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Decisions, Models and Optimization

* Decision making under resource constraints is a key
paradigm in strategic planning, design and operations
by government and private organizations

« Examples: environmental management; healthcare;
industrial design and production; inventory planning;
scheduling, transportation and distribution, and many
others

* Quantitative decision support systems (DSS) tools -
specifically, optimization models and solvers — can
effectively assist decision makers and analysts in
finding better solutions
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A KISS* Model Classification

Convex Deterministic Models
Linear Programming, Convex Nonlinear Programming (including
special cases)

Non-Convex Deterministic Models
Continuous Global Optimization, Combinatorial Optimization,
Mixed Integer/Continuous Optimization (including special cases)

Stochastic Models
Generic Stochastic Optimization model; special cases that lead to
LP, CP, and general NLP equivalents; and to “black box” models

Formally, both the convex and stochastic model-classes can be
considered as subsets of the non-convex model class

Combinatorial models can also be formulated as continuous GO
models; however, added specifications and insight are helpful
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Nonlinear Systems Modeling & Optimization

« As the previous slide already indicates, nonlinear
systems are arguably more the norm than the exception...

« Why? Because nonlinearity is found literally everywhere:
in processes leading to natural objects, formations,
organisms, and in their interactions

* This fact is reflected by descriptive models in applied
mathematics, physics, chemistry, biology, engineering,
econometrics and finances, and in the social sciences

« Some of the most frequently used elementary nonlinear
function forms: polynomials, power functions, exponential,
logarithm, and trigonometric functions
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Nonlinear Systems Modeling & Optimization

(continued)

« Composite and more complicated nonlinear functions:
special functions, integral equations, linear system of
ordinary differential equations, partial differential
equations, and so on

« Statistical models: probability distributions, stochastic
processes

« “Black box” deterministic or stochastic simulation
models, closed (e.g. confidential) models, models with
computationally expensive functions,...

* Need for suitable descriptive system models, used in

combination with control (optimization) methods
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Examples of Basic Nonlinear Functions

A large variety of such functions
exists: many of these are used to
describe objects, and processes
of practical relevance
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Nonllnearlty in Nature

[A small collection of great photos from the Web]

Nature is clearly the most successful of all artists. g
Alvar Aalto, Finnish architect and designer (1898-1976)



Nonllnearlty In Nature

TW|sted Vlnes Nature s Art, Malay3|a 2006
© Thomas Allen, www.abstractechoes.com
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Nonlinear Universe: Further Examples
Credits: Scientific Computing & Instrumentation, 2004
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Nonlinearity in Man-Made Systems

Example: Audio Speaker Design
Credits: “How Stuff Works” Website, 2005

Basic Speaker diaphragm

dust cap

voice coil

basket

- spider
@

E2001 How Stuff Works

2001 HowStuffiVorks
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Nonlinearity in Man-Made Systems

Example: Automotive Engine Design
Credits: “How Stuff Works” Website & Daimler-Chrysler, 2005

2003 Jeep®
Grand Cherokee
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Discovery Spaceship
A Man-Made System with Many Nonlinear Components

Credits: Robert Sullivan,
New York Times, 2006
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nag

Numerical Algorithms Group

Survey of Technical
Computing Users
and Environments

The Changing Landscape of Technical Computing

Rob Meyer
Sue Pearson
Katie O'Hare

August 1, 2006
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Nag
NAG Survey on Technical Computing Needs

Functionality use

Survey participants were asked to report on the use of functionality found in numerical libraries. The
following shows the usage of each of the listed functional areas as a percentage of all survey participants.
Percentages exceed 100% since most users specified more than one functional area.

Solution of nonlinear equations

Transformations

Mumerical integration

Differential equations

Optimization

Curve and surface fitting

Linear algebra

Operations research |

Time series

Correlation and regression

Multivariate methods

Random numbers

Analysis of variance

Special Functions I

I I
0% 10% 20% 30% 40% 50% 60% T0%

Notice that many of these application areas need NLP/GO (software)
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The Global Optimization Challenge:
Theoretical Motivation

“The great watershed in optimization isn’'t between

linearity and nonlinearity, but between convexity and
nonconvexity.”

R. Tyrell Rockafellar

Lagrange multipliers and optimality,
SIAM Review 35 (1993) 2, 183-238.
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The Relevance of Global Optimization:
Practical Motivation

“Theorists interested in optimization have been too
willing to accept the legacy of the great eighteenth and
nineteenth century mathematicians who painted a clean
world of [linear, or convex] quadratic objective functions,
ideal constraints and ever present derivatives.

The real world of search is fraught with discontinuities,
and vast multi-modal, noisy search spaces...”

D. E. Goldberg
(A well-known genetic algorithms pioneer)
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The Relevance of Global Optimization

« Optimization is often based on highly nonlinear
descriptive models

« Several important and general model-classes:
Provably non-convex models
“Black box” systems design and operations
Decision-making under uncertainty
Dynamic optimization models

* Nonlinear models frequently possess multiple
optima: hence, finding their “very best” solution
requires a suitable global scope search approach

* The objective of global optimization is to find the
absolutely best solution, in the possible presence of a

multitude of local sub-optima
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Continuous Global Optimization Model

min f(x) f: R"— R1
gx)<0 g: R"—> R™
I<x<u I, x, u, (I< u) are real n-vectors

Key (“minimalist”) analytical assumptions:

* I, u are finite vectors; I < x< u is interpreted
component-wise

» the feasible set D={x, < x < x,: g(x) < 0} is non-empty
« fand the components of g are continuous functions
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Continuous Global Optimization Model

 The structural assumptions stated on the previous
slide are sufficient to guarantee the existence of the
global solution set X*; for any x* in X*, define z* = f(x¥)
 They also support the application of theoretically
exact, globally convergent search methods

* In practice, we wish to find numerical estimates of x*
or X* and z* using efficient global scope search
methods

 The CGO prototype model covers many special
cases

« Several examples follow on the next slides that hint
at the potential difficulty of GO models
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A Mildly Non-Convex Function (a Classic NLP Test)

min f (x) =100(x, — %)+ (@=X%,)? +90(x, —xZ)+(1—-x,)’
+10.1(x, —1)% +(x, ~1)2]+19.8(x, —1)(x, —1)

Wood’s 4-variable polynomial test function

This function is projected into a '
2-dimensional subspace, the other
two coordinates are set at their 0
optimal solution value; see figure 1000}

3000

Notice that a local search method may end up in either one of two
different “valleys”, depending on its starting point
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Problem

ion

t

INIMiZa

A Concave M

min f(x) xeD; f=-— x,2— 0.5-x,— x,2— 0.3-x, is concave; D=[—1,1]?

f attains its minimum at (1,1), and all vertices of D are local minima
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GO Models Can Pose Difficult Challenges
For Local Scope Search...

2
1.5 +

1L

VAT

-1.5 | L
- 0 1 2

Example: minimize sin(x?+x)+cos(3x) for -5< x <2

Local search can fail (local information is not sufficient)
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GO Models Can Be Even More Difficult
(In Principle, Arbitrarily Difficult...)

3.5

A GO model-instance
° [ Cited from the Handbook of
. Global Optimization, Vol. 2, Ch. 15

> L

1\5 L

—4 -2 2 4

Obviously, a local view of such a function is not

sufficient: instead, global scope search is needed
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A “Monster” GO Test Example

TTVRTRA R R I ”

L i i \ |

| fix)=x-sin(zx)  05x$1000

.........

GO models can be extremely difficult to solve, even
in (very) low-dimensions, if the search effort is
limited... as in prefixed (default) GO solver settings
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Another Inherent Issue in GO:
“Curse of Dimensionality”

A AL A
AWV UV

2., < ksin(k+(k+1)x)

~10=x<10. ~10=x<10, —10<y<10..

Shubert’s one-dimensional box-constrained optimization model,
and its simplest two-dimensional extension
Computational complexity increases exponentially, when the model

size (n m) grows J.D. Pintér, Global Optimization 26
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Further Examples: Increasingly More Difficult
(Parameterized) Test Functions

150

Example:
x2+y2+c-sin?(x2+x+y?-y)
x=-8..1, y=-3..10; c=1,10, 100

Note: easy to modify, in order to generate
randomized solution points of model instances

J.D. Pintér, Global Optimization
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A General Class of GO Models Formulated
with DC Functions

f=f—f, if f, and f, are convex, then f is a DC function
(the difference of convex functions)

A similar component-wise structure is postulated for g

DC structure supports the general B&B algorithmic
framework (to be discussed later on)

However, a general DC structure is difficult to exploit
(in terms of implementable algorithms), except for the
case of general quadratic optimization under linear
and quadratic constraints
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Lipschitz(-Continuous) GO Models

Function fis Lipschitz-continuous on D, if there exists a
suitable Lipschitz-constant L=L(D,f)20 such that

|f(x4)-f(x;)| = L||xq-x || holds for all pairs x,,x,eD
Similar conditions can be postulated for all functions in g

The Lipschitz model-structure allows to generate lower
bound estimates of the optimum value, based on an
arbitrarily given finite sample set (next slide)

Based upon (mere) continuity and Lipschitz properties, a
broad class of globally convergent algorithms can be
axiomatically defined, designed and implemented, to solve
general GO models - including all examples listed above
(except “black boxes”, at least in theory)
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Tricky Feasible Sets Can Be Another Major
Source of Difficulty...

_o.s
Example: Feasible set in R3
defined by the constraints 1
xyzs1 >
X%+2y%+z2+x-z < 2
3x2+2y?—(1-z)2<0 N

Convex programming methods

(direction and line searches)
may fail on difficult non-convex ~1
feasible sets
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The Formal Equivalence of Combinatorial and
Corresponding Continuous GO Models 1

Each finitely bounded integer variable can be
represented by a suitable set of binary variables

Example 1: all integer 0 < x £ 15 values can be exactly
represented by 4 binary variables, since 24-1=15

For instance, 13 = 1*23+1*22+0*21+1*2° = 1101,
Example 2: all integer 0<x<10° values can be described
by at most 20 binary variables, since 220>1(06

Therefore it suffices to use binary variables instead of
a given set of finitely bounded integer variables
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The Formal Equivalence of Combinatorial and
Corresponding Continuous GO Models 2

Next, each binary variable can be represented jointly by its
continuous extension, and a single non-convex constraint

Example: xe{0,1} (i.e., x is binary) is equivalent to the pair of
relations 0 < x <1 and x(1-x) < 0; other formulations also exist

Therefore formally it suffices to use continuous variables
instead of binary ones, and hence also instead of finitely
bounded integers; consequently, the same applies also to the
most general optimization problems defined with mixed
integer-continuous variables and continuous functions

This simple technical note shows a close connection between
combinatorial and global optimization, both in terms of their
overall complexity, and also regarding the classes of suitable

solution strategies for such models
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The Mixed Integer Global Optimization Challenge

Each binary variable selection (combination) induces a CGO sub-model

The overall numerical complexity is characterized by the combined
complexity of combinatorial optimization and continuous global
optimization... Hence, it is massively exponential as the model size
characterized by n=ng+n, and m grows
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Global Optimization Models: Summary

Key model types reviewed:

 Concave Optimization (Minimization Over a Convex Set)
 DC Optimization

« Lipschitz Optimization

« Continuous Optimization

These general model-classes cover all GO models of
relevance, including also further specific cases

The following chain of set inclusions is valid:
{Concave GO}c{DC GO}c{Lipschitz GO}c{Continuous GO}

Recall also that CGO models cover mixed integer-

continuous models
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Global Optimization: Historical Perspective
An approximate timeline

Theory beginnings: 1950’s, foundations: 1970’s

)

Methods beginnings: 1960’s, key results: 1980’s
)

Software beginnings: 1980’s, professional: ~2000+
)

Applications GO needed for a long time, but only
recently tackled by suitable GO tools

Ideally, all key components of knowledge are
(should be) developed in close interaction
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Global Optimization Strategies

« A significant repertoire of GO methods, including
both exact and heuristic approaches, have been
suggested since ~1950; systematic studies conducted
since ~1970

 These solution methods differ with respect to the key
analytical conditions of their applicability; and their
proof of global convergence properties — or lack of it...

