which rotates in the same direction as the free stream velocity, and an
earlier separation on the opposite side. The resulting asymmetric wake is
then redirecting flow momentum downstream the cylinder, resulting in a
corresponding momentum on the cylinder in the opposite direction due to
the law of conservation of momentum. Of course, also in this mode of ex-
planation we can envoke Bernoulli’s law for the resulting velocity to explain
the transversal pressure difference.

Observations of a reverse Magnus effect are reported for high Reynolds
numbers, where the resulting transversal force acts in the opposite direc-
tion. An explanation of this phenomenon is a transition to turbulence in the
boundary layer on one side only, the side with the largest relative velocity,
which leads to a delayed separation on that side resulting in an assymetric
wake, now in the other direction.

32.5 Flow due to a cylinder rolling along ground

We now consider the problem of computing the flow due to a cylinder rolling
along ground. A typical application comes from the automotive industry,
where the flow of air past the wheels of a car or other vehicle is of much
concern, since the drag of the wheels is a significant part of the total drag.

In [45], we use a computational model where we assume uniform rota-
tion of a circular cylinder on flat ground, with the length of the cylinder
being equal to it’s diameter. In a coordinate frame moving with the con-
stant speed of the centre of the cylinder, the problem is to determine the
flow past a uniformly rotating circular cylinder with a fixed centre and in
contact with the ground moving with the same velocity as the oncoming
free stream of the fluid. The Reynolds number based on the free stream
velocity and the cylinder diameter is set to Re = 10 000. We compare our
results with a stationary cylinder on a stationary surface in a free stream,
modeling a stationary wheel in a wind tunnel. In Fig. 32.7-32.9 we plot
the solutions, the adaptively refined meshes, and the approximations of
the drag coefficients as we refine the mesh, with cD ≈ 1.3 for the rotating
cylinder and cD ≈ 0.8 for the stationary cylinder.

We note that since the ground is moving with the same speed as the flow
for the rotating cylinder, we have no boundary layer, and thus no separa-
tion of the flow upstream the cylinder, which makes the flow very different
from the flow past the stationary cylinder, where we have separation up-
stream the cylinder due to the presence of a boundary layer, similar to the
flow around a surface mounted cube. We also have an earlier separation
of the flow for the rotating cylinder, coupling to the Magnus effect. These
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differences have important practical implications, illustrating limitations of
wind tunnel testing.
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FIGURE 32.7. Snapshots of magnitude of velocity, for rotating (left) and station-
ary (right) cylinder, in the x1x2-, x1x3-, and x2x3-planes, through the center of
the cylinder.
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FIGURE 32.8. Snapshots of pressure and isosurfaces of negative pressure, for ro-
tating (left) and stationary (right) cylinder, in the x1x2-, x1x3-, and x2x3-planes,
through the center of the cylinder.
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FIGURE 32.9. Refined mesh for the rotating (left) and the stationary (right)
cylinder, in the x1x2-, x1x3-, and x2x3-planes.



270 32. Separation



This is page 271
Printer: Opaque this

33
EG2 and Turbulent Euler Solutions

In a reasonable theory there are no dimensionless numbers whose
values are only empirically determinable. (Einstein)

I am convinced that human flight is both possible and practical.
(Wilbur Wright 1899)

33.1 Turbulent Euler solutions

In Chapter 32 we introduced a skin friction model with friction parameter
β, to model the effect of an unresolved turbulent boundary layer.

We now turn to the question of what happens as β → 0, corresponding
to the Reynolds number Re→ ∞.

Our computational model then reduces to G2 for the Euler equations
with slip boundary conditions, which we here refer to as an Euler/G2 model,
or an EG2 model. We note that in this model the only parameter is the
discretization parameter h, and we show that some mean value output (such
as drag) may be independent of h, making EG2 a completely parameter-free
model of turbulent flow with respect to that output.

We study the flow past a circular cylinder where we find that as β → 0 the
separation points (lines) move downstream until they collapse into only one
separation point (line), resembling the potential solution with zero drag.
The potential solution is not stable and the single separation point (line)
starts to oscillate, leading to vortex shedding and turbulence downstream,
and for this solution the drag is high, sometimes even higher than for the
laminar separation at lower Reynolds numbers.
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That is, we have the following scenario as the friction parameter β → 0
(corresponding to Re → ∞) for the cylinder: (i) the laminar separation is
stable for a range of Reynolds numbers (Re ≈ 103−105) with drag cD ≈ 1.0,
(ii) we then for a range of Reynolds numbers have drag crisis with a reduced
wake and cD ≈ 0.4, when the separation points have moved downstream,
and then (iii) the separation points collapse into one separation point which
starts to oscillate resulting in vortex shedding and turbulence downstream,
corresponding to high drag, with cD ≈ 1.

The EG2 solution corresponds to a physical flow with a very high Reynolds
number, and we find solutions with similar characteristics of separation in
one point and turbulent vortex shedding e.g. in studying geophysical bluff
body problems, such as the flow of air past the Guadalupe Island or the
Canary Islands.

We note that the need of a reliable computational model for the case
Re → ∞ will increase, due to the large dimensions of civil-, offshore and
wind engineering structures of today.

33.2 The dual problem for EG2

We recall that in computing the drag for a body, the mesh is refined using
the a posteriori error estimate (30.10) based on a discrete approximation of
the continuous dual problem (13.4), with unit boundary data for the dual
velocity in the streamwise direction on the surface of the body.

The underlying error representation is based on the continuous dual prob-
lem, and thus we have to be careful so that the discrete (G2) approxima-
tion of the dual problem is a good enough approximation of the continuous
dual problem. For the problems in Chapter 30,32 we used no slip bound-
ary conditions for the primal problem, and we found that after some mesh
refinement the approximate dual weight in (30.10) is (approximately) in-
dependent of the mesh refinement, which is taken as an indication of the
validity of (30.10).

Since the normal component of the convection velocity field (the primal
velocity) in the dual problem is zero, the boundary data in the dual problem
is only transported into the interior of the domain by diffusion. Although,
with EG2 we have that ν = 0 and thus it is not obvious how the boundary
data is to be transported into the interior of the domain. In irregular parts
of the flow, the stabilization will act as a numerical diffusion that will spread
the data, but with the slip boundary condition in the primal problem the
flow near the boundary will be smooth since there is no boundary layer,
and thus the diffusion at the boundary will be very small.
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With ν = 0, the skin friction is zero and the mean drag FD of a body
with surface Γ0 is solely due to the pressure:

FD =
1

|I |

∫

I

∫

Γ0

pn1 ds dt, (33.1)

with n1 the streamwise x1-component of the normal.
For EG2, we propose in [43] to study instead the following quantity:

F̃D =
1

|I |
|Γ0|
|Γ̃0|

∫

I

∫

Γ̃0

pñ1 dx dt, (33.2)

with ñ1 a piecewise linear finite element function which is equal to n1 at
all nodes on Γ0 and zero at all other nodes. We define Γ̃0 ⊂ Ω as the union
of all cells in the mesh with at least one vertex on the surface Γ0. The
quantity F̃D is then defined in (33.2) as a weighted average of the pressure
p, which is of the same order of magnitude as FD. For example, for Γ0 a
straight line segment in 2d which is normal to the x1-axis, piecewise linear
approximation on uniform triangles, or bilinear approximation on uniform
quadrilaterals, gives that F̃D = 1/2 FD .

Formulating an adaptive method for the computation of F̃D instead of
FD leads to the same a posteriori error estimate (30.10), but now with a
different set of data for the dual problem. Instead of the boundary data for
the dual velocity leading to an error representation for FD , we are now lead
to choose the data in the dual problem as a force in the dual continuity
equation; that is we use homogeneous velocity boundary data, and the
source term ψ̂ = (ψ1, ψ2) in (13.4) we choose to be

ψ1 = 0, ψ2 =
|Γ0|
|Γ̃0|

ñ1. (33.3)

With this data the issue of the missing boundary layer for ν = 0 is
avoided. Instead the data (33.3) establishes a pressure difference over the
body in the dual problem, resulting (as expected) in a similar dual flow field
as for the dual problems at lower Reynolds number with a boundary layer,
see Fig. 33.1. Here we find that the dual solution with pressure data (33.3)
to a large extent resembles the dual solutions for β = 0.1, 0.01 (modulo
the different sizes of the turbulent wake), whereas the dual solution with
velocity boundary data is not able to transport the boundary data into the
interior of the domain, but only transports the data at the downstream sep-
aration point upstream. Similarly we find that the corresponding adaptive
mesh refinement algorithms result in different meshes.

We believe that the data (33.3) for the dual problem is more appropriate
also at lower Reynolds numbers, when a turbulent boundary layer is not
fully resolved.
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FIGURE 33.1. Magnitude of the dual velocity for β = 0.1 (upper left), 0.01
(upper right), 0 (lower left), using velocity boundary data, and for β = 0 using
pressure data (loer right), in the x1x2-plane for x3 = 0.2.

33.3 EG2 for a circular cylinder

The case of Re→ ∞ for a circular cylinder is in [87] referred to as the ulti-
mate regime or the T2 regime. Experimental results for the circular cylinder
is avaliable up to Re ≈ 107 [81, 87], for which drag is low, corresponding
to drag crisis.