* A brief review of some of the GO approaches is
provided in the following slides
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Global Optimization Strategies

* Related general in-depth references are offered by
the Handbook of Global Optimization, Vol. 1 (Horst and
Pardalos, Eds., 1995) and Vol. 2 (Pardalos and Romeijn,
Eds., 2002); and in other volumes of the topical Kluwer
(now Springer) book series; see also Neumaier’s
reviews (2001, 2004)

* For simplicity, we shall consider here the box-
constrained GO model

min f(x)
Isxsu
* Note that the presence of constraints could cause

considerable grief to many of the GO approaches

discussed below...
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GO Solution Approaches: Exact Methods
Adaptive Stochastic Search Methods

These are procedures based (at least partially) on
randomized sampling in the feasible set D

Search strategy (parameter) adjustments, sample
clustering, deterministic solution refinement options,
statistical stopping rules can be added as enhancements
to the basic (pure random) sampling scheme

Applicable to both discrete and continuous global
optimization problems under general conditions

See e.g., Zhigljavsky (1991), Boender and Romeijn (1995),
Pintér (1996), Zabinsky (2003)
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Bayesian Search Algorithms

These methods are based on some a priori postulated
stochastic model of the objective function f

The subsequent adaptive estimation of the problem-
instance characteristics is based upon the search
(sample points and function values) results, towards
building a posterior function (problem) model

Typically, “myopic” (one-step optimal) approximate
decisions govern the search procedure, since only
these can be implemented

Applicable to continuous GO models, w/o added
Lipschitz or other structural assumptions

Consult, e.g., Mockus, Eddy, Mockus, Mockus and
Reklaitis (1996), Sergeyev and Strongin (2000)
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Branch and Bound Algorithms

Adaptive partition, sampling, and bounding procedures
(within subsets of the feasible set D) can be applied to
continuous GO models, analogously to the well-known
integer linear programming methodology

This general approach subsumes many specific cases,
and allows for significant flexibility in implementations

Applicable to diverse structured GOPs such as concave
minimization, DC programming, and Lipschitz problems

Consult, e.g., Neumaier (1990), Hansen (1992), Ratschek
and Rokne (1995), Horst and Tuy (1996), Kearfott (1996),
Pintér (1996), Tawarmalani and Sahinidis (2002)
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Enumeration Strategies

These are based upon a complete (streamlined)
enumeration of all possible global or local solutions

Applicable to combinatorial optimization problems, and
to certain structured continuous GOPs such as e.g.,
concave minimization models

Consult, e.g., Horst and Tuy (1996)
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Homotopy and Trajectory Methods

These strategies have the ambitious objective of visiting
all stationary points of the objective function f, within the
set D; then checking for minima, maxima, saddle points

This search effort then leads to the list of all - global as
well as local - optima (the latter being a subset of the
stationary points)

In principle, applicable to smooth GO problems, but the
numerical demands can be very substantial

Consult, for instance, Diener (1995) and Forster (1995)
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Integral Methods

These methods are aimed at the determination of the
essential supremum of the objective function fover D,
by numerically approximating the level sets of f

Consult, e.g., Zheng and Zhuang (1995), or Hichert,
Hoffmann and Phu (1997)
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Naive Approaches

These include both passive (simultaneous) grid search
and passive (pure) random search

Note that these basic (and similar) methods are obviously
convergent under mild analytical assumptions, they are
truly “hopeless” in solving higher-dimensional problems
(already for n = 3 or more)

For more details, see for instance Zhigljavsky (1991) or
Pintér (1996), with further references therein
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Relaxation (Outer Approximation) Strategies

In this general approach, the GOP is replaced by a
sequence of relaxed sub-problems that are easier to

solve

Successive refinement of sub-problems to approximate
the initial problem is applied: cutting planes and more
general cuts, diverse minorant function constructions,
and other customizations are possible

Applicable to diverse structured GO models such as
concave minimization, or DC programming

See, e.g., Horst and Tuy (1996), or Benson (1995)
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GO Solution Approaches: Heuristic Methods

These often offer a “plausible” approach to handle difficult
models, but without any theoretical justification (global
convergence guarantee)

Approximate Convex Underestimation

This strategy attempts to estimate the (possible large-
scale, overall) convexity characteristics of the objective
function based on directed sampling in D

Applicable to smooth GO problems

See Dill, Phillips and Rosen (1997), and some related
studies in classical (local) optimization studies
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Continuation Methods

These approaches first transform the objective function
into some more smooth, simpler function with fewer local
minimizers, and then use a local minimization procedure
to (hopefully) trace all minimizers back to the original

function

Applicable to smooth GO problems
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Genetic Algorithms, Evolution Strategies

These “adaptive population” based heuristic
approaches mimic biological and social evolution
models (including e.g. ant colonies, memetic and
other algorithmic approaches)

Various deterministic and stochastic algorithms can
be constructed, based on diverse “evolutionary” rules

These strategies are applicable to both discrete and
continuous GO problems under mild structural
requirements; typically, customization is needed

Consult, e.g., Michalewicz (1996), Osman and Kelly
(1996), Glover and Laguna (1997), or Voss, Martello,
Osman and Roucairol (1999)
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A General Framework for Population-Based
Strategies

Initial population of sample points

Iteration cycle steps:

« Competitive selection, drop the poorest solutions
 The remaining pool of points with higher fithess
value can be recombined with other solutions, by
swapping components with another

* The active points can also be mutated by making
some (stochastic) change to a current point

« Recombination and mutation moves are applied
sequentially, in each major iteration cycle

« Check algorithm stopping criteria: stop, or return
to execute next major iteration cycle
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Sequential Improvement of Local Optima

These approaches — including tunneling, deflation, and
filled function methods — operate on adaptively defined
auxiliary functions, to assist the search for improving
optima

Applicable to smooth GO problems

Consult, for instance, Levy and Gomez (1985), and
their many followers (Ge Renpu and others)
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Simple Globalized Extensions of Local Search Methods

These “pragmatic” strategies are often based on a rather
quick global search (e.g. a limited passive grid or
random search) phase, followed by local scope search

Applicable to smooth GO problems: differentiability is
typically postulated (only), to guarantee the convergence
of the local search component

However, global convergence is guaranteed only by the
global scope search phase (which could be inefficient in
a rudimentary implementation)

Consult, for instance, Zhigljavsky (1991) or Pintér (1996)
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Simulated Annealing

SA is based upon the physical analogy of cooling
crystal structures that spontaneously arrive at a
stabilized configuration, characterized by (globally
or locally) minimal potential energy

Applicable to both discrete and continuous GOPs
under mild structural requirements

See, for instance, Osman and Kelly (1996), or Glover
and Laguna (1997)
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Tabu Search

The essential idea of this meta-heuristics is to
forbid search moves towards points already visited
in the (usually discrete) search space, within the
next few steps, as governed by the algorithm

Tabu search has been mainly used so far to solve
combinatorial optimization problems, but it can
also be extended to handle continuous GOPs

Consult, e.g., Osman and Kelly (1996), Glover and
Laguna (1997), or Voss, Martello, Osman and
Roucairol (1999)
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GO Solution Approaches: Concluding Notes

Observe that overlaps may (in fact, do) exist among the
algorithm categories listed above

Both exact and heuristic methods could suffer from
drawbacks: “overly sophisticated for practice” vs.
“simplistic” approaches and their implementations

Search strategy combinations are often both desirable
and possible: this, however, leads to non-trivial issues in
algorithm design
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Global Optimization
Software Development

“Those who say it cannot be done should not
interrupt those who are busy doing it.”
Chinese proverb

"It does not matter whether a cat is black or white, as
long as it catches mice."”

Deng Xiaoping

“I don't want it perfect, | want it Tuesday.”
J.P. Morgan
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GO Software Development Environments

* General purpose, “low level” programming languages:
C, Fortran, Pascal, ... and their modern extensions

 Business analysis and modeling: Excel and its various
extensions and add-ons (Excel PSP, @RISK,...)

« Specialized algebraic modeling languages with a focus
on optimization: AIMMS, AMPL, GAMS, LINGO, LPL,
MPL,...

 Integrated scientific and technical computing systems:
Maple, Mathematica, MATLAB,...

* Relative pros and cons: instead of a “dogmatic”
approach, one should choose the most appropriate
platform considering user needs and requirements
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GO Software: State-of-Art in a Nutshell -

 Websites (e.g., by Fourer, Mittelmann and Spellucci,
Neumaier, NEOS, and others) list discuss research and
commercial codes: examples of the latter listed below

« Excel Premium Solver Platform: Evolutionary, Interval,
MS-GRG, MS-KNITRO, MS-SQP, OptQuest solver engines
 Modeling languages and related solver options
AIMMS: BARON, LGO

AMPL: LGO

GAMS: BARON, DICOPT, LGO, OQNLP

LINGO: built-in global solver by the developers; also in
What’sBest! for spreadsheets

MPL: LGO
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GO Software: State-of-Art in a Nutshell :

 Integrated scientific-technical computing environments
Maple: Global Optimization Toolbox (LGO for Maple)
Mathematica: Global Optimization (package),

MathOptimizer, MathOptimizer Professional (LGO for
Mathematica), NMinimize

Matlab: GADS Toolbox
TOMLAB solvers for MATLAB: CGO, LGO, OQNLP

Detailed information and references:
 Developer websites

 Handbook of GO, Vol. 2, Chapter 15
* Neumaier’s GO website
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LGO (Lipschitz Global Optimizer)
Solver Suite: Summary of Key Features

« LGO is introduced here as an example of GO software

 LGO offers a suite of global and local nonlinear
optimization algorithms, in an integrated framework

* Globally search methods (solver options):
continuous branch-and-bound
adaptive random search (single-start)
adaptive random search (multi-start)
exact penalty function applied in global search phase

* Local optimization follows from the best global search
based point(s), or from a user-supplied initial point, by
the generalized reduced gradient method
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LGO: Summary of Key Features (continued)

« LGO can analyze and solve complex nonlinear models,
under minimal analytical assumptions

« Computable values of continuous or Lipschitz model
functions are needed only, without higher order
information

 Hence, LGO can be applied also to completely “black
box” system models, defined by continuous functions

 Tractable model sizes depend only on hardware and
time... however, the inherent massive complexity of
GO problems remains a challenge (for all GO software
products)
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LGO: Summary of Key Features (continued)

« LGO reviews in ORMS Today, Optimization Methods
and Software; various other LGO implementations
reviewed in ORMS Today, Scientific Computing,
Scientific Computing World, IEEE Control Systems
Magazine, Int. J. of Modeling, Identification and
Control, and in AlgOR

« LGO is currently available to use with C/C++/C# and
Fortran compilers; with links to AIMMS, AMPL, GAMS,

Excel and MPL; and with links to Maple, Mathematica,
and Matlab

« MPL/LGO demo accompanies Hillier & Lieberman OR
textbook (from 8t edition, 2005)

« LGO demos for C/C#/Excel/Fortran,... are available
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LGO Solver Suite:
Technical Background Notes

« LGO offers a suite of global and local nonlinear
optimization algorithms, in an integrated framework

« This approach is dictated by the demands of (many,
although not all) GO software users who need to solve
their optimization problems relatively quickly

 The global search components are (theoretically)
globally convergent, either deterministically, or
stochastically (with probability 1)

 The local search component aims at finding KKT points
that satisfy the necessary local optimality conditions

* This flexible combination of strategies leads to global
and local search based numerical solutions
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Lipschitz Function and its Minorant: An Example

| Ih' ILipsTchitzI lower bound

Search interval: the function values at the sample points | are shown above by dots

Lipschitzian minorant construction, based on a given sample point sequence
and the Lipschitz-constant (overestimate); the basis for a B&B algorithm
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Example 2: Adaptive Partition and Sampling in R?