In the recent book [87] this regime is descibed as the least known and
understood state of flow, and the main reason is the lack of data. In wind
tunnels there is an upper limit on the size of the cylinder, and increasing
the velocity eventually will make the incompressible flow model invalid, due
to effects of compressibility and cavitation. To find much higher Reynolds
numbers we have to consider flow problems with very large dimensions,
such as geophysical flows.

We now consider the case of β = 0 for the cylinder. As we refine the
mesh with respect to the error in drag, we find that the Euler/G2 solution
(or EG2 solution) approaches the potential solution, with separation in one
point (line) only, and with zero drag. But as the mesh is further refined
we find that the potential solution is unstable, and the separation point
starts to oscillate, see Chapter 11. The oscillations are not simultaneous
along the cylinder, instead there is a significant variation in the spanwise
direction. The oscillating separation line generates streaks of vorticity in
the streamwise direction, that undergo transition to turbulence causing
alternating vortex shedding downstream, see Fig. 33.3.
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We note that as soon as the potential solution looses stability, the drag
increases due to the assymetry of the flow, and as the vorticity generation
intensifies the drag increases further, see Fig. 33.2.

Indeed, studying geophysical bluff body problems, such as the flow of air
past the Guadalupe Island or the Canary Islands in Fig. 33.4, it is clear that
the flow separates in one point, which is consistent with the EG2 solution,
rather than in two points with a wake in between, which is the case for a
standard von Karman vortex street at low Reynolds numbers [74].

This indicates that the EG2 model may be very useful for geophysical
applications. We note that this model is cheap since we do not have to
resolve any boundary layers. The only parameter in the EG2 model is
the discretization parameter h, and after some mesh refinement the EG2
solution is independent of h with respect to certain mean value output, such
as drag for example. In particular, this means that we are able to determine
the dimensionless number cD (up to a tolerance) using a computational
model without any empirical constants.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FIGURE 33.2. Time series of cD for an EG2 solution.
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FIGURE 33.3. EG2: x3-vorticity at two different times, in two different sections
parallel to the x1x2-plane.

FIGURE 33.4. Clouds over the Guadalupe Islands (left) and the Canary Islands
(right).
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34
Transition to Turbulence

For a circular Poiseuille flow (pipe flow), as well as Couette flow, the
classical linear-instability analysis leads to stability, whatever the
Reynolds number and the wavenumber of the perturbation. Exper-
imentally, one observes also turbulent spots in these flows (Marcel
Lesieur).

For a time after this negative result (stability of Couette flow for all
Reynold’s numbers), it was thought that the method of small oscil-
lations (classical theory) was unsuitable for the theoretical solution
of the problem of transition. It transpired later that this was not jus-
tified, because Couette flow is a very restricted and special example
(Hermann Schlichting).

In this book I have tried to bring together into a coherent account
what I have learnt of hydrodynamic stability. Perhaps the most seri-
ous omission is the absence of any reference to viscous shear flow....in
the last an author chooses to write only about those matters in which
he has some confidence of his understanding (Subrahmanyan Chan-
drasekhar 1910-1995).

The sudden transition from smooth, laminar flow to turbulence as
the fluid velocity is gradually increased remains one of the least ade-
quately explained phenomena in all of classical physics (James Case,
SIAM News, 2002).
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34.1 Introduction

We now turn to the phenomenon of transition studied so intensively by
Reynolds, without conclusive answers. In fact, transition has remained as
one of the great mysteries of mechanics and physics. Reynolds unsuccessful
experiments clearly exhibits the main difficulty in approaching the question
of why and how transition takes place: Placing ourselves in the role of
Reynolds, we stand there in front of the transparent pipe waiting to see
the flow change from laminar to turbulent in front of our eyes. We stand
there many days without transition to occur, and then suddenly it occurs
one day, but then again not the next day. How are we to explain this
scientifically? The trouble is of course that we seek to observe a phenomen
of instability develop in front of our eyes. Now, if the flow we are watching
indeed is unstable as laminar flow, then most likely it will be turbulent
already from the beginning of the observation, since we would not be able
to initialize the flow as an unstable laminar flow. On the other hand, if
the flow is stable laminar, then it will continue to be so. In both cases
the desired event of transition will not occur in front of eyes and another
unsuccessful day of experiments will pass. Clearly, this would be frustrating
to any scientist and certainly was for Reynolds.

In relatively recent years starting in the 1970s a picture of the transi-
tion process has been emerging which resolves the paradox, but which is
still disputed by many fluid dynamicists and is not preseneted in standard
fluid dynamics courses. This picture sheds new light on the mechanisms
of perturbation growth, which is the central theme in any transition sce-
nario, because perturbation growth is necessary for the global change from
laminar to turbulent flow to occur. However, we seem to meet the same
difficulty as that indicated above, namely: If the perturbation growth is
large, then the flow can not be initialized as laminar, because large pertur-
bation growth means the laminar flow is unstable. On the other hand, if
the perturbation growth is small, then the flow will stay laminar. In both
cases transition will not take place in front of our eyes.

The reason the scientific analysis of transition has been delayed, and
still is, seems to be an unfortunate erronous interpretation of the stan-
dard mathematical explanation of perturbation growth, namely exponen-
tial growth connected to eigenvalues with positive real part of an associated
Jacobian in the linearized NS equations. This type of eigenvalue analysis is
also referred to as normal mode analysis focussed on finding exponentially
growing eigenmodes or eigenfunctions. The error comes from forgetting that
in order to give correct predictions, this perturbation analysis requires the
Jacobian to be normal (which means that it has a full set of orthogonal
eigenvalues as is the case if the Jacobian is symmetric). However, the Ja-
cobian of the linearized NS equations for laminar flow is non-normal with
degenerate eigenspaces or almost parallel eigenvectors, and in this case a
normal mode eigenvalue analysis is misleading. Because of the degenerate
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eigenspaces/vectors. In order for the laminar flow to be initialized there
can be no positive eigenvales, and thus all eigenvalues would have to have
non-positive real parts. A non-normal Jacobian may allow for algebraic per-
turbation growth over limited time until eigenvalues with (small) negative
real part eventually take over. We shall see that this phenomenon may ac-
count for a perturbation growth in laminar shear flow which is proportional
to the Reynolds number, thus with strong perturbation growth for large
Reynolds number. We shall below see that indeed this type of perturbation
growth is functional in the critical initial stage of the transition.

The other important aspect of transition is the perturbation level. We
already remarked that if the product of perturbation level and perturba-
tion growth is above a certain threshold, then transition will occur, and
only then. This explains Reynolds frustrating experience: every day the
perturbation growth was the same because the Reynolds number was the
same, but the perturbation level varied from one day to next, being large
enough for transition one day but not the next. In recent reproductions of
Reynolds’ experiments in his original basement laboratory at the Univer-
sity of Manchester, a general tendency was noticed of transition occuring
at lower Reynolds’ numbers today than hundred years ago. Most likely
this is due to the increased traffic outside the laboratory, since the experi-
ments were in both cases carefully performed with as small perturbations
as possible from the laboratory set-up itself.

The problem of transition to turbulence in shear flow has mathematical
features which seem to be present in a range of phenomena outside fluid
dynamics, sharing the aspects of transition from order to chaos, occuring
in e.g. crashes of stock markets, long-lasting marriages, superpowers, or
sudden deaths of living organisms et cet. All these cases share the features
of large algebraic perturbation growth arising from non-normality and have
perturbation threshold levels for transition.

34.2 The Challenge

We seek to explain transition in stationary Poiseuille flow in a pipe stud-
ied by Reynolds or the related Couette flow between two parallell plates,
both representing parallell shear flow also occuring in a laminar boundary
layer. We thus consider flows which remains stationary laminar if the per-
turbation level (in initial/boundary conditions or forcing) is below a certain
(small) threshold level, and which undergoe transition to turbulent flow for
perturbations above the threshold level. We refer to this type of flow as
conditionally stable. Depending on the perturbation level, pipe flow may
undergo transition for a wide range of Reynolds’ numbers from 1000 to
20 000. For sufficiently small Reynolds’ numbers, the flow stays stationary
laminar even under large perturbations.
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We present a new picture of transition which essentially can be found
in recent fluid dynamics literature, and which fundamentally differs from
the old picture based on normal mode analysis presented by e.g. Orr-
Sommerfeld. It is remarkable to note that the conflict between the two
pictures/theories has not been settled in the fluid dynamics community:
Both theories are usually presented as being valid, while in fact they are
so fundamentally different that they can not both be true. We will return
below to this intriguing aspect of the development of science.

We thus focus on stationary conditionally stable flow, such as Poiseuille
or Couette flow representing parallel stationary shear flow, the most basic
of all flows. In Poiseuille pipe flow the velocity distribution is parabolic,
while in Couette flow the velocity profile is linear, the simplest of all shear
flow distributions.

FIGURE 34.1. Couette flow (left) with a linear velocity profile, and Poiseuille
flow (right) with a parabolic velocity profile.

We formulate the following challenge of transition: Explain physically
and mathematically transition in conditionally stable stationary Poiseuille
and Couette flow. Note that we require the perturbation threshold to be
small. With large perturbations we may change the base flow to another
completely different flow, and then the original base flow will have no signif-
icance. Thus, the introduced perturbations will be small, but if transition
occurs then the result of these small perturbations will be a large pertur-
bation of the flow. Accordingly, transition is intimately connected to large
perturbation growth.