Partition sets, sample points, and selected subset
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Example 3: Interval Arithmetic Package (in Maple)

lterative range anclosure af

na -
[ 5
n:-

0ad TH 97
17 il

03 I 15

0.2 il ::.l;::- .
i P| 1

014 1

i 'ow

00 — _ﬁ, I ] mm 51

-01 4 i '
. T 5 0.4
] :_7H "4 nes g 0.9
N _i - - 115 o, 4
05 ITEI 1.I5 E.II:I ¥
X
ﬁ::x—}g_xzsm[ﬂ:}lj) gj=|:x,y:|—lﬁ_“}lxsﬁl[ﬂx2yz}

Credits: intpakX v1 - User's Guide, by Markus Grimmer, University of Wuppertal, Germany
© 1999-2005 Scientific Computing/Software Engineering Research Group
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Deterministic vs. Stochastic GO Methods

« Exact deterministic methods have the advantage of
guaranteed quality of the solution found. Examples:
branch-and-bound strategies, including interval methods

 However, the computational demand of such methods
in the worst case is exponential in n and m. Essentially,
no method is better for the worst possible function(s) f
than passive grid search...

 In practice, to verify optimality and to sufficiently
reduce the gap between the incumbent solution and the
guaranteed lower bound can be very demanding: this
may not be acceptable in certain (as a matter of fact, in
numerous) practical applications
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Deterministic vs. Stochastic GO Methods

God is subtle but he is not malicious...
Albert Einstein

 Models to solve typically come from a “random source”
(typically with unknown statistical features)

« This is a key motivation to look for alternative solution
approaches, including stochastic search algorithms

* We will highlight the basics, and then some more
advanced uses of stochastic search strategies
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The Power of Stochastic Search: An lllustrative Example
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A complicated multi-modal function, and 1,000 random sample points

Pure (passive) random search will find points in an arbitrarily small
neighborhood of the global solution x*, if the sampling effort tends to
infinity

Adaptive search strategies and statistical modeling tools become
essential in higher dimensions, to improve search efficiency

J.D. Pintér, Global Optimization 68
eVITA Winter School 2009, Norway



Stochastic Search Methods:
Some Key Theoretical Results

« Global convergence of pure random search (w.p. 1)
over D (assuming that fis continuous, and D has a
suitable, but still very general topological structure)

* Global convergence of adaptive random search

« Global convergence of stochastically combined
(sub)algorithms, assuming the “sufficiently frequent”
usage of a globally convergent algorithm component
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GO Software Implementations:
lllustrative Examples

 The following set of slides serves to illustrate
various features of (LGO) software implementations

« Some of the key features apply also to other GO
software implementations, mutatis mutandis

 The examples also hint at the capabilites and the
limitations of GO software (as of today)
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A Simple-to-Use LGO Demo (C, C#)

@ LGO Solver Suite for Global /Local Optimization — Interactive Demo

Compile . . . .
Objective Objective Function (First Row) and Constraints Smvd
Function Model Cpen 5a . .
and save | poly+trig mod Mode! LGO Option Settings
Constraints _—
Type Solution Optimization Mode 3
Compil 0.1 [0]%[0] + Math Sin{x[0] ) = Math_Sin{ 100 *x[0] -0.754578157164858
pie - [OF[0] + in{x{0] ) in{ 100 *x[0] ) Global Search Function Calls | 100000
Penalty Multiplier 1.0
Random Seed 1
Time Limit {Integer Secs) 10
Run Without -al Search Tolerance
Recompiling
C# Constarts: To Select a Row, Click
On ks Left Border
Math.E
Math Pl
CH Functions: V = tms {} -I t
Save dra ()q l: )C[ l- € C-} Open Saved
Math Abs{ } Bounds I - Bounds LGO Results
08k pohy+rig.bds
Math Acos( )
Math Asin( ) Variable at Optimal Resul Result Value
Math.Atan( ) Lower Bound | Mominal Value Upper Bound Salution
ilinal Runtime 0.812
o Ceiinal) 0 5 1.30376127475408
Math.Cos() AU la s :
Math.l:oslj[} Evaluations 54559
Math Exp() System Status Momal Completion
Math.Floor| ) —
Math Log() M Globally Optimal Solution
Math Log10()
Math.Max( . )
Math.Min{ . )
Math.Pow( . )
Math.Round( )
Math. Sign( )
Math.Sin( }
Math.Sinh( } Delete
Math. Sart( ) Selected
Math. Tan( ) Fow
Math.Tanh( )
[C) LGO dema interfface — Frank J. Kampas <fkampas@msn.com> Flease contact us f you are interested in commercial LGO implementations.

({C) LGO globaHocal optimization solver suite — Janos D). Pinter, PCS Inc. <jdpinter@hfx eastlink ca> For more information, please visit www pinterconsulting com




LGO Demo: Example poly+trig

Refer to previous slide where this model is solved

Model formulation and bounds given in *.mod and *.bds text files
Example 1

Model: cited from poly+trig.mod

0.1*x[0]*x[0] + Math.Sin(x[0]) * Math.Sin(100*x[0]) objective fct

Bounds: cited from poly+trig.bds

0 lower bound

3 nominal value

5 upper bound
J.D. Pintér, Global Optimization 72

eVITA Winter School 2009, Norway



LGO Demo: Example poly+trig

Notice the many suboptimal solutions, including several
that are close to the globally optimal solution value

3_

f‘mM

ol U“\[ I i 3 4 5

Global solution argument found ~1.30376; optimum value ~-0.79458
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LGO Demo: Example 2

@ LGO Solver Suite for Global/Local Optimization — Interactive Demo

Objective Objective Function (First Row) and Constraints
Save Mods! Open Saved : :
| log=trig mad Madel LGO Option Settings

Type Solution Optimization Mode 3
Global Search Function Calls | 2000
Penalty Multiplier 1.0

Random Seed 1
Time Limit {Integer Secs) 10

Compile and Math.Log(1+x[1T%[1]) + 100"Math. Pow(Math. Sing[0[1...
Run Math.Pow]1].3) + 1 - Math.Pow{{0[0}-1.2) 0
x[1%]0] = x[0] - 10 -1

Fun Without

C# Constants:

Math.E
Math.FI

C# Functions: -
5 [ Variables( x[0], x[1], etc. Saved
Math.Abs{) Eof;zs [ (401, 1] ) m LGO Results

: log+trig bds
Math.Acos( )
Math.Asin( } TT——
Math.Atan( ) Lower Bound Mominal Value Upper Bound p  Optim
Math.Ceiling( ) —
Math.Cos{ ) 2 0 3 3.00859124005237E-07

Math.Cosh(}

Math.Exp{) -1.53595866150818E12
Math Floor{ )
Math.Logi )
Math.Log10( )
Math. Mo |, )
Math.Min{, }
Math.Pow( , )
Math.Round{ )
Math.Sign( )
Math.Sin{ )
Math.Sinh( )
Math Sqrt( )
Math. Tan( )
Math. Tanh( )

Result Result Value
Rurtime 0.032

Evaluations 2276
System Status Marmal Completion

r_w Globally Optimal Solution

Delete
Selected

({C) LGO demo interface — Frank J. Kampas <fkampas@msn.com:> Please contact us if you are interested in commercial LGO implementations.
() LG0 globaldocal optimization solver suite — Janos D. Pinter, PCS Inc. <jdpirter@hfx. eastlink.ca= For more information, please vist www pinterconsulting.com




LGO Demo: Example 2

Model: log+trig.mod

Math.Log(1+x[1]*x[1]) + 100*Math.Pow(Math.Sin(x[0]*x[1]),2) objective
Math.Pow(x[1],3) + 1 - Math.Pow(x[0]*x[0]-1,2) constraint1

0 equality

x[1]*x[0] + x[0] -1 constraint2

-1 inequality

Bounds: log+trig.bds

-2 lower bound
0 nominal value
3 upper bound
-5 lower bound
0 nominal value

13 upper bound
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LGO Demo: Example 2

Two views of the objective function in log+trig.mod
(from previous slide)

The unique global solution is x[0]=x[1]=0, f=0
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LGO Integrated Development Environment

* Program System Information

LGO IDE works with C and Fortran compilers




A Microsoft Excel - Circuit Design_xls

File Edit “iew Inset Fomat Tools Data  Window Help  Adobe FDF
DeEa8 8RBV §BR-T v -2l &l @4 -0,
S REIE & 3F

L .
| T

G524

-

v e [

Type aquegtionforhelp SIS &
0 BIUS=E=EEHBE%, W EE DA

-

A

&

%1
%2
%3
wd
fia}
i
W
0
iz}

CON1
Oz
cON3
COnd
CONa
CONG
CON?
CONg
cong

Cost

R P P T Y 1 Y ) [ N ) ey [ Ry ) ) ) U

VARIABLE NAME

OBJECTIVE NAME

EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ
EQ

OBJECTIVE VALUE

VARIABLE VALUE |LOWER BOUND

oo oo oo oo oo

CONSTRAINT NAME CONSTRAINT TYPE CONSTRAINT VALUE
-28.51323369
-111.5468514
-134.3885201
211.4819315
-12.84483733
-44 63362513
-59.64595919
-85.137 22785

o

1

[w R wa R B e Ry R L R N

NOMINAL VALUE UPPER BOUND

10
0

1
1
1
1
1
1
1
1

oo oo oo O

Circuit design model: Objective function value (error) is ~0 at the unique global
solution

LGO Link to Excel

Model Formulation Example:
Circuit Design Problem

Note: This development work is independent of the Excel Solver

development by Frontline Systems

4 4 b MLLGO ; SheetZ

Ready

{"Slarll [l @ # 1B Windows Task Manager

Sheetd

? FALectures in Nomsay Ja..

 C:\Wsershanos PintenD... | @) Gmail-** AIMMS 3851.. | &) GO_MASAJand3ppt |[[R] Microsoft Excel - Cir...

4] | [

<P E g TR 1250




LGO Link to Excel

| 82 160 Solver Suite Excel Int

| Model Desciption | Solver Options | Selve |

LGO Program Execution Status
Result Value [ Start Optimization ]

lteration: 245353
Fun Time: 8117000000001 16

When finished...
System Status: MNomal Completion

7 Insert values into EXCEL file.
Model Status: Globalhy Optimal Salution

Do not insert values.

Optimum Value: M- Do e

Show detailed LGO Solution Report
Solution Report

Wariable Mame Constraint Name Value

%1 CON2 1.41255855865108E-11
e CON3 1.953559252334028E-11
xd CON4 2. 70006239588838E-11
x4 COMNB 1.215472167305962E-12
x5 CONE -3.00204305858642E-13
xh COMN7 -1.35655898561785E-11
x7 COMS -2 462585690592 106E-12
xB COM3 -2 4535609133081E-13

{C) LGO - Janos D. Finter, PCS Inc.; maintained since 1986 <anos.d pinter@gmail.com:; www pinterconsulting.com
C) G0 MET link: - Frank Kampas, 2007 fkampas@msn.com:
C) LGO Excel link - Bans Cem 5Sal, 2008 <barscemsal@amail .com:=