Further, large perturbation growth in Navier-Stokes equations directly
couples to large perturbation growth in the linearized Navier-Stokes equa-
tions linearized at the stationary base flow. If there is little perturbation
growth in the linearized equations, then there is little growth in the full
Navier-Stokes equations. We may express the perturbation growth in the
linearized equations as the problem of stability of this problem. Since the
base flow is conditionally stable the linearized equations cannot have any
exponentially unstable eigenmodes, that is all eigenvalues of the linearized
stationary equations have positive (stable) real part: there is no exponential
modal growth. The only possibility of perturbation growth in the linearized
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equations is then algebraic growth connecting to the non-normal structure
of the linearized equations. Typically, such algebraic growth is of the form
t exp(−νt) which takes on a maximum of size 1/ν for t ≈ 1/ν, thus rep-
resenting large perturbation growth proportional to the Reynolds number.
Typically, ν represents the real part of the eigenvalue with smallest real
part with the corresponding eigenmode having slowest exponential decay.

34.3 The Failure of Classical Stability Theory

The classical theory of hydrodynamic stability has been unable to ex-
plain transition in shear flow, because it is focussed on modal exponential
growth, which cannot be present in a conditionally stable flow. In partic-
ular, the classical stability analysis predicts Couette flow to be stable for
all Reynolds’ numbers at severe variance with experiments with transition
occuring for Reynolds numbers starting at around 300 depending on the
experiment. During the last decades the insight of the possibility of alge-
braic growth has been developing, which today offers a both mathematical
and physical explanation and understanding of the critical first stage in
the transition process. Pioneering work in this development was made by
Mårten Landahl in the early 1980’s, who pointed to the physical mechanism
behind of non-modal growth, followed up by many researchers.

If the new picture of non-modal growth is the correct one, then the
education of today in fluid mechanics could be rationalized a lot: almost
all fluid mechanics text books today present the classical theory including
more or less inventive “explanations” of its severe shortcomings concerning
transition in e.g. Couette flow, and all this material could be replaced by
something meaningful. This very process could itself be viewed as a form
of transition to a new education, following the same principles as we are
seeking to describe. At any rate, the notion of a critical Reynolds number for
transition, which is part of the classical theory, cannot have any meaning.
We motivate our standpoint in more detail below, based on a computational
study of perturbation growth, and we give more substance to the critics of
the old picture.

34.4 Non-modal Algebraic Perturbation Growth

We will below present the new picture of algebraic growth using a quantita-
tive mathematical/computational analysis of hydrodynamic stability which
concerns stability aspects of the NS equations. In particular, the analy-
sis/computations show that even if the dye injected by Reynolds into the
pipe indicates that fluid particles follow (almost) straight lines prior to
the transition, the flow actually gets considerably reorganized as a neces-
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sary preparation before the transition. We will refer to the reorganization
as resulting from the Taylor-Görtler mechanism (or lift-up in Landahl’s
terminology) through which small transversal velocity perturbations after
some time, result in large perturbations in the streamwise velocity, which is
the initial and crucial phase of the transition process, and which expresses
the large algebraic perturbation growth coupled to the non-normality of
the linearized Navier-Stokes equations when linearized at shear flow.

34.5 Different perturbations

The basic problem of transition is thus perturbation growth: if a small
perturbation may have a big effect on the flow, it may change the base
flow to a new base flow with potentially exponentially unstable modes
which in a secondary step may develop into a turbulent flow. The study
of transition of stationary shear flow thus must be the study of threshold
levels for different types of perturbations, with the threshold level being
defined as the smallest level of a particular type of perturbation that leads
to transition. We may call this a special threshold level characteristic of
a specific type of perturbation. Correspondingly, we may define a general
threshold level as the smallest level above which there is some perturbation
leading to transition, so that perturbations below the general threshold
level do not lead to transition.

Different perturbations may have very different perturbation growth, and
the perturbations with largest perturbation growth, referred to as optimal
perturbations, with correspondingly smallest threshold, of course must be
the study to find the general threshold level.

The mathematical analysis of initial transition concerns perturbation
growth in the linearized Navier-Stokes equations, with focus on identifying
optimal type perturbations. In particular one may expect to search for
optimal perturbations among eigen-modes which decay slowly.

The detailed analysis of threshold levels for transition can only be made
computationally by testing the effect of different perturbations, for example
with a focal objective to find optimal type perturbations.

We present below a computational study of transition with different
types of perturbations and techniques to identify perturbations with strong
growth and the corresponding general threshold levels.

34.6 Hydrodynamic stability

Hydrodynamic stability concerns the quantitative stability properties of
the incompressible Navier-Stokes equations, which are of basic importance
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for the understanding of phenomena of fluid flow such as bifurcation or
transition to turbulence.

The basic study of hydrodynamic stability concerns the linearized Navier-
Stokes equations for perturbations ϕ̂ = (ϕ, q) of a given solution û =
(u, p) of (25.1) corresponding to the initial data u0 and right hand side f ,
obtained by subtracting û = (u, p) from the solution û+ ϕ̂ = (u+ϕ, p+ q)
corresponding to the perturbed initial data u0 + ϕ0 and right hand side
f + g, and omitting the quadratic perturbation term (ϕ · ∇)ϕ:

ϕ̇+ u · ∇ϕ+ (ϕ · ∇)u− ν∆ϕ+ ∇q = g in Ω × I,
∇ · ϕ = 0 in Ω × I,

ϕ = 0 on ∂Ω × I,
ϕ(·, 0) = ϕ0 in Ω,

(34.1)

where (ϕ · ∇)u = (
∑3

j=1 ϕjui,j)
3
i=1 with v,j = ∂v/∂xj .

The basic question in hydrodynamic stability is to estimate the solution
(ϕ, q) of (34.1) in various norms in terms of appropriate corresponding
norms of the data (g, ϕ0), for example in terms of certain stability factors.
A basic example is given by the weak stability factor S0(u, T, ϕ

0) depending
on the base flow û, final time T and the perturbation ϕ0, defined by

S0(u, T, ϕ
0) =

‖ϕ‖I

‖ϕ0‖ , (34.2)

or the factor S0(u, T ) depending on the base flow u and the final time T
with a maximization over all perturbations, defined by

S0(u, T ) = sup
ϕ0∈L2

‖ϕ‖I

‖ϕ0‖ , (34.3)

where ϕ is the solution of (34.1) with g = 0 and initial data ϕ0 6= 0,
and ‖v‖ = ‖v‖L2(Ω), ‖v‖I = sup0<t<T ‖v(·, t)‖. The factor S0(u, T, ϕ

0)
measures the growth over the time interval (0, T ) of the perturbation ϕ0

of initial data, related to a special perturbation threshold, and the factor
S0(u, T ) measures the maximal growth over the time interval (0, T ) of a
perturbation of initial data, related to a general perturbation threshold.
We refer to these stability factors as weak because we measure the solution
itself and not derivatives thereof.

We now give estimates of the stability factor S0(u, T ) in two extreme
cases: a worst case with exponential dependence in KT , where K is a
measure of the gradient, related to an unstable flow with exponentially
growing eigenmodes, and a best case with linear dependence in KT related
to a conditionally stable flow with no exponentially growing eigenmodes.
Assuming that K = 1 and T = ν−1 = Re, the dependence can be expressed
as an exponential or linear dependence in the Reynolds’ number Re, with
the exponential dependence indicating instability even for moderately large
Reynolds’ numbers, while the linear dependence corresponds to a smooth
laminar flow.
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34.7 Worst case exponential perturbation growth

Multiplying the first equation of (34.1) by ϕ and integrating over Ω× (0, t),
using the incompressibility of both u and ϕ, one gets for t > 0:

‖ϕ(·, t)‖2 ≤ −2

∫ t

0

∫

Ω

(ϕ · ∇)u · ϕdxds+ ‖ϕ0‖2,

from which follows by the Grönwall inequality that S0(u, T ) ≤ exp(CKT ),
with C ≈ 1, which is a worst case exponential estimate. We note that
the exponential growth is generated by the presence of the zero order
term (ϕ · ∇)u, as in the simple scalar ode ψ̇ = Kψ with solution ψ(t) =
ψ(0) exp(Kt). A flow with this very strong perturbation growth cannot
exist as a stable flow. Since there are some more or less stable flows ob-
servable in nature, it must be possible in special cases to obtain reduced
growth rates by using particular features of the zero order coupling term
(ϕ ·∇)u. A basic such case arises in shear flow, with a particular coupling of
the perturbations of the velocities in streamwise and transversal directions,
which we now turn to.

34.8 Linear perturbation growth in shear flow

Shear flow is a basic type of flow, occuring in pipe flow and boundary
layer flow, where the streamlines are almost parallel straight lines and the
transversal variation of the streamwise flow velocity is balanced by a shear
force. We now show that for such flows the weak stability factor S0(u, T )
defined by (34.3) satisfies S0(u, T ) ≈ CKT , with C ≈ 1. This estimate
underlies the first crucial step in the scenario of transition to turbulence
in shear flow to be presented, showing that a perturbation growth ≈ ν−1

over time intervals of length T = ν−1 is possible even for smooth flows with
K = 1, indicating that a small initial perturbation (of size ν say) in fact
may cause the base flow to change significantly if we only wait long enough
(over a time interval ≈ ν−1).

We consider a smooth parallel stationary base flow (u, p) in an infinitely
long straight pipe Ω = R × ω, where ω in the (x2, x3)-plane is the cross-
section (with smooth boundary) of the pipe of diameter of size 1. The axis
of the pipe is oriented along the x1-axis, and u vanishes on the boundary
of the pipe. We assume that the base flow (u, p) is independent of x1 and
satisfies the following assumptions

‖u1‖ ≈ 1, ‖∇̄u1‖∞ = C, ‖ū‖∞ + ‖∇̄ū‖∞ ≤ cν, (34.4)

where ‖·‖∞ denotes the maximum norm, ū = (u2, u3), and ∇̄ = (∂/∂x2, ∂/∂x3)
is the gradient with respect to (x2, x3). Here and below, c and C denote
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positive constants of moderate size, which are independent of ν. The as-
sumption (34.4) including a smooth streamwise velocity u1 ≈ 1 in the x1

direction being independent of x1, and smooth small transversal velocities
ū of size ≈ ν, may be viewed as a basic characteristic of shear flow. A fur-
ther characteristic may be that the derivatives in the streamwise direction
x1 are one order smaller in ν, so that u1,1 ∼ ν and u2,1, u3,1 ∼ ν2. We will
return to this feature below in the presentation of the scenario of transition
to turbulence. We further assume as already indicated that T ∼ 1/ν = Re.

Assuming that also the perturbations (ϕ, q) are independent of x1, the
linearized equations (34.1) take the following form:

ϕ̇1 + u · ∇ϕ1 + (ϕ̄ · ∇̄)u1 − ν∆ϕ1 = 0 in ω × I,
˙̄ϕ+ u · ∇ϕ̄+ (ϕ̄ · ∇̄)ū+ ∇̄q − ν∆ϕ̄ = 0 in ω × I,

∇̄ · ϕ̄ ≡ ϕ2,2 + ϕ3,3 = 0 in ω × I,
ϕ = 0 on ∂ω × I,

ϕ(·, 0) = ϕ0 on ω.
(34.5)

These equations have a very particular structure. First, the equations for
the transversal velocity ϕ̄ are fully decoupled from the equation for the
streamwise velocity ϕ1, and have zero order terms with small coefficients
because |∇̄ū| ≤ cν. Secondly, the zero order term (ϕ̄ · ∇̄)u1 in the equation
for ϕ1 does not contain ϕ1, because u1,1 = 0. This means that the zero order
terms in (34.5) have a special form, which makes it possible to reduce the
general worst case exponential growth of S0(T ), to a linear growth. The
basic structure of the equations (34.5) is present in the system of ordinary
differential equations ϕ̇1 − ϕ2 = 0, ϕ̇2 = 0, for t > 0, ϕ0 = (0, ϕ0

2) with
solution ϕ1(t) = tϕ0

2, ϕ2(t) = ϕ0
2, showing a linear growth of ϕ1. The growth

in this system is very different from the exponential growth obtained by
changing the first equation to ϕ̇1 −ϕ1 = 0, with the exponentially growing
solution ϕ1(t) = exp(t)ϕ0

1, assuming now ϕ0
1 6= 0. Clearly, the change from

linear to exponential growth is related to the nature of the coupling, with
the direct coupling ϕ̇1 = ϕ1 being much stronger than the indirect coupling
ϕ̇1 = ϕ2, where ϕ̇2 = 0.

We now prove a basic estimate giving a linear growth bound in time of
the streamwise velocity perturbation ϕ1 generated by a small transversal
perturbation ϕ̄0. We refer to the physical phenomena causing this pertur-
bation growth as the Taylor-Görtler mechanism, which has a crucial role
in transition to turbulence. The bound is based on an energy estimate us-
ing the decoupling of ϕ1 and ϕ̄, resulting from the fact that q,1 = 0 and
ϕ1,1 = 0. Below we present computations showing that the bound is sharp
and that linear perturbation growth actually occurs.

Theorem 34.1 The stability constant S0(u, T ), defined by (34.3) in the
context of x1-independent pipe flow (u, p) satisfying (34.4), satisfies the
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following bound for T = ν−1:

S0(u, T ) ≤ Cν−1, (34.6)

where C depends on the constant c in (34.4). If the constant c is small
enough, then the estimate (34.6) holds for T ≥ ν−1 with ν−1 replaced by
T .

Proof: First, multiplying the equation for ϕ̄ by ϕ̄, and integrating over ω
using the fact that ∇̄ · ū = ∇̄ · ϕ̄ = 0, shows that

1

2

d

dt
‖ϕ̄‖2 + ν‖∇̄ϕ̄‖2 ≤ cν‖ϕ̄‖2.

Using Grönwall’s inequality, we then find that

‖ϕ̄(·, t)‖2 ≤ exp(Cνt)‖ϕ̄0‖2, 0 < t ≤ T.

Next, multiplying the equation for ϕ1 by ϕ1 and using again the fact that
∇̄ · ū = ∇̄ · ϕ̄ = 0, we get

1

2

d

dt
‖ϕ1‖2 + ν‖∇̄ϕ1‖2 ≤ C(

1

2
ν‖ϕ1‖2 +

1

2
ν−1‖ϕ̄‖2),

from which the desired estimate follows by integration. The modification
with c sufficiently small is straight forward. �

A challenge is to extend the above result to different base flows û = (u, p)
with slight x1-dependence. As a small contribution to this problem we
present the following example: we assume in addition to (34.4) that

‖u1,1‖∞ ≤ cν, ‖ū,1‖∞ ≤ cν2, (34.7)

where c is a positive constant, and we allow the perturbation velocity ϕ to
depend on x1, but we assume for the pressure part q that q,1 = 0 and that
correspondingly the incompressibility condition reduces to ϕ2,2 +ϕ3,3 = 0,
which corresponds to a slight compressibility of the original fluid with a
pressure perturbation q, which is constant in the x1-direction. In this case
the linearized perturbation equations take the form:

ϕ̇1 + u · ∇ϕ1 + (ϕ · ∇)u1 − ν∆ϕ1 = 0 in Ω × I,
˙̄ϕ+ u · ∇ϕ̄+ (ϕ · ∇)ū+ ∇̄q − ν∆ϕ̄ = 0 in Ω × I,

ϕ2,2 + ϕ3,3 = 0 in Ω × I,
ϕ = 0 on ∂Ω × I,

ϕ(·, 0) = ϕ0 on Ω,

which again decouples and thus is amenable to analysis as above.
The Orr-Sommerfeld equations are the linearized Navier-Stokes equa-

tions linearized at x1-directed parallel flow u = (u1(x2), 0, 0) between
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two parallel plates with normal in the x2 direction, assuming the per-
turbations are independent of the transversal direction x3 parallel to the
plates and also that ϕ3 = 0: find (ϕ(x1, x2, t), p(x1, x2, t)) such that for
|x2| < d, x1 ∈ R, t > 0,

ϕ̇1 + u · ∇ϕ1 + u1,2ϕ2 − ν∆ϕ1 + p,1 = 0,
ϕ̇2 + u · ∇ϕ2 − ν∆ϕ2 + p,2 = 0,

ϕ1,1 + ϕ2,2 = 0,
(34.8)

with ϕ(x1,±d) = 0, and the initial condition ϕ(x1, x2, 0) = ϕ0(x1, x2), and
where 2d is the distance between the plates. In the case of Couette flow
u1(x2) ∝ x2 and for Pouiseuille flow u1(x2) ∝ (1 − (x2/d)

2), the stability
factor S0(u, T ) turns out to be much smaller than the corresponding factor
for the linearized problem (34.5) with x1 independent perturbations. We
conclude that x3-independent perturbations seem to be less significant than
x1-independent perturbations, and thus conclude that the Orr-Sommerfeld
equations do not seem to be that relevant in initial transition to turbulence
in shear flow.

34.9 Computational transition in shear flows

In Section 34.6 we showed that linear perturbation growth proportional to
the Reynolds’ number is possible in parallel shear flow. We will now inves-
tigate this linear perturbation growth computationally, for conditionally
stable Couette and Poiseuille flows.

We now present computational results for Couette flow and Poiseuille
flow in a pipe along the x1-axis with square cross section 1 × 1, assuming
periodicity in the streamwise direction. We use cG(1)cG(1) on the unit
cube with a regular tetrahedral mesh with 65 × 65 × 65 nodes, and we set
the viscosity to ν = 1/10 000.

We further consider jet flow with periodic boundary conditions in all
directions, with initial streamwise velocity one in the jet and zero stream-
wise velocity outside the jet, on a computational domain 2 × 1 × 1 using
cG(1)cG(1) on a tetrahedral mesh with 65× 33× 33 nodes, again with the
viscosity set to ν = 1/10 000.

34.10 Couette flow

The Couette base flow u = (u1, 0, 0) has a linear streamwise velocity profile
u1 = 2x2 − 1, with streamwise velocity ±1 on the top and bottom. In the
streamwise and spanwise directions we use periodic boundary conditions.
We are interested in conditionally stable flows, and we thus first show that
Couette flow is conditionally stable.
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We present computational results for Couette flow with a random initial
perturbation of maximal size 1, centered in (0.5, 0.5, 0.5). That is, for each
velocity component we add a random perturbation, uniformly distributed
in (−1, 1), times a weight function 64×x1(1−x1)x2(1−x2)x3(1−x3). The
random perturbation may be considered to include contributions from all
modes, and in Fig.34.2-34.5 we find that most of these modes are quickly
damped out and leaves only a combination of a few modes with a slow
decay.