Model Development and Solution by AIMMS/LGO

—1ol x|
File Edit WYiew Data Run Settings Tools Window Help
LR = BT RN s s A e ==
= F| 9P = Solution 9B 2=
Main alobopt m15
g i 7]
Bl & Declaration Type IVarlable ﬂ EI @Ifl ‘l’EI \fl | s
; [F] pi Identifier 7| £ Variables:
— w1 = -G0.25972
Index domain ﬁ ®Z = ¥.83393
Text
Range o Ohjective:
# 1 = -1.99354
Unit e
[E] Maininitialization Default
- [P] MainExecution Property P
Monvar stalusﬁ Sclve |
D efinition - gin[x1*cos(plise) - ®x2%3in(pise)]¥[sini(x1¥cos(pisfe) - =xZ2¥sin(pirse) ) 2 pi) ]z
- =zini(xZ)*[sin(2*x2~2/pi) 1*20
n’}:: Model Explarer ﬁ Page Manager Comment
|Progress Window T x globopt_m15.aim dir:C:% Docum... 4%
READY PARALMETER: =
AlhlS cglobopt_m15.aim identifier : pi
Executing I MainExecution definition : 4d*arctan(l) :
Line nL!mber 23 [body] VARTAELE :
Generating tm15 identifier = xl
# Constraints 1 range H [-10, 107 =
#Wariables 13
#Morzeros  : 3 W’R:_[‘;BLE:_E_ )
i identifier : x
M.DdeI_T\,-'pe NLP . range H [-10, 107 =
Drirection T minimize
VARTAELE:
SOLVER CLGO identifier : £
Phace - Global Search definition : - s:?.n[xl*:os.(pif'fj : x2‘."sir:(pi,-"6:|]*[sin( [(x1*cosi(pis6) - =x2%sin(pise) ) 2/pi)]~2
Function Eval. : 3943 - sinix2)*lsin(zrx2t2/pi) 1720 ;
Objective :-1.89383732 MATHEMATICAL PROGRAM:
: identifier : ml5S
objectiwve H £
. direction : minimize
Model Status - Optimal r¥pe :onlp
Solver Status  : Mormal completion ENDSECTION :
Total Tirne :0.00 sec PROCEDURE
Memory Used 16.9 Mb (LGO: 0.00 Mb) identifier : MainInitialization
Memaory Free 4465 Mb ENDPEOCEDURE
FROCEDUERE
identifier : MainExecution
hody :
! Approximate mumerical solution X% = (-8.289718263,7.553981633), £*
. , . . .
solve uls: J.D. Pinteér, Global Optimization
FHNERNCFOITER H =
ST eVITA Winter School 2009, Norway o
Test Example GlobOpt15.pri |Ack, Case: | VREAD\" 2




AIMMS/LGO Solver Link Options

AIMMS Options d ko
e q Option Tree Dpkion Yalue
m Project Mazximal wariable bound 100
m ATMMS Operational !Tu?u:lE: L5
m colvers qeneral Penalty multiplier 1
T - d Seed value random generator 0
E}‘E Specific salvers Saolution progress 10000
m A4,
-[0] CONOPT 2,070G
M- 0] COMOPT 2,071C
- 0] COMOPT 3.11B
M- [0] COMOPT 3.144
E“E Res)
""" E Gaener al Mazximal wariable bound Help
.| 0] Global search
100
- [0] Local search Default
-\. ..... =] ki
0] Reporting [0, 1e+020]
- [0] %A apply
o, m METSOL
[ 0] Options with nondefault value Import
Expaork
ﬂlﬁl (0] 4 I iZancel




-~ AMPLWin 19990818 _ (O[]
File Edt View Send Window Help

|New|M:xIel|D.ﬁ|5&we||5dve|Dmphy| Pre\.r|de| Fi1d:| [Z|H|D|

8 [=] ES0 | Bl Model INAMPL Pro\INLPexample

# !NLPexample.mod
# A peremetric NLF model exemple
# J.D. Finter, 2007

=]

[»

!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
£

Model descripticn, background, references etc. can be included here
option show_stats 1; option display_eps .000001; print $version;O

AMPL Version 20061130 (M5 VC++ €.0) # Model structure summary
Licensed to Janca D. Pinter <jdpinter@hfx.eastlink.ca>. # Number of wariables: 2
Trial license expires 20070804. # Number of bound constraints: 2 (theoretically needed in globel optimization, for all variabkles
# Number of general constraints: 2
# Cbjectiwve: nonconvex, multimodal
# The glckal minimum walue in this example depends on the perameter scale (below),
# !NLPexample.mod # and it is bounded from below by 0
# A paremetric NLF model example
# J.D. Pinter, 2007 # Parameters (a3 needed to define model)
# Model description, background, references etc. can be included here # Increasing the parameter scele leads to more difficult gleobal optimization test models
# Model structure summary param 3cale := 100;
# Number of varisbles: 2
# Number of bound constraints: 2 (theoretically needed in global optimization, # Model variables
# Numker of general constraints: 2 var x{l..2};
# Cbjective: nonconvex, multimodal
# The global minimum walue in this example depends on the parameter scale (bel # Objective function
# and it is bounded from below by 0 minimize Obj: (x[2] - x[1l])"2 + scale*(sin(x[l] + x[2]))"2;
# Parameters (&3 needed to define model)
# Increasing the parameter scale leads to more difficult glckal cptimization f subject to
param scale := 100;
# Model wvariables # Bound constraints
ver x{l..21; Boxll: x[1l] >= -&;
# Objective function Boxlu: x[1] <= 10;
minimize Obj: (x[2] - ®[1])~2 + scale*(sin(x[l] + ®[2]))~2; Box2l: x[2] >= -17;
subject to BoxZu: x[2] <= 4;
# Bound constraints
Boxll: x[1] »>= -8; # General constraints (in addition to bounds)
Boxlu: x[1] <= 10; Conl: cos(x[l]~2 - x[2]~2) = 0.3;
Box2l: x[2] »= -17: Con2: x[1] - sin(x[2] - x[1]) <= 2;

Box2u: x[2] <= 4;

# General constraints (in additiocn to bounds) # Initiel wvalues (typically used by local solvers) can be given here

Conl: cos({x[1]~2 - ®x[2]"2) = 0.3; L_I||# date:

Con2: x[1l] - sin(x[2] - x[1l]) <= 2; # var x :=

# Initial walues (typicelly used by local solvers) can be given here # 3

# data; # 2 -1

# var ¥ =

# 1 3 # You cen try wvaricus (available)] solver options

# 2 -1 # opticn sclver knitro:

# You can try variocus (available) soclver coptions option soclver lgo;

# cption sclver knitro; # option solver minos;

option solwer lgo;

# option solver minos; # Set display precision An AM P L MOdeI
# Set displey precisicn option display round 10;

option display round 10; option display eps le-10;

cption display sps le-10; option display precisison 10; -
option display precisison 107 SOIved by LGO
# Solwve model stated sbove # Solve model stated above

solve; aolve;

# Display results (in command window)

display Obj; # Display results (in command window)

display _wvarname, _var; display Ckbj;

Adamlatr mAeArTETmE mmEe display VaArname, Var:



%gamside: Dt GAMSZ1.1modlib' gams.pro.gpr ;l_
File Edit Search ‘wWindows Utilities Help

&| B3 ¥ |+ ] EI ]S =]

i

globaltest] |

——— Starting compilation

-—-- globkaltestl.gm=si(51) 1 Mk

——— Starting execution

-—-- globkaltestl.gm=s(45) 1 Mk

—-—— Generating modsl m

-—-- glokaltestl.gu=s(51) 2 Mk

- 10 rows, 12 columns, and 43 non—-zeroes.
-—-- globaltestl.gus(51) 2 Mb

—-—— Executing LGO

Lo 1.0 Sep 3, 2002 WIN.L:.NA Z21.Z 001.000.000.VI8

L0 Lipschitz Global Optimization

(C) Pinter Consulting ZServices, Inc.

129 Glenforest Drive, Halifax, NS, Canada B3M 1JZ2
E-mail : jdpinteri@hfz.eastlink.ca

Website: www.dal.ca/~Jjdpinter

7 defined, 0 fixed, 0 free GAMS PreproceSSing

3 LE0 equation= and &5 LGED variables
Iter Objective SumInt MaxInf Seconds Errors
28380 7.634873E-18 0.00E+00 D0.0E+00 0.311 LGO SOIver ReSUIt
——— LGO Exit: Normal completion - @lobkal solution S;l]r']rr]zirll

0.311 Lo Sec= (0.17 Ewval Secs, 0.0068 meleval)

1| |

Cloze | Open Log | [ Summany only v Update

1:1) [Insert |_|




File  Ed  Zearch FHroject Hun  view  Graph  Ophons window  Help

SEEREEREER R RN EEEE

Er?j 1IIDPY Software Development', Implen - |EI|_| | i Model Defini

. == TITLE BoxDesign
{ BoxDesign.mpl i ] EI E’ VARIABLE
{ Sourcefauthor: LIHGO HModel Library - | | & d (1)
{ Adapted by Bjarni Kristjansson and Janos D. Pinter W4 & h (1)
{ Design a minimum-cost computer box that meets engrg and aesthetics constraints 3} ;
{ A 3-variable, S5-constraint global optimization test problem solved by the global P @ w (1)
{ Global solution: obj=50.9650752407, d=23.0309622444, h=6.8656565766, w=9.56219578 EJEE???“ST?“EJ
..... con
TITLE . T || . % conz (1)
sxvesign; AN MPL/LGO Model and its Solution || - $ oo ()
oPTIONS e e & cons (1)
ModelType=Honlinear _
ParserType=Extended i View File: BoxDesign.sol
LGO.opmode=8a MIH obj = 589651
LGO.g_maxfct=10008
LGO.max_nosuc=1808880 DECISION UARIABLES
LGO.penmult=1
LGD.acc_tr=-1080000 FLAIN UARIABLES
LGO.fct_trg=-10000084
Uariable Hame Activity Reduced Cost
UARIABLES e
d IHIT 58; d 23.8318 A.008088
h IHIT 58; h 68657 A.008088
w IHIT 58; u 0.5622 8.08068
MODEL
COHSTRAIHNTS

MIN obj = 0.2xhxw + @.1x(dxh + d*u) ;

PLAIH COHSTRAINWTS

SUBJECT TO Constraint Hame 5lack Shadow Price
conil: 888. — 2.*{d=h + d=w + h=u) <{= @; coni @.00080 a.088080
con2: 1512. - d=h=u <= 8; con2 6.0888 6.0888
con3: h - B.718=w <{= 8; cond 6.0888 6.0888
cond: —-h + B.518=w {= B8; cond -1.9124 6.0888
con5: -252. + d=u {= B8; cong -31.7734 6.0000

al
1

|Main model file: BoxDesign. mpl | Saolved



GO in Integrated Scientific and
Technical Computing Systems

 Maple, Mathematica, Matlab (and some others that are
more specific to certain engineering or scientific fields)

 Model prototyping and development: simple and
advanced calculations, programming, documentation,
visualization,... supported in “live” interactive documents

- Data I/O and management features

* Links to external software products

- Portability across hardware and OS platforms

« “One-stop” tools for interdisciplinary development

* ISTCs are particularly suitable for developing complex,
advanced nonlinear models; obvious GO relevance

« Several articles discuss our implementations (refs later)



Eetting Started ppt Form.nb *

MathOptimizer Model

m Getting Started

® Model Formulation

vars = {xl1, x2};
varnom = {8., -14.};
varlb = {-10., -15.};
varub = {20., 10.};

cbjf = 10_*{xl1*2 - x2}*2 + {x1 - 1)+2;
eqs = {x1 - x1*x2};
inegs = {3.*x1 + 4.*x2 - 25.};

B Numerical Solution

Optimize[objf, eqgs, inegs, wars, varnom,

{*
{*
(*
(*
{*
{*

{*

decision variables *)

nominal wvalues *)

lower bounds *)

upper bounds *)

objective function¥*)

equality constraints *)

inequality constraints, =0 form *)

varlb, warub,
Flabalﬂnlverﬂade -> 1, LocalSolverMode -> 1, ReportLevel -> 1]

Note that dense nonlinear models (including many GO
models) are similarly formulated across platforms:
relatively easy model conversions, converters available
in several cases (example: GAMS CONVERT utility)

| 150% = 4]

iﬁ'Startl @ & @ ® %451.5 F‘-’IE-F...”{'L Mathemati... ) DtiMathema. .. | @Mathematica...l & Eudara - [ko.., I & 2 Inkernet ... vI )] Microsoft Po... | L g 3l




Advanced Visualization Tools in ISTCs

/AR /e

i
z Sl
ety 1&#‘*1

An example from the MathOptimizer User Guide:
Surface and contour plot of a randomly generated test function

Note: MO is a native Mathematica solver product, as opposed

to the LGO implementations reviewed here

J.D. Pintér, Global Optimization 87
eVITA Winter School 2009, Norway



FkMathematica 5.1 - [UserGuide.nb *]

File Edit Cell Format Input Kernel Find ‘Window Help

EUserEuide.nh b

MathOptimizer Professional

An Advanced Modeling and Optimization System for Mathematics,
Using the LGO Solver Engine

User Guide

User Guide can o This feature
be invoked from supports
Mathematica’s S efficient

online Help menu | prototyping
oy and modular
development

The same applies
to MathOptimizer




-‘S_f_il'-'lathemali-::a 5.0 - [MOP Getting Started Example_nb ~]
File Edt Cell Faormat Input Kemel Find ‘wWindow Help

ﬂHDP Getting Started Example.nb =

Getting Started with MathOptimizer Professional:
lllustrative Examples

m Mathematica Platform and Date

m Activate MathOptimizer Professional

ni1}= Needs [ "MathOptimizerPro callLGO "] ;

2= ? callLGO ]]

m A Simple One-line Example
It 1s straighttforward to define a (small) optumization model, as illustrated by the following example.
4= callLGO[2%*x7"2+yv ™2, {X+y-1:==20, x*"2+3xy <2},

'['[X.r _2.r l.r 3}.' '[YI _3: 2f 2}}]
outizdl= {0.673762, {x > 0.381966, v > 0.618034}, 2.79532 x107%} 1]

il s
100% « 4 | v
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File Edit ‘ew Meb ‘Window Help

[ ﬁ’-| & B o o | i | ? |Currerrt Directory: | Dratiabe Swvark

=

Problem: lgoZ prob - 2@ M2

Jolwer: LGO. EXIT=0. INFOEM=4.

Terminated by zo0lver : Globally opt:

FuncEw 1649 GradE«w 1]
CPU time: 1.613000 sec. Elapsed tim
Optimal wector X:

¥ ki -0.1%9354 -2.942209
Tzer given stationary point x % (1)
N_w 3.340950  -0.199354

 ~“ D

-6.4001546474755 558400

£k

4 TOMLAB  testprobilgo2 Fm -

File Edit Favourites Ophions  Help

MEX Interface to LGO solwver [I-IultiS'|D = & ||§|QQ$| & E|ﬂ l:""'|||I'|’|F |

-} Figure No. 1

File Edit “iew Insert Tools Window Help

% function f = 1lgo2_f(x, Prob)

%

% Test functions for global optimization.
% Two or more dimensions

%

% Reference:

% Pintér, J.D., Bagirov, A., and Zhang, J. (2003) An Illustrated Collection of

% Global Optimization Test Problems. Research Report, Pintér Consulting Services,
% Inc. Halifax, HS, Canada; and CIAD-ITHS, University of Ballarat, Ballarat, Uic.,
% Australia.

S [ . | I
timization Inc.,

E-mail: medvall@tomlab.biz.
Sweden. $Release: 4.2 _8%
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Model setup, solution
and visualization in
Matlab

TOMLAB /LGO solver

(%2)={cos(x2)-s5in(x2))"2;

I
‘*}.i

G

in{11=x21)+sin{3=x2)+5in{S*x2)+sin{7*x2)+sin(11=x;




File Edit Wiew Insert Format Table Floft  Spreadshest  Sketch Tools  Window  Help

=l=1x]

1
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@ Math | P htaple Piot ) LI-ITimes Mewy Raman =] I12j B r Qo

Model formulation,
numerical solution,
and visualization,

using the GO Toolbox "
for Maple 0.0

with (GlobalOptimization) :

cbjective = (sin(1+2*x)*sin(3*x+vy))"2:

constraints := {x"2-3*x¥y>= 0, sin(y)*y-sin(x)<= 0.3, (x-y)"2<=0.1}:

bounds := x=-1..3, y=-2..3:

objective, constraints, bounds;
smfl+2¢ﬂ2mﬂ3x+90a{ngz—Sxyﬂm(y)y—wm(xlEOl(x—gﬁzgalth—l"ly=—2_3

solution := GlobalSolve (objective, constraints, bounds);
sokﬂhw1F=[L94826655347192452 HTSa Lx==—4100908113196697686414,}F=(10272433959009311215]]
eval (constraints, solution[2]);

{0<0.0008246695780, 0.009823117965<0.3, 0.001319471325<0.1}

plot3d(cbjective, bounds, axes=boxed) ;

=
[y

0.25

(D

(2)

(3)




Branin’s Test Problem with Multiple (3) Global Solutions

2

+ 10 {1—1—] cos(xd) + 10
8

2
f= [:-':2— 1.2?5002000:{1‘ + 5xl ¢

T I

2|:|—_

15

5 ] 5 10
el

The GOT can also be used to find a sequence of global solutions
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Maple GO Toolbox: Optimization Assistant

£-2 Dptimization Assistant |

—Solkver ~Prabiletn

" Lacal Defaut Objective Function Esiit

L stariakle T |
o S (x-sin(2xy+x))° + (y-cos(xy))?

= Guadratic

" mMonlinear IDefaurl - I
' Lesst Soquares IDefauIt - l Constraints and Bounds Eulit

& Global Salver Muti-start ¥ | x e [-2, 4]
ye[-3 1]
~Options sinix) -3eos(x) mniy) =1
2 0=
% minimize = Maximize x _),3 =1
Penalty bultiplier Idefault
Intial Yalues Clear Edlit
—Solution
. Objective walue: 1.27343046156784712
Merit Target IdEfa““ ¥ = .999528647360645044
Function Evalustion Lirmit Idefaurt ¥ = 98044998031 5327707e-1

Tirme Limnit (=] Idefaurt
on Guit, Return ISquﬂon vI Help I Saolve I Flot | it |

See e.g. Optimization Methods and Software (2006)
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Maple GO Toolbox: Optimization Plotter

Ea2 Optimization Plotter |

Ranges

Range of E = -2 |4 extrema at 0.999529
Rangeof [v = | = -3 N extrema at -0.035045
Range of objective values = |default . Jdefault extrema of 1 27343
v Plot U=ing Prokblem Domain

v Plot Constrairts [ &= Surfaces Care |
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lllustrative Case Studies

A Concise Summary

 Many of the actual client case studies reviewed here
are based on multi-disciplinary research, in addition to
the global optimization component

« All detailed case studies can (could) be presented in
full detail, each in a separate lecture... instead, we shall
briefly review a selection of these

 References, demo software examples, publications,
and additional details are all available upon request
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I"UStrative Case StUd ieS reviewed in this talk (as time allows)

- An illustrative “black box” client model

* Trefethen’s HDHD Challenge, Problem 4

« Systems of nonlinear equations

« Optimization problems featuring numerical procedures
* Nonlinear model fitting examples

« Experimental design

 Non-uniform circle packings, and other packings

« Computational chemistry: potential energy models

» Portfolio selection, with a non-convex purchase cost
« Solving differential equations by the shooting method
« Data classification and visualization

« Circuit design model

 Rocket trajectory optimization
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I"UStrative Case StUd ies reviewed in this talk (as time allows)

- Industrial desigh model examples
Collision (trajectory) analysis

Design optimization in robotics

Laser design

Cancer therapy planning

Sonar equipment design

Oil field production optimization
Automotive suspension system design
and other areas

 In addition, many standard NLP/GO and other test
problems have been used to evaluate solver performance
across the various modeling environments reviewed here
 Experiments conducted by developer partners and

clients, in addition to the author’s own work
J.D. Pintér, Global Optimization 97
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“Black Box” Model Received from Client:
“Can your software handle this problem?...”

£ C\Documents and Settings', Janos',Desktop'messages'USER_FCT.C - metapad & =]

File Edit Fawourites Options Help

IDEEHR BEF &S Q|22 ~|wFpB| =

finclude <stdlib.h: il
#include <s=tdio. h:
#include <math h»

int _ declspec(dllexport) _stdcall USERE_FCT( double =[]. double fox[l]. double gox[])

1

fox[0] = pow(-52.2814820080429 + 0.291083080677605%(sin(=[0] %(1l *#(-1 *=in(l.813087=(0. 0001227328408770829 —
7.53235849379756—9%x[3] — 3 0816928986067 17e—13%=x[5] — 9. 45607074651404e—10%=[7]) )% (57 7094469266987 *cos(=x[ 0™

1y + 0.00012273840846265% cos(x[0] )*cos(=[2])*=x[8] + 0.999999992467641*co=s(=[0] )®sin(=[2])*=x[8]) + =in(=[0])=(-
2.30934895009823%=in(=[0]) + cos(=[0])%(0.999999992467641=(48 5067855663717 + co=s(=[2])*=[8]) + 0.0001227~
38408462659 (57 7154010070919 — 1 #=sin(=[2])*=x[8]))) + co=s(1.813087=(0.000122738408770829 — 7.53235849379750e—9%=x[3] -
3.08169898606717=—13%=x[5] — 9.45607074651404e—18%=[7]))*(-2 30934895009823 — 1. *=in(=[0])*®(-2. 209

34895009823 *=in({=[0]) + cos(=[0])%*(0.999999992467641*(48 5067855663717 + cos(=[2])*=[8]) + 0.000122738408462659%
(57.7154010070919 — 1 #=sin(=[2])1*#=[8]))10)3) — 1. *®({=in(=[0])*(2 232863 2%pow({cos(=[0]).2.) + =sini(=[0])*(2. 2~

328632%=in(=x[0]) + 0.000122738408770829%*=x[1] + 7.53235849379750—9%=x[6] + =[9])) + co=s(1l.813087+(0.000122738408770829 —
7.53235849379756e—%9%x[3] — 3. 081698936067 17Y=—13%x[5] — 9.45607074651404—10%=x[7]) % (2. 232063 2%=s1™

n(=[0]) + 0.000122738408770829%=x[1] + 7.53235849379756e-9*x[6] + =[9] — 1 .®=in(=[0]1%(2. 2328632*p0w(cus(x[0]) 2.1 + =in(=
[0])*=(2. 232803 2%=in(=[0]) + 0.000122738408770829*=x[1] + 7. 5323584937975 6—9%=x[6] + =[%]2)) — 1.

#=zin(l 813087+ (0.000122738408770829 — 7 .53235849379700e—9*#x[3] — 2.08169893606717=—13#=[5] — 9.4560?0?46514046 18==[7]))%(—
1. ®co=s(=[0])=*=[4] — 0.000122738408770829%co=(=[0])*=[10]))) + cos(=[0])%(1 *({-1 *=in(l 813087~

*(0.000122738408770829 — 7 53235849379756e—9*=[3] — 3.08169898606717=—13%=[5] — 9 45607074651404e—18%=[7]) 1=

(57 709446926698 7%=in(=x[0]) — 0.000122738408462659%co=s(=[2] )*=sin(=[0])*=x[8] — 0.999999992467041%=in(=[0] y*=1i™

nix[2])#x[8]) + cos(=[0])*(-2.30934895009823%=1n(=x[0]) 4+ cos(=x[0])*(0.999999992467641*(48 5067855663717 + cos(=x[2])*==x[8]) +
0.000122738408462659=(57 7154010070919 — 1 *=in(=[2])*=[8]))) + co=(1.813087={0.000122738408~

770829 — 7 .53235849379756=-9%=x[3] — 3.08169898606717e—-13%=[5] — 9 45607074651404=—18%=[7]))%®(0. 999999992467641%*

(48 5067855663717 4+ cos(x[2])*=x[8]) + 0.000122732408462659« (57 7154010070919 — 1 #=sin(=[2])*=[8]) — 1. %co™
s(x[0])%(—-2.30934395009823*=1in(x[0]) + cos(x[0])*(0.9999399392467641%. (48 5067355663717 + cos(x[2])1*=x[8]) +
0.000122738408462659%(57 7154010070919 — 1 *=in(=[2])*=[8]1)1131)) — 1 *{cos(=[0])*(2 2328632*pov(cos(=x[0]).2.) +~
sin(=z[0])=*(2. 232863 2%=in(=[0]) + 0.00012273840877082%*x[1] + 7 .53235849379756e—9%=x[6] + =[9])) + co=(1.813087=
(0.0001227328408770829 — 7 .53235849379756e—9=*=x[3] — 3.081e9898p06717=—13%=[5] — 9 45607074651404=—18%=[7] )