A small streamwise perturbation increases very slowly, but only as long as
the decreasing transversal perturbations are above a certain threshold. This
streamwise perturbation growth, caused by the Taylor-Görtler mechanism,
is here too weak to cause transition to turbulence.

Evidently this computational model of Couette flow is conditionally sta-
ble, since there exist perturbations for which the flow is stable.

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0 10 20 30 40 50 60
0

5

10

15

20

25

0 10 20 30 40 50 60
0

5

10

15

20

25

0 10 20 30 40 50 60
0

5

10

15

20

25

FIGURE 34.2. Couette flow (random initial perturbation): Perturbations ‖ϕi‖
as functions of time (upper left), derivatives ‖∂ui/∂x1‖ (upper right), ‖∂ui/∂x2‖
(lower left), and ‖∂ui/∂x3‖ (lower right) as functions of time.
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FIGURE 34.3. Streamwise velocity isosurfaces for |u1| = 0.2 in Couette flow
(random initial perturbation) for t = 0, 1, 4, 5, 7, 10
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FIGURE 34.4. Streamwise velocity isosurfaces for |u2| = 0.015 in Couette flow
(random initial perturbation) for t = 0, 1, 4, 5, 7, 10
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FIGURE 34.5. Streamwise velocity isosurfaces for |u3| = 0.015 in Couette flow
(random initial perturbation) for t = 0, 1, 4, 5, 7, 10
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34.10.1 Algebraic perturbation growth

Since Couette flow is conditionally stable there exist no exponentially grow-
ing eigenmodes, but in Section 34.6 we showed that in parallel shear flow,
perturbation growth proportional to the Reynolds’ number is possible.
We will now show that this algebraic perturbation growth may be strong
enough to cause the flow to undergo transition to turbulence, by taking the
original stable base flow, without any exponentially growing eigenmodes,
to a new unstable flow with exponentially growing eigenmodes.

Not only the size of perturbations matter, but also the nature of the per-
turbations. In the case of a random perturbation we did not get transition
even for large perturbations, but since transition is observed in experi-
ments (starting at Reynolds’ numbers at around 300) there must be other
types of perturbations that leads to transition. It is intuitively clear that
a large scale rotational perturbation results in large perturbation growth
through the Taylor-Görtler mechanism, slowly shifting particles with dif-
ferent streamwise velocity transversally.

We now present computational results using an initial transversal, x1-
independent, rotational perturbation ϕ0 = (0, ϕ0

2(x2, x3), ϕ
0
3(x2, x3)), of the

type

ϕ0
2(x2, x3) = κν sin(2πx2) cos(πx3),

ϕ0
3(x2, x3) = −κν cos(2πx2) sin(πx3),

where κν = 0.5. We also apply a very small x1-dependent driving force
f = (0, f2(x1), f3(x1)), with f2(x1) = f3(x1) = 10−3 sin(10πx1), creating
and sustaining a very small streamwise variation. We use slip boundary
conditions in the spanwise direction, and periodic boundary conditions in
the streamwise direction.

Initially, the streamwise perturbation ϕ1 grows linearly through the ac-
tion of the Taylor-Görtler mechanism, causing the formation of high and
low velocity streaks, see Fig 34.6-34.9, and the perturbations ϕ2 and ϕ3 de-
crease initially. In the same way, transversal derivatives with respect to x2

and x3 grow linearly for u1, and decrease for u2 and u3. This linear growth
is easy to observe in Fig.34.7, where the isosurfaces for the absolute value of
the streamwise velocity is shown for |u1| = 0.2. In Fig.34.6 we see that near
t = 10 we get a sudden burst, where all x1-derivatives increase by a factor
100 over a short time interval, corresponding to initial transition when the
base flow loses stability. A key observation is that this initial transition
is not possible until the perturbation ϕ1, and the transversal derivatives
∂u1/∂x2 and ∂u1/∂x3, has reached a certain threshold. Another impor-
tant observation, which is not obvious from studying the global norms in
Fig 34.6, is that the perturbations of course vary in space, and that the
threshold is a local condition that has to be satisfied.

To test the dependence of the size of the perturbation, we present com-
putational results for a smaller initial perturbation κν = 0.1, instead of
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FIGURE 34.6. Couette flow (κν = 0.5): Perturbations ‖ϕi‖ as functions of time
(upper left), derivatives ‖∂ui/∂x1‖ (upper right), ‖∂ui/∂x2‖ (lower left), and
‖∂ui/∂x3‖ (lower right) as functions of time.
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FIGURE 34.7. Streamwise velocity isosurfaces for |u1| = 0.2 in Couette flow
(κν = 0.5) for t = 0, 5, 10, 15, 20, 30
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FIGURE 34.8. Transversal velocity isosurfaces for |u2| = 0.2 in Couette flow
(κν = 0.5) for t = 0, 5, 10, 15, 20, 30
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FIGURE 34.9. Transversal velocity isosurfaces for |u3| = 0.2 in Couette flow
(κν = 0.5) for t = 0, 5, 10, 15, 20, 30
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κν = 0.5, in Fig 34.10. We get a similar scenario also in this case, although
the time scale is longer. We can see that the burst in the x1-derivatives now
takes place at t ≈ 25, instead of t ≈ 10 as in the case a with larger initial
perturbation. We can see the linear growth of ∂u1/∂x2, ∂u1/∂x3, and ϕ1,
until a threshold is reached and the base flow loses stability.
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FIGURE 34.10. Couette flow (κν = 0.1): Perturbations ‖ϕi‖ as functions of time
(upper left), derivatives ‖∂ui/∂x1‖ (upper right), ‖∂ui/∂x2‖ (lower left), and
‖∂ui/∂x3‖ (lower right) as functions of time.

There exist a threshold value for the size of this type of perturbation
for the (conditionally stable) Couette flow. For κν = 0.01 we do not get
transition since the linear growth is then to weak, and thus the special
threshold value for this type of perturbation is somewhere in the interval
(0.01, 0.1).

34.10.2 Periodic spanwise boundary conditions

In Section 34.10.1 we used slip boundary conditions in the spanwise x3-
direction. Alternatively, we may use periodic boundary in the spanwise
direction. The results for the initial perturbation κν = 0.5 and periodic
boundary conditions in the spanwise direction are presented in Fig.34.11.
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We have basically the same scenario also in this case, although there are
slight differences in the times scales. In the x3-periodic case the linear
growth of ϕ1 is somewhat steeper, and the initial burst takes place earlier.
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FIGURE 34.11. x3-periodic Couette flow (κν = 0.5): Perturbations ‖ϕi‖ as func-
tions of time (upper left), derivatives ‖∂ui/∂x1‖ (upper right), ‖∂ui/∂x2‖ (lower
left), and ‖∂ui/∂x3‖ (lower right) as functions of time.

34.10.3 Random force perturbation

In Fig.34.7-Fig.34.9 we make the observation that when the initial base flow
loses stability, the flow does not go immediatly into an irregular turbulent
flow. Instead we have an intermediate state, a new base flow, that later loses
stability and goes turbulent, also referred to as a secondary instability. The
x1-period for the intermediate base flow is 0.2, that is 5 periods over the
computational domain, and this periodic flow is likely to be triggered by
the small force perturbation f2(x1) = f3(x1) = 10−3 sin(10πx1) with the
same period.

We now present results from computations using a small random per-
turbation of size 10−3 instead. That is, at each time step we add a per-
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turbation 10−3 × w(x) to each velocity component, where w(x) is equally
distributed in (−1, 1). The results of the computations are presented in
Fig.34.12-Fig.34.15, where we cannot observe any periodic mode after the
initial transition, instead we have a lower mode that quickly loses stability
before the flow goes into an increasingly unstable turbulent flow.

We conclude that in the case of the secondary stability, many different
transition scenarios are possible and the actual scenario may depend on
the nature of the perturbations.
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FIGURE 34.12. x3-periodic Couette flow (κν = 0.5, random force perturbation):
Perturbations ‖ϕi‖ as functions of time (upper left), derivatives ‖∂ui/∂x1‖ (upper
right), ‖∂ui/∂x2‖ (lower left), and ‖∂ui/∂x3‖ (lower right) as functions of time.

34.11 Poiseuille flow - Reynolds experiment

We now present results for the conditionally stable Poiseuille flow in a pipe,
which is a model of Reynolds original experiments. The Poiseuille base
flow has a streamwise velocity profile u1(x2, x3) = 16x2(1 − x2)x3(1 − x3)
in a square channel with no slip walls and a force term f = (32(x2(1 −
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FIGURE 34.13. Streamwise velocity isosurfaces for |u1| = 0.2 in x3-periodic
Couette flow (κν = 0.5, random force perturbation) for t = 0, 5, 6, 7, 10, 20
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FIGURE 34.14. Transversal velocity isosurfaces for |u2| = 0.2 in x3-periodic
Couette flow (κν = 0.5, random force perturbation) for t = 0, 5, 6, 7, 10, 20
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FIGURE 34.15. Transversal velocity isosurfaces for |u3| = 0.2 in x3-periodic
Couette flow (κν = 0.5, random force perturbation) for t = 0, 5, 6, 7, 10, 20
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x2) + x3(1 − x3)), 0, 0), where we use periodic boundary conditions in the
streamwise direction. In Fig.34.16 we note a linear growth in the stream-
wise perturbation corresponding to the Taylor-Görtler mechanism, whose
action is shown in Fig.34.17, slowly shifting particles with different stream-
wise velocity transversally resulting in a considerable reorganization of the
streamwise velocity. Fig.34.16 also shows the x1-derivatives as a function of
time, with a sudden increase near t = 6, similar to the case of Couette flow.
Again we note that this increase is not possible until the x1-perturbation
ϕ1 (and the transversal derivatives of the streamwise velocity, ∂u1/∂x2 and
∂u1/∂x3) are large enough.
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FIGURE 34.16. Poiseuille flow (κν = 0.1): Perturbations ‖ϕi‖ (left) and
x1-derivatives ‖∂ui/∂x1‖ (right).

34.12 Taylor-Görtler perturbations

Rotational perturbations of Taylor-Görtler type used in the previous sec-
tions occur naturally. For example, a small object (say a stone) on the
bottom of the channel could trigger such a perturbation. To illustrate this,
in Fig.34.18 we plot the velocity field downstream the surface mounted cube
i Chapter 30, where we see the formation of cigar-shaped structures of high
transversal (rotational) velocity after the obstacle, that is perturbations of
Taylor-Görtler type.

34.13 Unstable Jet Flow

As an example of an unstable flow, with exponentially growing eigenmodes,
we consider a periodic jet flow, with initial streamwise velocity one in the
jet and zero streamwise velocity outside the jet on a computational domain
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FIGURE 34.17. Velocity isosurfaces in Poiseuille flow (κν = 0.1) at t = 1, 3, ..., 15,
illustrating the Taylor-Görtler mechanism
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FIGURE 34.18. Surface mounted cube: isosurfaces for |(u2, u3)| in the x1x2-plane
(upper), in the x1x3-plane (middle), and the velocity field in the x2x3-plane
downstream the cube (lower).
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2× 1× 1. We set ν = 1/10 000, and we apply a small random perturbation
of maximal size 0.1. That is, for each velocity component we add a random
perturbation uniformly distributed in (−0.1, 0.1), times a weight function
16×x1(2−x1)x2(1−x2)x3(1−x3). In Fig.34.19-Fig.34.22 we see that most
modes in the random initial perturbation are quickly damped out, but a
low unstable mode is exerted and grows exponentially causing the flow to
go unstable. We note that in this case there is no growth in the transversal
derivatives of the streamwise velocity before transition.
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FIGURE 34.19. Jet flow (random initial perturbation): perturbations ‖ϕi‖/‖u‖
(upper left) as functions of time, derivatives ‖∂ui/∂x1‖/‖u‖ (upper right),
‖∂ui/∂x2‖/‖u‖ (lower left), and ‖∂ui/∂x3‖/‖u‖ (lower right).

34.14 Test for Optimal Perturbations

In Section 34.10 we found, by applying a random perturbation, that our
computational model of Couette flow is conditionally stable: there exist
no exponentially unstable modes. The only way this flow may go unstable
from a small perturbation is through algebraic perturbation growth. We
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FIGURE 34.20. Streamwise velocity isosurfaces for |u1| = 0.02 in jet flow (random
initial perturbation) for t = 0, 2, 5, 7, 10, 15
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FIGURE 34.21. Transversal velocity isosurfaces for |u2| = 0.02 in jet flow (ran-
dom initial perturbation) for t = 0, 2, 5, 7, 10, 15
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FIGURE 34.22. Transversal velocity isosurfaces for |u3| = 0.02 in jet flow (ran-
dom initial perturbation) for t = 0, 2, 5, 7, 10, 15
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now propose a test for finding optimal perturbations, that is perturbations
that may lead to large algebraic perturbation growth.

For a perturbation to be able to lead to any significant perturbation
growth it must not be damped out too quickly, since the algebraic perturba-
tion growth typically is rather slow. We thus seek the optimal perturbations
among the modes that have the slowest decay. A way to do this is to apply
a random perturbation as in In Section 34.10. In Fig.34.3-Fig.34.5 the re-
sponse of a random initial perturbation is shown, and whereas most modes
are quickly damped out a few modes decay very slowly. These modes, shown
in Fig.34.23, are rotational perturbations of Taylor-Görtler type, shaped as
cigars oriented in the streamwise x1-direction.

Since the amount of these modes in the white noise random perturbation
is too small they are unable to take the flow into transition. On the other
hand, if we take a cross section at say x1 = 0.5 and apply the transversal
components of the modes multiplied by a factor 10 to a Couette flow, we
get transition at t ≈ 100.

34.15 A critical review of classical theory for
transition

The classical research on transition to turbulence in fluid flow has been
focussed on finding a relation between Reynolds number and transition,
with ideally a so called critical Reynolds number for each type of flow,
identified by the fact that transition to turbulence takes place if and only if
the actual Reynolds number is larger than the critical Reynolds number. As
noted above, Reynolds himself had little reason to belive in the existence
of such critical Reynolds numbers judging from his own experiments.

Nevertheless, most text books in fluid mechanics still today present “crit-
ical Reynolds numbers” for various flows, such as 5772 for Pouiseuille flow
between two parallel fixed plates (with parabolic velocity profile), and ∞
for Couette flow between two moving parallel plates (with linear veloc-
ity profile), both however at severe variance with experiments. The stated
critical Reynolds numbers come out of a normal mode stability analysis
of 2d linearized equations, referred to as the Orr-Sommerfeld equations,
based on identifying exponentially growing eigenmodes, so-called Tollmien-
Schlichting waves. The striking difference in the theoretical predictions and
the practical experiments for transition in parallel flow, has driven the clas-
sical study of hydrodynamic stability into a severe crisis, with scientifically
impossible concepts like “subcritical Reynolds number” and “bypass tran-
sition” to handle the disagreement of theoretical predictions and actual
observations. We give a couple of citations describing the crisis:
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FIGURE 34.23. Slowest decaying modes from a uniformly distributed random
perturbation, in the x2x3-plane at x1 = 0.25 (upper left) and x1 = 0.75 (up-
per right), isosurfaces for |u| = 0.015 in the x1x2-plane (lower left) and in the
x1x3-plane (lower right).
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The sudden transition from smooth, laminar flow to turbulence as the
fluid velocity is gradually increased remains one of the least adequately ex-
plained phenomena in all of classical physics, (James Case, SIAM News,
2002 [?]).

For a circular Poiseuille flow (pipe flow), as well as Couette flow, the
classical linear-instability analysis leads to stability, whatever the Reynolds
number and the wavenumber of the perturbation. Experimentally, one ob-
serves also turbulent spots in these flows, (Lesieur [?]).

Apparently, the asymptotic stability of a shear flow to infinitesimal dis-
turbances cannot fully characterize its stability, (Blossey [13]).

Further, transition scenarios based on Tollmien-Schlichting waves are ir-
relevant because of the large perturbation levels needed to exert these modes,
(Henningson-Schmid [82]).

For a time after this negative result (stability of Couette flow for all
Reynold’s numbers), it was thought that the method of small oscillations
(classical theory) was unsuitable for the theoretical solution of the problem
of transition. It transpired later that this was not justified, because Couette
flow is a very restricted and special example, (Schlichting [81]).

In this book I have tried to bring together into a coherent account what
I have learnt of hydrodynamic stability. Perhaps the most serious omission
is the absence of any reference to viscous shear flow....in the last an author
chooses to write only about those matters in which he has some confidence
of his understanding, (Chandrasekhar, [18]).

The remark by Schlichting is from scientific point of view completely
stunning: if the proposed theory does not pass a most simple and basic
test, the conclusion is not that there must be something seriously wrong
with the theory, but instead that the test should be discarded because of
its simplicity! The remark by Chandrasekhar (Nobel Prize in Physics 1983)
shows another attitude towards science.

We now give a couple of citations indicating the new view and the role
of 3d algebraic growth for transition:

Shortly before his death 1999 M̊arten Landahl completed research on the
basic theoretical problem of how a 3-D initial disturbance within a shear
flow evolves over time. He felt certain his work would form a new funda-
mental approach to the transition problem (tackled by many in the past 100
years) as opposed to the classical Orr-Sommerfield equation, and he had
planned further research on completing the asymtotic long-time evolution
of a 3-D disturbance in a parallel shear flow. He then planned to use this
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work as the basis for a new transition theory as well as a new turbulence
model. (M.I.T. News, 1999 [?]).

It should be finally mentioned that the growth of the quasi-linear non-
normal longitudinal mode considered in section 2.3 (algebraic perturbation
growth) might be important for the transition in these inconditionally sta-
ble shear flows, as well in subcritical situations, (Lesieur [?]).

Thus in a flow that is asymptotically stable to infinitesimal disturbances,
transient growth (non modal algebraic perturbation growth) is necessary if
finite amplitude disturbances are to lead to transition to turbulence, (Blossey
[13]).