T2 232863 2%cos(=[0]) — 1. *cos(=[0])*(2. 232863 2%pov({co=s(=[0]).2.) + sin(=[0])%*(2. 2328632%=in(=x[0]) + 0.00012273840877082%%x
[1] + 7.53235849379756e—"9=x[6] + =[9]))) — 1.%=in(l 813087=(0.000122738408770829 — 7 5323584~

93797562—9%x[3] — 3.08169898606717e—13%=x[5] — 9.45607074651404e—18%=[7]))*(=in(=[0])%®=[4] + 0.00012273840877082%*=in(=x[0])*=x
[10]33)y — 0.70817843041004%(0.999991873452302%(—1 . ®#=1n(1 . 813087=(0.000122738408770829 — 7 &~

3235849379756e—9%x[3] — 3.08169898606717e—13%=x[5] — 9 45607074651404=—18%=[7]))%(2. 30934895009823*co=(=[0]) +

48 51386909746d46%=in(=[0]) + 0.999999992467641*co=(x[2] )*=in(=[0])*=[8] — 0.0001227384083462659%=in(=[0])%*="

in(x[2]*#=[8]) + co=s(1 . 813087=(0.000122738408770829 — 7 53235849379706e—9=*x[3] — 3 .08169898606717=—13%=[5] -
9.45607074651404—10%x[7] ) )*(0.000122738408462659%(48 5067855663717 + cos(x[2])*=x[8]) + 0.999999932467641%

=57 .7154010070919 + =in{=[2])*=[8])) + =in(1 813087=(0.000122738408770829 — 7.53235849379756e—-9*=[3] - 3.08169898606717=-13

#x[5] — 9.45607074651404=—18%=x[7]) % (—-0.000122738408770829%®co=s(=[0]y*=x[1] — 7.53235849379756e>

—9%cos(=z[0] *=[6] - 1.*cos(=x[0])#*x[9]) — 1.%co=s(1.813087=(0.000122738408770829 — 7 C5323584937975b—9%=x[23] —
3.08169898606717=—13%x[5] — 9. 45607074651404=—18%=[7]))*(-1 *=x[4] — 0.00012273840877082%*=x[10])) + 0.0040315~

0460189537% (-1 *co=s(=[0])%(1 *(-1 *=in{l.81308%=({0. 000122738408770829 — 7 53235849379756e—9%=x[3] — 3.08169898606717=—-13%x[5]

— 9.45607074651404=—108%x[7]) )% (57 7094469266987 *co=(=[0]) + 0.000122738408462659%%cos(=[0] )~

#cos(x[2])*e=x[8] + 0.999999992467641%cos(=x[0] )®*=sin({=[2])*=x[8]) + =sin(=x[0])=(-2.30934895009823*®=in(x[0]) + cos(=z[0])=*
(0.999999992467641%(48 5067855663717 + cos(=[2])=*=[8]) + 0.000122738408462659%(57 . 7154010070919 — 1 %=~

sin(=[2]1*=[8])1)1) + co=s(1.813087={0.000122738408770829 — 7 G53235849379756e—9%=[3] - 3.08169898606717=-13%=x[5] -
9.45607074651404=—18%=[7] ) )®(—-2.30934895009823 — 1. *#=in(=[0])%(-2.30934895009823%=sin(=x[0]) + cos(=[0])*=(™~
0.999999992467641=(43 5067855663717 + cos(x[2])*x[8]) + 0.0001227303403462659(57 7154010070919 — 1 . *==inix[2])*=x[8]2)2)2) — 1.

®l=mini=wl 11772 2378A37%¥nmwicn= =017 2 % + =ini=lN17%72 2328A32%=sini=l0117 + N ONN1227384N0877~ _I

|oos [INS | Line: 1419428 | Cal: 1




Trefethen’s HDHD Challenge, Problem 4 (SIAM News, 2002)
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Looks easy from far away, and very difficult when more details are seen
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HDHD Challenge, Problem 4 continued

 This model has been used as a test for LGO, as well as
with MathOptimizer, MathOptimizer Pro, TOMLAB /LGO,
and the Maple GOT

 The solution found by all listed implementations is
identical to more than 10 decimals to the announced
solution; the latter was originally based on an enormous
grid sampling effort combined with local search

1 II': ml'lhr,r':,"- ! 1 f:" J'I bl ‘
x*~ (-0.024627 nEmy 0-21 1 789 am .) Il lﬂ;"“ ‘!ﬁ: BN 'F j "lﬂg,,; | !""ﬂl_
il it '|J|l + L L g _ﬂ i
f*~ -3.30687... ‘ ‘ i
: !Ir Y , l\ "_is '-.:
‘“w o %\ \'.‘““ J\\ h ‘ ‘
= W ' “'
* Close-up picture near to i

global solution: still looks quite
difficult...
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Solving Systems of Nonlinear Equations

Equivalent GO model formulation
assuming that solution exists; else
minimal norm solution sought

F(x)=0 < min ||F(x)]|

Example solved by
Maple GO Toolbox

x-y+sin(2*x)-cos(y)=0 _
4*x_exp(_y)+5*si n(6*x-y)+3*cos(3*y)=0 Error function plOt

A numerical solution found is

x ~ 0.0147589760525313926, y ~ - 0.712474169476650099

I,-norm error ~ 1.22136735435643598 <10-1

Note: there could be other solutions; systematic search is possible

Optimization Methods and Software (2006)
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E':E *Maple 10 - :\'My Documents\Software Development\Implementations\Maple Optimization and GOT\GOT D¢ E;'] Global Optimization Plotter

File Edit Wiew Insert Format Table Plof Spreadshest  Sketch Tools  Window  Help

DE2B &% YBE ¢ Tl E= &= W1 O%FD

Tet| Math IE Text LI ITimes Mewy Roran LI I12j B I U = =l = =
: #GOT_Iktrocuction_snd_Exariples rwe £ 0=l R L= et e e =r ] ==

Nonlinear Equations :

Observe the equations (lines in x-y subspace
projection), and the solution point found as
indicated by the green dot

Ranges
Range of E = -3 2 extrema at 2.15276e-10
Systems of Nonlinear Equations e @)L i SHETE L AL
Range of ohjective values = |default . |detault extrema of 0
L v Plot Uzing Problem Daomain

eqnl:= x¥*cos (x-y-z)+y*z=0:
eqnz:= y-{x+y) *z=0:

¥ Plot Constraints [ 2= Surfaces Drare |

egqnd:= exp(xty+z)tcos (x-vy) -2=0:
constraints := {egnl,eqnZ,eqn3};

x+y+z+wmdx—jﬂ——2=Qxcmtr—y—z)+yz=0} (7)

constrainis == {y — (x + y) z=0,e
> objective = 0:

> bounds = x=-3..2, y=-2..3, z=-1..4:

V

solution := GlobalSolve (objective, constraints, bounds) ;
solution = | 0., | x=2.15276144907379962 1071, y = —5.10337879464516135 10™°, z = 1.06478223075657034 10™°] | (8)

> eval (constraints, solution[2]); | |
{—5.103378795 10" =0, 0. =0, 2.152761448 1070 =0} ©)




£12 *Maple 10 - I:\'My Documents\Software Development\Implementations\Maple Optimization and GOT\GOT Demo Apps\Teaching ORMS with ICSs — demo exa 8] x|
File Edit Wiew Insert Format Table  Plot Spreadshest Sketch Tools  Window  Help

D2B S8 Yl S5<¢ T E @@= MI1OFs KB @ F
Text IE 20 Input LIITimesNewRoman L||12j B u =

: #GOT_Imtrocuction_shd_Exariples rmwe £ ==l L= i e

EMO EXamples v X

C [ |
The example presented here illustrates the point that the Global Optimization Toolbox can handle a broad range of Maple
functiong as part of the model formulation. In the example, we shall use the built-in gamma function denoted by GAMMA(X).
The gamma function 1s defined for Re(z)=0 by
GAMMA(Z) = J e ar

0
It 1s extended to the rest of the complex plane, except the non-positive integers, by analytic continuation. (Consult Maple's Help
system for more information.)
> cbjective = 0.1%(x-3)"2+sin(x"2+5¥x-GAMMA (X)) "2;
2
objective =0.1 (x — 3)2 + sjn(x2 +5x— F(x)) (4)
| > bounds:= x=1..10:
> GlobalSolve (objective, bounds) ;
[9.33734073493614977 10°%, [x =2.99903427678795830| ] (3)

> plot(cbjective, bounds) ;

Optimization with
Arbitrary Computable
Model Functions

]

()
I T T T T T T T I Y |

A unique - and practically
important - feature

iy

[

2 4 ] g 10 ;l




Optimization of A Parametric Integral Expression

> objf := a->2*evalf(Int(0.01*x+sin(5*x)*cos(3*x)-sin(3*x)*cos(2*x)+sin(x)*cos(7*x), x=-1.5%a..2*a));
> bounds :=-3..10; o
> GlobalSolve(objf, bounds) objf

Result found by the GOT:
a*~ 4.92574563473295957
f*~-1.86463327469610008; here f*=obijf(a*) i
Total number of function evaluations: 1351

Runtime in external LGO solver: 14 seconds

(integration takes time for each input value a)

> plot(objf, bounds); \ N ﬂ V\ 1 /

The plot shows the high multi-modality of the 2 V 2 ' 6 8 a‘“
parametric integral value (as a function of a)

Notice the location of the global solution (a*,f*) 1

(a*,f*)

objf =a—?2 evah{j 0.01 x +sin(5x) cos(3x)—sin(3 x)cos(2x)+sin(x) cos(7 x) dx}

—15a
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Nonlinear Model Calibration in Presence of Noise

An example model (in Mathematica notation), inspired by
a client’s (medication dosage effect) study:

a+Sin[b*(Pi*t)+c]+Cos[d*(3Pi*t)+e]+Sin[f*(SPi*t)+g]+&

The parameters a,b,c,d,e,f,g are randomly generated from
interval [0,1]; € is a stochastic noise term from U[-0.1,0.1]

Subsequently, the optimal parameterization is recovered
numerically by MathOptimizer: this gives superior
results, in comparison with Mathematica’s corresponding
built-in local solver functionality (NonlinearFit)

Optimization Methods and Software (2003)
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Calibration of Nonlinear Model in Presence of Noise (cont)
°®

| o
* a+Sin[b*(Pi*t)+c]+Cos[d*(3Pi*t)+e]+Sin[f*(5Pi*t)+g] +¢

Global search based fit, obtained by MathOptimizer
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Arrhenius Probe Model Calibration

Credits: Grigoris Pantoleontos et al., Chemical Engineering Department,

Aristotle University of Thessaloniki, Greece -
In(y) = A-Ea /RT Arrhenius formula
Describes temperature dependence of

0.2

reaction rate coefficient y

0.18

0.16

A multi-component version of the formula:
Yi = CiAieXp(_ Ei/(RTemp[j]))- (1_ R, [J])

Here Ri[j] is calculated from another (rather
complicated) expression

The study by GP et al. is aimed at the determination™’ T
of the parameters c;, A, and E; i=1,2,3 by comparing the
computed model output values to the experimental ones

The figure shows the initially given data points (red circles), the component curves
(green, blue, yellow), and the resulting curve (bold blue); a fairly good fit

The solution of this computationally intensive example (9 variables to calibrate, very
large search region, hundreds of data points, difficult model functions to compute)
took about an hour on a desktop PC (in 2007); GP used the Maple GOT
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<:E| - |:> - @ @ @ IW hitp ./ /www maplesoft.com./applications/app_center_view aspx7AID=1584 j @ Go I@,

P Getting Started o) Latest Headlines

Manlaso t B Store | @Logout M@ Membership = & Newsletter
T

T T T T 1
Products & Sclutions | Purchase = Customer Support | Site Resources | User Community  Company Search I:l

Maple Application Center

" Research PowerTools
® Education PowerTools
" Browse Applications Conduct a search: simple : advanced
® Advanced Search

" Top Rated Applications

| Top Rated Applications | | MNew Applications | |I'u'|nst Duwnlual:ledl APPL[CA'I‘I{:)N CENTER

" BIATT TS Aspherical Lens Surface Identification - Non-Linear Fitting with the Global Optimization Toolbox
- MIJSt DU\'I'nllJﬂdEd .......................................................................................................................................
Applications
* Tips & Techniques Member Rating: [rate this spplication)
® Submit Your Work )
Author: Maplesoft
E 4 Cybernet Systems Co., Lid .
Other Resources TS Ol it o .
T T b A % o Application Type: Maple Worksheet
- S 2 = o "
" Maple 10 Training = Y =t P
" Maplesoft Books ., "n:a‘v 3. b . ﬂb: =R Publish date: August, 2006
* Maple Reporter ol L i R B
sl oifa W o ReA Aegel Related Maple 10
A8 4005 A0 T 08 4T 1S Products: Global Optimization
More Information - "42 s g 7 3o 3 ) )
o o Taowg 370 anguage: English
* Contact Maplesoft L. R R e ]
S gy "5"—: P o, Related Link: http:fwewaw. maplesoft comiproductstoolboxesiglo...
v ag - ae o% u: af)
LA L1 4 .7.:, 3‘; oo ® -"_ . Related Book: Applied Monlinear Optimization in Modeling Environments
il :, i S s Global Optimization : Scientific and Engineering Case Studies
- ‘ 0% AT o Global Optimization in Action : Continuous and Lipschitz Optimization: Algorithms, Implementations and
® Applications
Options:
—
WML iew HTML version
g
tEE Download Maple Code (zip, 67.9kb)
J—
= E-mailto a colleague
Abstract: b

In this Application Demaonstration, we investigate Aspherical Lenses and apply non-linear fitting to obtain an
accurate representation of the given data in the form of a function, using the GlobalOptimization Toolbox for
Maple.