Summing up, we get the following picture: Everybody seems to agree
that the classical stability theory is inadequate for explaining transition in
shear flow, and there is a new view emerging pointing to the crucial role
of algebraic growth of 3d perturbations. In the citation above from the
review [13] of the recent book [82], we read that classical theory “cannot
fully” characterize stability, apparently indicating that that classical the-
ory is partly correct. Our main point is that, in fact, the classical theory
based on identifying exponentially growing eigenmodes, is completely in-
adequate for describing the initial and most crucial phase of transition in
parallel shear flow. Consequently the concept of “critical Reynolds numbers
for transition” cannot have any meaning, and in particular should not be
presented in text books and courses in fluid mechanics as is now customary.
Neither should there be any place for terms like “bypass transition” and
“subcritical Reynolds number”.

A possible reason for the survival of the classical misleading normal mode
stability analysis for parallel shear flow, despite its lack of experimental sup-
port, is probably the fact that there are some other cases where the same
type of analysis in fact is correct and conforms with experiments, namely
the bifurcating Bernard and Taylor-Couette flows, changing from one con-
figuration to another at a certain well defined Reynolds number. The bifur-
cation of Bernard flow involves the development of organized patterns of
convective rolls of fluid in motion. A bifurcation involves a change from one
configuration losing stability, to a new stable configuration, which is differ-
ent from the process of transition to turbulence, with the new configuration
being increasingly unstable. Now, a bifurcation in general may be detected
through a normal mode analysis based on finding for the linearized equa-
tions an eigenvalue with zero real part. In particular, the critical Reynolds
number for the first bifurcations in Taylor-Couette and Bernard flow, may
be found analytically this way. As indicated this approach does however not
work for parallel Couette or Poiseuille flow, which do not bifurcate to find
new stable configurations, but instead go into turbulent unstable motion.
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This is because in linearizations of Taylor-Couette or Bernard flow, weak
algebraic perturbation growth is dominated by slow exponential decay,
whereas in parallel Couette or Poiseuille flow, strong algebraic perturbation
growth dominates. It appears that the success of the mathematical theory
in the bifurcating cases, has overshadowed the failure in the non-bifurcating
cases. We discuss these ideas below in the setting of simple ode-models.

34.16 An ode-model for transition

We consider the following initial value problem for a system of two ordinary
differential equations: find w(t) = (w1(t), w2(t)) such that

ẇ1 + νw1 − λw1w2 = ν t > 0,
ẇ2 + 2νw2 − νw2w1 = 0 t > 0,
w1(0) = 1, w2(0) = κν,

(34.9)

where ν is a small positive parameter, and λ and κ are positive parameters
of moderate size. The system (34.9) models almost parallel shear flow with
w1 representing the flow velocity in the main direction of the flow, and w2

the small velocities transversal to the main flow, and the stationary solution
w = (1, 0) corresponds to Couette flow between two plates or Poiseuille flow
in a pipe. We shall use the model to describe how the small perturbation
κν of w2 may cause the base solution (1, 0) to become unstable if λκ is
larger than some critical value of moderate size.

We shall see that the model (34.9) contains an essential part of the secret
of transition to turbulence in shear flow. The equations for w1 and w2 in
(34.9) are coupled through the quadratic terms λw1w2 and νw1w2, and
model the following selection of terms from the Navier-Stokes equations

u̇1 − ν∆u1 + ū · ∇̄u1 = ν t > 0,
˙̄u− ν∆ū+ u1∂ū/∂x1 = 0 t > 0,

(34.10)

from the momentum equations for the main flow velocity u1 and the transver-
sal velocity ū. The nonlinear coupling terms ū · ∇̄u1 and u1∂ū/∂x1 are
modeled in the form λw1w2 and νw2w1, corresponding to assuming that
u1,i = −λu1, for i = 2, 3, and ∂ū/∂x1 = −νū, connecting transversal
derivatives of u1 with u1 through the parameter λ, and the streamwise
derivative of the transversal velocity ū with ū through the small parame-
ter ν. The relation ∂ū/∂x1 = −νū models a basic feature of parallel flow
with the streamwise variations being small. Since we assume initially that
ū ≈ w2 ≈ ν, it corresponds to assuming ∂ū/∂x1 ∼ ν2, which is indeed very
small. On the other hand, the assumption that u1,i = −λu1, for i = 2, 3,
with λ of moderate size corresponds to a natural transversal variation of
moderate size of the streamwise velocity in a shear flow.
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Note that the coupling term u1,1u1 in the equation for u1 is not modeled
in the form of some multiple of w2

1 . This is because (a) assuming u1,1 ≈ ν2,
with a corresponding very small term −ν2w2

1 in the model, has no desta-
bilizing effect, and (b) assuming u1,1 = −Cν with a corresponding larger
term −Cνw2

1 , which may cause exponential growth through self-resonance
in w1, is not realistic. In fact, (b) is more or less the classical scenario based
on the 2d Orr-Sommerfeld equations, which require artificially generated
perturbation levels in experiments, for example through heavily vibrating
ribbons.

In the transition model, we thus seek to build in realistic features of
shear flow including realistic perturbation levels. If we assume zero pertur-
bations, then the model reduces to ẇ1 +νw1 = 0, ẇ2 +2νw1 = 0, which has
no chance of going unstable. If we assume large perturbation levels, then
instability may result immediately. However, none of these scenarios occur
in reality, and the role of the model is to explain how small but realistic
size perturbations, indeed may cause the initially stable base flow to go
unstable after some time. Our model builds on the presence of a very small
perturbation of order ν2 of the transversal velocity in the streamwise direc-
tion, which naturally may be introduced through the roughness of the pipe.
The model does not build on a larger variation of order ν of the streamwise
velocity in the streamwise direction, which only seems to be possible with
artificially generated perturbations.

The model (34.9) contains the two basic parameters λ and κ, both of
moderate size, λ being related to the transversal geometry of the flow such
as pipe cross section, κν representing a perturbation level in transversal ve-
locities, and κν2 a perturbation level in streamwise derivatives of transver-
sal velocities, including both transversal and streamwise perturbations lev-
els. We will see that if λκ is larger than some critical value of moderate size,
then transition to instability will take place in the model. This indicates
that transition in shear flow builds on a combination of features related the
transversal geometry and levels of perturbations in both transversal and
streamwise direction. The presented computational results for transition to
turbulence in Couette and Poiseuille flow presented supports this picture.

The system (34.9) has two stationary solutions w = (1, 0) and w =
(2, ν/(2λ)), with (1, 0) representing the basic Couette or Poiseuille flow. A
classical stability analysis based on the eigenvalues of the corresponding
linearized system, indicates that (1, 0) is stable and (2, ν/(2λ)) is unstable.
For example, the linear system obtained linearizing at (1, 0), takes the form

ϕ̇1 + νϕ1 − λϕ2 = ν t > 0,
ϕ̇2 + νϕ2 = 0 t > 0,

ϕ1(0) = ϕ10, ϕ2(0) = ϕ20,
(34.11)

where the coefficient matrix A = [ν − λ, 0 ν] has a double positive eigen-
value ν. The corresponding coefficient matrix linearizing at (2, ν/(2λ)),
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has one positive (stable) and one negative (unstable) eigenvalue. A clas-
sical stability analysis shows that (1, 0) is stable under sufficiently small
perturbations, and that (2, ν/(2λ)) is unstable even under small perturba-
tions. As a result (1, 0) is unstable under large perturbations bringing the
initial value sufficiently close to the unstable solution (2, ν/(2λ)). However,
the classical eigenvalue stability analysis is unable to explain the intriguing
fact that (1, 0) may become unstable even under a small perturbation of
the initial data (1, 0), if we just have patience to wait! We will now present
such a scenario of transition, where the stationary solution (1, 0) of (34.9)
goes unstable under a small perturbation of initial data of the form (0, κν),
where κ is a parameter of moderate size, and the scaling with ν makes the
perturbation small (since we assume ν to be small). We shall see that if the
product λκ is above a certain threshold of moderate size, then transition
to instability will take place, if we wait over a period of time of length ν−1.

We thus consider the problem (34.9) with the initial data (1, κν) close to
(1, 0), and we ask if the corresponding solution w̄(t) may become unstable
after some time. We see that ˙̄w1(0)/w̄1(0) = λκν, while ˙̄w2(0)/w̄2(0) = −ν,
which shows that initially w̄1 grows and w̄2 decays at rates ∝ ν. Now, w̄1

will continue to grow at that rate as long as λw̄2 > ν, and further w̄2

will start to grow as soon as w̄1 > 2. Thus, if w̄1 manages to become larger
than 2, before w̄2 has decayed below ν/λ, then both components will propel
each other to infinity, corresponding to instability. We shall see that this
will occur if λκ is above a certain threshold. We notice that the time scale
for significant changes in both w̄1 and w̄2 is ∼ ν−1, which is a long time
since ν is small. The scenario is thus that w̄1 grows slowly at the rate ν
over a long time, and if λκ is above the threshold, then w̄1 may reach the
value 2, where also w̄2 starts to grow after which a blow up follows on a
usually somewhat shorter time scale (though still ∝ ν−1). This scenario is
easy to grasp intuitively, and conforms with the every-day experience of a
sudden blow-up, as a result of an accumulation of small events over a long
period.