Related Application Categories Member rating: not rated (min. 5 ratings required)
Mathemnatics : Operations Research You have not rated this application.

Operations Research | Regression Rate it:| - Rate - j SUBMIT

Science : Physics

Statistics & Data Analysis : Reagression

View top rated applications

N Kl

L 1 1 1 & I — 1 P — 1 | P—— T ge— 1T o - o




Data Classification (Clustering) by Global Optimization
Details: Global Optimization in Action, Ch. 4.5

Classification objective:

Find the “most homogeneous”
or “most discriminative”
grouping of a given set of entities
(see black dots shown in rhs
figure)

This can be done numerically, by
globally optimizing the position
of cluster centres (medoids, see
red dots)

For any given (candidate) medoid

configuration, one can use e.g. the Example:

“nearest neighbor” rule to associate the 400 3-dimensional points

points x; with the cluster centres c, classified into 4 clusters
J.D. Pintér, Global Optimization 109
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Data Classification (Clustering) by Global Optimization

For a given (prefixed) number of clusters,
one can use the following model to
identify the cluster medoids {c,}:

min ZkZJIICk—XI” S.t. CIkSCkSCUk \..'\' "-. B

For any given set of {c,} and each x;, P
the index k=k(x;) is chosen following '
the “nearest neighbor” rule

In general, this is a GO problem

Model description and detailed
discussion with numerical examples in
Global Optimization in Action, Ch. 4.2

Key advantage of the GO model formulation compared to the usual
combinatorial optimization based approach: model dimension is
ndim*nclusters=12... vs. nentities=400... The example is solved in
seconds, the approach also scales up well 110



Maxi-Min and Related Point Arrangements

In a large variety of applications, one is interested in the
“best possible covering” arrangement of points in a set

 numerical approximation methods

« design of experiments for expensive “black box” models
« potential energy models (in physics, chemistry, biology)
- crystallography, viral morphology, and other areas

For illustration, consider a maxi-min model instance

max{min||x;-x, ||} xISx;Sxu x;eR? i=1,....,m
{x;} 1Si<ksm

Additional restrictions, alternative feasible sets, and other
quality criteria can also be considered

Permutations avoided by lexicographic point arrangements

In general, difficult non-convex models arise

J.D. Pintér, Global Optimization 111
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MaxiMin Point Arrangement Problem

" LGO Continuous Global Optimization Program System

Projected Ment Function and Scatterplot of Improving Search Points

Objective Wazviin Criterion Fot

Variable 2

Vartable 1

fmin  -0.1209651310 £ max 0.0000000000

The image 15 scaled by the mimmal and masmmal (or cutoff) fnction values, Continue

The projected location of the solution estimate 15 denoted by the blue dot.

Hstort|
LGO IDE: model visualization (m=13, d=2)
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Packing Uniform Size Circles in the Unit Square

® O

Example: 40 circles; optimized radius of circles r~0.0787391...
Solution time using MOP: less than 5 minutes (3 GHz PC)
No postulated structural info is exploited: MOP used “blindly”

J.D. Pintér, Global Optimization 113
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Non-Uniform Size Circle Packings in a Circle

In such problems, we study the packing of different size circles in
an embedding circle. Since this model formulation typically has
infinitely many solutions per se, we will additionally try to bring the
circles as close together as possible.

The primary objective (obj1) is to find the circumscribed circle with
the smallest radius; the secondary objective (obj2) brings the circles
close together by minimizing the average distance among all circle
centers.

A scaled linear combination of these two objectives is used.

Note that alternative formulations are also possible, and that
rotational symmetries of solutions can also be avoided (by added
constraints), thereby making the solution of a specific model
formulation essentially unique.

Applications: wires packed together in a cable, dashboard design...

Mathematica in Education and Research (2005), The Mathematica
Journal (2006) Co-author: Frank J. Kampas 114



Non-Uniform Size Circle Packings

Optimized Circle Packing for n=25

J.D. Pintér, Global Optimization 115
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General Circle Packings in
Minimal Volume (Length) Container

Example: given 30 circles with radii below ; given height of container; find minimal container width

rlist = {1.275, 1.67, 2.05, 1.739, 1.399, 1.18, 0.564, 1.374, 1.237, 0.845, 1.484, 0.868, 0.807, 1.551, 1.274,
0.855, 1.493, 1.281, 1.491, 0.747, 1.085, 1.044, 0.955, 1.404, 1.292, 0.853, 0.76, 0.527, 0.592, 0.887}
Best known radius is 17.291; MOP default option based radius 18.915 in ~ 20 secs; relative quality ~
91% Further structure based refinements are possible and recommended

Pintér and Kampas (Mathematica in Edu. and Res., 2005), Castillo, Kampas, and Pintér (EJOR, 2008),
Kampas and Pintér (WTC presentations, 2006, 2007; downloadable notebooks)
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Sphere Packings in Optimized Sphere

Given a collection of spheres, find
the minimal size sphere that includes
all of these, in a non-overlapping
arrangement

Example: 15 spheres with radii r.=i"® solved numerically by MOP
Radius of embedding sphere: ~1.96308, 1.5 sec runtime on a 2007 PC,
vs. ~10 min when using the built-in Mathematica function NMinimize

More details: Kampas and JDP, WTC talks + notebooks
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Industrial Packings and Polygon Cutting Stock Plans

Polygon Pack

=y

%@4? C

Credits: Ignacio Castillo, University of Alberta, Edmonton, Canada (now at WL19)

= y

h I I
Shapes= 39  Run Time: 63.00 Sec. Score: 0.79




Packing Objects with Orientation and Other Characteristics
(Constraints Such as Mass Balance): An Example

Fig. 8 Case study balanced solution

Credits: G. Fasano, MIP-based heuristics for non-standard 3D-packing
problems with additional constraints; technical report and papers by GF
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Potential Energy Models

Point arrangements on the surface of unit sphere

X=(Xi45X2:X3) |11 [=1

x(m)={x,,...,x,,} m-tuple (point configuration)
dy=d(x;,x,) 1sj<ksm Euclidean distance

Model versions considered:

Max » s<icksm 109(djy) Fekete (elliptic or log-potential)
min ) j<icxem 1/dy (d>0)  Coulomb-Fekete

max  s<ick <m ik’ Power sum, 0<a<2

max {min ;4<m, di} Tammes (hard sphere)

In all cases, the objective function is multi-extremal;
Combined GO + expert knowledge based solution
approaches

Applications: math, physics, chemistry, biology,...
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Elliptic Fekete model (m=25 points)

Projected Mert Function and Scatterplot of Improving Search Points

] ‘.‘-
"z.ﬁl!!;"
N o

G el s‘
Sy (ete

AR A
T
AN A

Wariable 13

fmine -B0.9872470585 f e -75.2160045606
The tmage 15 scaled by the mintmal and masmal (or cutef) function values.
The projected location of the solution estimate 15 denoted by the blue dot.

J.D. Pintér, Global Optimization
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Coulomb-Fekete model (m=25 points)

Yizualization

Projected Merit Function and Scatterplot of Improwing Search Points

Wartable 39
Wariahle 7
P 243 8620425664 Fomase 2704042437273 :
The image 15 scaled by the minimal and masamal (or cuteff) finction values, ot |

The projected location of the solution estimate 12 denoted by the blue dot
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Powersum model (m=25 points)

Projected Merit Function and Scatterplot of Improving Search Points

Wariable 16
Warlable 11
P -414 6252862986 Fomes -411.00172005538
The image 15 scaled by the mintmal and masmal (ot cuteff) function values. ot |

The projected location of the solution estimate 13 denoted by the blue dot.
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Tammes model (m=25 points)

Projected Merit Function and Scatterplot of Improving Search Points

Wartable 12

Wariable 27

f min: -0.57959595685 f mac -0.0682648898
The mmage 1= scaled by the mimmal and masimal (or cuteff) function values.

The projected location of the selution estmate 15 dencted by the blue dot.
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Log-potential (Fekete Potential) Model

In this example charged particles
(points that are repelling each
other) are confined to stay on the
surface of the unit sphere

Our objective is to find their
optimized configuration, using
the Fekete potential model

5-particle example: as expected,
the arrangement is symmetrical
with respect to the configuration
elements

Finding such an arrangement is
not trivial for arbitrary m-point
configurations: GO techniques

7

Mathematica model implementation
By Frank J. Kampas

can be used J.D. Pintér, Global Optimization 125
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Log-potential Model: 13 Points

Solution found by MathOptimizer expressed in spherical coordinates

(0.882683, {{8[1] =0, ¢[1] =0}, {8[2] = 0.641862, ¢[2] -0}, {F[3] = 0.350165m, $[3] — L.4503 7},
(8[4] = 1.01645 7, p[4] - 0.610165 7w}, {8[5] — 0.401262 m, ¢[5] —0.49749 71,
(B[6] = 0.641862 7, $[6] — 1. 62032 1, {8[7] = 0.666635m, ¢$[7] = 0.510L58 1,
(B[8] = 0.687546 7, $[8] = 1.23168 7}, {B[9] = 0.401262 7, ¢[9] = 1. 12283 71,
{8[10] = 0.333318 7, ¢[10] = 0.8L0158 ), {S[11] - 0.687545x, ¢[11] - 0.388636 1,
(8[12] — 0.350165m, p[l2] — 0.170016 ), {S[13] = 0.349816m, ¢[13] = 1. 8101611



Electrons in a Sphere

In this example charged particles
that are repelling each other
are confined to stay within
the unit sphere

Objective: find their
optimized configuration

6-electron example:

again (as expected), the
arrangement found is
symmetrical; all optimized
points are on the surface
of the sphere

Mathematica model implementation

J.D. Pintér, Global Optimization
By Frank J. Kampas ’
y J P eVITA Winter School 2009, Norway



Summary of Numerical Studies

Putative global optima collected (to use in comparisons)
from the Web site of AT&T Bell Laboratories: these results
have been derived by extensive numerical experiments

Our illustrative results (LGO 2000) successfully approximate
the corresponding best known results to more than 99.99
precision for the log-potential, Coulomb, and power sum
models; LGO solution time was ~ 10-15 sec (P4 1.6 GHz PC)

Hard sphere model solution quality was only ~90% of best:
Results significantly improved since that time; more
recent published results using LGO and MathOptimizer Pro

Model variants and illustrative results appeared in Annals of Operations
Research (2001); J. of Computational and Applied Mathematics (2001)
Co-authors of JCAM paper: Walter Stortelder and Jacques de Swart
Subsequent work and reports/papers/talks with Frank J. Kampas
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Lennard-Jones Potential Energy Model

Credits: Wikipedia

A pair of neutral atoms or molecules is subject to two distinct forces:
an attractive force at long ranges (van der Waals force) and a
repulsive force at short ranges (Pauli repulsion). The Lennard-Jones
potential is a simple mathematical model that approximates these two
forces. The L-J potential is of the form 100 —

vin=se|(5)"- (7)] ‘

Interaction energy (cm™')
[=]
P
|
|
|

Emirical
Lennard-Jongs -

-100 | \kff.f

a0 a.0 50 6.0 7.0 B.0
R’ &)

Here e is the depth of the ‘potential well’; ois the distance at which

the inter-particle potential is zero; and r is the distance between the
particles. The aggregated (pairwise) interactions model of a group of
particles leads to difficult global optimization problems: these models
are used both in GO tests and in (physics, chemistry, biology) résearch




Lennard-Jones Model and Optimized Configurations

Lennard-Jones clusters for some challenging cases

Credits: Jon Doye, University of Cambridge
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Lennard-Jones Model and Optimized Configurations

107

Lennard-Jones clusters for further interesting cases

Credits: Jon Doye, University of Cambridge
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307 IC -1,992.7481 308 IC -1,999.9833

Lennard-Jones clusters for higher-dimensional cases

Credits: Carlos Barron (University of Houston)
The optimal geometry of Lennard-Jones clusters: Computer Physics Comm. (1999), 148-3009.
Authors: Romero, D., Barron, C., and Gomez, S.