Solving the linearized equation (34.11) approximately describing the evo-
lution of w̄ − (1, 0), we find that

w̄1(t) ≈ 1+ϕ1 = 1+λκtν exp(−tν), w̄2(t) ≈ ϕ2 = κν exp(−tν), (34.12)

which shows the slow growth of w̄1 and slow decay of w̄2 over the long
time scale prior to the blow up, occuring if λκ is above the threshold. The
linear growth in time of ϕ1 may be viewed as a consequence of the non-
normality of the coefficient matrix A. A classical stability analysis focussing
on the double positive eigenvalue ν of A = [ν − λ, 0 ν], states that the
factor t exp(−νt) eventually will decay to zero as t → ∞, but misses the
substantial transient growth to the level ∝ ν−1 after time ∝ ν−1 prior
to decay. This perturbation growth of size ∝ ν−1 is capable of bringing a
solution from the point (1, κν) very close to (1, 0), into a neigborhood of
the unstable point (2, ν(2λ)) with ensuing blow up.
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34.17 A bifurcating ode-model

We now consider the following ode-model modeling aspects of Taylor-
Couette flow between two rotating cylinders:

u1,t + u1u2 + νu1 − γu1 = 0, t > 0,
u2,t − νu2

1 + νu2 = 0, t > 0,
u(0) = u0,

(34.13)

where γ is a parameter, and u1 represents a streamwise velocity (modulo
a base flow) and u2 a transversal velocity. This problem admits the sta-
tionary trivial base solution (u1, u2) = (0, 0) for all γ. If γ > ν, then also
(±√

γ − ν, γ − ν) is a stationary solution and thus (u1, u2, γ) = (0, 0, ν) is
a bifurcation point with (±√

γ − ν, γ − ν) the two bifurcated branches for
γ > ν. This is the standard scenario in a pitchfork bifurcation. The eigen-
values of the (symmetric) Jacobian J0(γ) at the trivial solution (0, 0) are
ν − γ and ν, and thus the trivial branch is stable for γ < ν and unstable
for γ > ν. The eigenvalues of the Jacobian J±(γ) at a bifurcated branch

(±√
γ − ν, γ − ν) for γ > ν are 1

2ν ±
√

1
4ν

2 − 2ν(γ − ν) and have posi-

tive real part, and thus perturbations of the bifurcated branches exhibit
exponential decay.

If we follow a transient behavior of solutions of (34.13) with γ slowly
increasing with time starting from zero and initial data u0 small, we will
stay close to the trivial branch as long as γ < ν, while we will shift to follow
close to one of the non-trivial branches when γ > ν depending on the sign
of the initial data u0

1. We will thus always stay close to an exponentially
stable branch, and the corresponding Jacobian will always have real parts
with positive (stable) real part. The bifurcation point is detected by finding
a value of γc of γ such that the Jacobian J0(γc) has an eigenvalue which
is zero (or has zero real part), which in our case is the value γc = ν.
We may call this value a critical value of γ. If γ < γc, then solutions of
(34.13) with u0 small are stable. However, it is not correct to say that for
γ > γc, solutions will become unstable, because as we said the solution
will then stay close to one of the exponentially stable bifurcated branches.
We conclude that detection of a bifurcation point is not a sign of emerging
instability, but rather an indication that the flow will seek a new stable
configuration with the old (trivial) configuration becoming unstable.

Taylor-Couette flow between two rotationg cylinders may bifurcate at a
well determined Reynolds’ number identified by an eigenvalue with zero
real part of the corresponding Jacobian. However this Reynolds’ number,
which we may refer to as a critical Reynolds number, has nothing to do
with transition to turbulence. Above this critical Reynolds number the flow
will find a new stable bifurcated configuration represented by the easily
observable rolls in the Taylor-Couette experiments.
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We conclude that much of the trouble in classical hydrodynamic stabil-
ity theory comes from a severe confusion concerning the use of the term
critical Reynolds’ number referring to both (i) bifurcation with a Jacobian
having an eigenvalue with zero real part, and to (ii) transition to turbulence
with transition occuring above the critical Reynolds number. We have just
indicated that (i) and (ii) have very little connection and we have shown
above that in fact (ii) cannot have any meaning. So, eliminating (ii) gives a
clear definition of a critical Reynolds’ number which is then not connected
to transition.

We finally remark that the Reynolds experiment is a “hands off” experi-
ment: we just sit and watch the flow suddenly undergo transition to turbu-
lence without any intervention. In the bifurcating Taylor-Couette case on
the other hand, we change the speed of at least one of the cylinders slowly
through the bifurcation.

34.18 Summary

We sum up our experience from analysis and computation as follows: We
consider a given initial laminar highly organized shear flow such as Couette
flow between two parallel plates, Poiseuille flow in a pipe or a single jet,
at a certain Reynolds number Re of the order of 10000 for Couette and
Poiseuille flow, and jet flow. We ask the question if the given flow may
undergo transition into a highly fluctuating disorganized turbulent flow
under perturbations of initial data and/or driving forces of a certain small
magnitude δ with a suitable measure. We may view this as a question
of perturbation growth, with a perturbation growth of order 1/δ being
necessary for the transition from laminar to turbulent flow, assuming the
flow velocity is normalized to be of unit size. Now, perturbation growth
in general may couple to exponentially growing eigenmodes in a normal
mode analysis, or to algebraic growth because the linearized system is non-
normal. To test exponential growth we may use white noise perturbations
containing all modes, while the non modal algebraic growth typically is
related to the special perturbations of the Taylor-Görtler mechanism.

We find computationally that the jet undergoes transition under small
white noise perturbations of initial data. The jet is thus exponentially un-
stable. We find computationally that Couette flow does not undergo tran-
sition under even large white noise perturbations, but does so under small
Taylor-Görtler perturbations. We analyze Couette flow analytically and
find that linear perturbation growth proportional to the Reynolds number
is possible. This resolves the dilemma of traditional hydrodynamic stability
analysis claiming that Couette flow is stable based on a modal eigenvalue
analysis, and shows that Couette flow may undergo transition under pertur-
bations proportional to the inverse of the Reynolds number. More precisely,
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we find transition if the product of a small transversal, streamwise constant,
perturbation (of size ν ∼ 1/Re) and a very small streamwise perturbation
(of size ν2), is large enough. In particular it follows that the concept of a
critical Reynolds number for Couette flow cannot have any meaning: tran-
sition or not depends of the size and the type of the perturbations. The
experience with Poiseuille flow is similar to that of Couette flow just re-
ported. Concerning the unstable jet flow, we remark that computationally
we may set up this problem and study transition, while experimentally it
may be very difficult to form the unstable initial jet to be studied.

Of course we may expect to see exponentially growing modes once the
transition has been initiated, but we cannot hope to explain the initial
phase of transition by the presence of exponentially growing modes. For
the (obviously critical) initial phase, we need algebraic growth which is
offered by the Taylor-Görtler mechanism in shear flow.

Once again: we focus on the initial most critical phase of transition with
large perturbation growth offered by the Taylor-Görtler mechanism, which
may change an initially exponentially stable base flow into a new possibly
exponentially unstable base flow which may develop into a turbulent flow in
a secondary phase. Of course, it is also of interest to study this secondary
phase with again computational methods as the only feasible technique
because the new base flow may be quite complex, although the original
base flow was very simple.

In the computational experiments for Couette and Poiseuille flow we use
a 643 uniform mesh on the unit cube assuming periodicity in the stream-
wise direction, with slip or periodic boundary conditions in the horisontal
transversal direction. The periodicity in the streamwise direction corre-
sponds physically to recirculation, like in the Taylor-Couette flow between
two cylinders.

The periodic boundary conditions may be convenient when studying slow
perturbation growth, since a simulation of a channel of say a length 100 is
very expensive. A computation of transition to turbulence in a boundary
layer, see Fig. 34.24, serves as an example of algbraic perturbation growth
in a non-periodic case. When we introduce Taylor-Görtler perturbations of
different amplitude at the inflow, where we find that transition is delayed
for the perturbation of lower amplitude, again confirming the idea that
transition is not a phenomenon determined solely by the Reynolds number,
but is a question of perturbation growth, determined by the size and type
of perturbations.
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FIGURE 34.24. Isosurfaces for |(u2, u3)| = 0.06 for transition to turbulence in
a boundary layer computation from Chapter 31, for ν = 106, l = 6, and b = 1,
introducing Taylor-Görtler type perturbations at the inflow of amplitude 0.1 (up-
per) and 0.5 (lower), resulting in transition further downstream for the lower
perturbation.
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[17] M. J. Carré, T. Asai, T. Akatsuka, and S. J. Haake, The curve
kick of a football ii: flight through the air, Sports Engineering, 5 (2002),
pp. 193–200.

[18] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability,
Dover, 1981.

[19] G. Constantinescu, M. Chapelet, and K. Squires, Turbulence
modeling applied to flow over a sphere, AIAA Journal, 41(9) (2003),
pp. 1733–1742.

[20] G. Constantinescu, R. Pacheco, and K. Squires, Detached-eddy
simulation of flow over a sphere, AIAA, 2002-0425 (2002).

[21] G. Constantinescu and K. Squires, Numerical investigations of
flow over a sphere in the subcritical and supercritical regimes, Physics
of Fluids, 16(5) (2004), pp. 1449–1466.

[22] J. d’Alembert, Essai d’une nouvelle théorie de la résistance des flu-
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