J.D. Pintér, Global Optimization 132
eVITA Winter School 2009, Norway




Morse Potential Energy Model

Credits: Wikipedia
The Morse potential energy function (model) is of the form

V{T) — Brl::l - E_E{T_THJ)E

Here
r is the distance between the atoms,
r. is the equilibrium bond distance,

D, is the well depth (defined relative
to the dissociated atoms), and

a controls the 'width' of the potential. Y :
Internuclear Separation (r)

)
=11
| =
L
=
4

Again, the minimal energy model of a group of particles leads to
difficult global optimization problems that are used both in GO tests
and in (physics, chemistry, biology) research
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Molecular Alignment and Docking
Using ab initio Quality Scoring

Docking potential drug candidates into active sites of enzymes in
receptor based drug design, or aligning molecules into abstract
external fields or to other molecules in ligand based drug design,
represents one of the biggest challenges in contemporary drug R&D.

An accurate and efficient molecular alignment technique is presented
by the authors named below. It is based on first principle electronic
structure calculations. This new scheme maximizes quantum similarity
matrixes in the relative orientation of the molecules.

The authors have been using LGO to find the optimal alignment; as a
result, they have found noticeably improved alignments.

Credits: Laszl6 Fusti-Molnar and Kenneth M. Merz
Department of Chemistry, Quantum Theory Project, University of Florida
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Molecular Alignment and Docking
Using ab initio Quality Scoring

A local optimum in the alignment of Methylacrylate to Crotonic acid

(The color of Crotonic acid is set to white)

Credits: Laszl6 Fusti-Molnar and Kenneth M. Merz
Department of Chemistry, Quantum Theory Project, University of Florida
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Molecular Alignment and Docking
Using ab initio Quality Scoring

The globally optimized alignment of Methylacrylate to Crotonic acid

(The color of Crotonic acid is set to brown)

Credits: Laszl6 Fusti-Molnar and Kenneth M. Merz
Department of Chemistry, Quantum Theory Project, University of Florida
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Further Application Perspectives in
Chemistry and Biology — The Real Deal...

Example: The molecular surface of crambin 140
Credits: Molecular Surface Graphics, http://www.netsci.org/Science/Compchem/feature14.html



Atomic Structures of Macromolecules

Credits: Marin van Heel, Imperial College, London, UK

These (and great many other similar, biologically
relevant) structures result from a natural tendency
towards self-organizing

Notice the close conceptual relation among maximin
point arrangements, circle packings and the various
models of atomic and molecular structures

These arrangements are all aimed at finding globally
minimal energy configurations of their objects,
according to a context-specific criterion function

Therefore GO technology can be brought to a wide
range of object configuration problems — as always,
in combination with domain-specific expertise
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Financial Modeling and Optimization
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Portfolio Optimization with Transaction Costs

Objective: minimize portfolio variance; Q cov. matrix x"Qx
Constraints: expected return (ER) x"r2ER
asset allocation (of capital C) > x+ > t(x;)=C

Note: other considerations will make model more complex...
GO can be applied to many such (more realistic) models

Transaction Cost vs. Purchase Armount Credits- Jason Schattman Maplesoft
= ’

14002
12005
1DDD§
anng

B0

4007

2007

D: T T T T T T T T T T T T T T T T T T T T T T T T 1
a 2000 4000 G000 gaan 10000
¥
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Portfolio Optimization with Transaction Costs

(continued)

8 0007
6.0001
Z4 000

2 000

The figure shows the location of the optimal budget allocation point
(in green) on the boundary of the feasible region

The surfaces representing the active budget constraint (blue) and the
expected return constraint (grey) are also shown - recall KKT theory
Castillo-Lee-Pintér, Integrated Software Tools for the OR/MS Classroom, AIgOR (2008)
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Supply Chain Management:
A Reliability Optimization Example

Y, =max(X,.X,)
¥ = max(.X,;. Xpp, Xy3)

Figure 8: A three-stage assembly-type supply chain. In the first stage, it inventory is not
available three components must be ordered from outside suppliers with different leadtimes.
In the second stage, when inventory is unavailable, two components must be ordered from
suppliers with different leadtime. The last stage always lasts a random length of time and does
not require outside components.

Cited from Hum and Parlar (2006); numerical example in the e-book
Global Optimization with Maple (2006)
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Solving a System of ODEs
by the “Shooting Method”

The SM consists of adjusting
the initial conditions of the
solution until the boundary
conditions are met. Unless the
initial conditions are very
close to the correct value,
singularities are frequently
encountered.

Therefore one can use a finite
difference approach and solve
the resulting system of
equations with MathOptimizer
Professional. Then, based on
the initial condition values
found, one can find a more
precise solution by the SM.

Note: the model shown is
received from an MOP user

Further technical details in
MOP User Guide

The governmg squations
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21 [ 76767 1534]Objective Function: Minimize the total (scaled, 1_2 norm) error of equations | cadg= 126.3450721
22 g11= 0.485
23 Constraints C1...C9 express physyical system equilibrium conditions | g12= 0.752
24 12.062365|C1: prod1*exp(=5*(g11-g31*x7 *rthou-g51*x8*rthou)j-onej-g51+gd 1*x2+cad1 =0 g13= 0.869
24 g14= 0.982
26 03.678244 (C2: prod1*{exp(=5*{g12-032*x7 *rthou-g52 *x8*rthou)j-one)-g52+y4 2 *x2+cad2=0 g21= 0.369
27 g22= 1.254
28 01.053678 (C3: prod1*{exp(=5*{g13-g33*x7 *rthou-g53*x8 *rthou)j-one)-g53+y4 3*x2+cad3=0 g23= 0.703
24 g24= 1.455
30 174.00957 |C4: prod1*exp(=5*(g14-034*x7 *rthou-g54 *x8*rthou)j-one)-g54+yd4 4 *x2+cad4=0 g31= 5.2095
21 g3z2= 10,0677
32 15.073224 |CH: prod2*exp(=6*(g11-021-g31*=7 ‘rthou+gd1*=9*rthou))-one)-g51+g41*=2+cadd5=0 g33= 229271
33 g3i= 20,2153
34 131.4521 (C6: prod2*exp(x6*{g12-g22-g32* =7 ‘rthou+g42*x9*rthou)j-one)-g52+g42 *x2+cadb=0 gd1= 23.3037
34 gi42= 101.779
36 15324758 |C7: prod2*(exp(x6*{013-g23-033* %7 rthou+g4 3*x9*rthouj)-one)-ghI+gd 3*x2+cad7=0 gi3= 111.461
T gd4= 191.267
38 -2763.1953 |C8: prod2*(exp(x6*{g14-g24-034*x7 *rthou+g44*x9*rthouj)-one)-ghH4+gd4 *x2+cadd=0 go1= 28.5132
34 gh2= 111.8467
40 -5|CO: x1*%3-x2*x4=0 ghi= 134.3884
41 ghd= 211.4823
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2 Spaceship Navigator . . .

3 | |Demonstration spreadsheet model A Time-Discretized
4 Frontline Systems and Pinter Consulting Services Control MOdel
Pilot a spaceship from one planet to another using the least amount of fuel. The trip is Solved by ExceIILGO
divided into 9 time blocks, with one engine blast allowed per time block. The pilot must
choose the size and direction of each rocket blast, for each time block. There are two
moving suns whose gravitional fields affect the rocket. The best answer will take
advantage of this and use the fields to "slingshot" toward the goal.
5
b This is a non-trivial 17-variable multiextremal model with two complicated nonlinear equality constraints.
7 Extra difficulty: a large number of locally optimal solutions can be found on the border of the feasible set.
8 r
3 |sun] Sun2 Spac
10 xpos ypos shiptosun  grav__ angle to sun __ xgrav ygravy xpos _ypos shiptosun  grav _ angle to sun__ xgrav ygrav__ Time Bli
11 200 400 4472135855 10 1107148718 4472136 59442719 0 300 300 22222222 1570796327 1.3613E-15 222222222 0
12 180 400 406504936 12103148 1.125707647 5.2108643 10923969 10 270 2369532645 35620877 1.549626898 0.75401728 356128953 1
13 160 400 3195045347 19591836 1.098593056 8.9113376 17.447868 20 240 1246547338 12871005 1.528052239 549991839 128592483 2
14 140 400 1188074485 14169113 0484360388 12539282 65977399 30 210 1347658235 11012108 -1.606856461 -3.9701203 -110.04949 3|
15 120 400 140630418 10112801 -1.946257292 -37.083785  -94.0833 40 180 3746931255 14.245528 -1.928583627 -5.0021606 -13.33842 4
16 100 400 267.3464798 27982148 -2.237562568 -17.305505 -21.989091 50 150 507.9881852 7.750376 -2.008551431 -3.2854411 -7.0195587 5
17 80 400 366.0161194 14928961 -2.357613614 -10571339 -10.541378 60 120 6065180477 54367898 -2.049128023 -2.5025476 -4.8265866 6
18 60 400 450237664 9866119 -2436672084 -7.514656 -6.392982 70 90 687.7029927 4.2289073 -2076151187  -2.04729 -3.7003055 7
19 40 400 5222734784 7.3321957  -2.4872459 -5.81769% -4.4626754 80 B0 7569506925 34905576 -2.088182762 -1.7264659 -3.0336955 8
20 20 400 5869220194 58058952 -2.536249019 -4.7742259 -3.3038138 90 30 816.0012682 3.0036431 -2100958261 -1.5188614 -25913186 9
21
22 sun mass| 2000000
23 pi/2 1570796
24 pi 3.14159265
25
144> [Mlf Answer Report LGO_3 ) SpaceShip Navigator / |«|
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Pilet a spaceship frem ene planet to another uzing the least amount of fuel.
The trip iz divided into 3 time blocks, with one engine blast sllowed per time
W block. The pilot must choose the cize and direction of each rocket bluzt, for
g ench time block There are two meving suns who'e growuonolfoeld' sfect the
T d
5
6 | This is » non-trivial 17-rariable multicxtremal model with two complicated nonlinear equality constraints.
7 | Ezxtra difficulty: » large number of locally optimal solutions can be found on the border of the feasible set.
8
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£ A Time-Discretized Control Model
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B continued; the full formulation is displayed above
| 33 |
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4 Credits: Frontline Systems
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Industrial Design Problems

An illustrative application:

Design of an “optimized”
parfume bottle, using the
Maple GOT

Objective:
minimize package volume

Constraints:

Bottle volume > required
Width of the base > required
Aesthetic proportions

Example by Maplesoft
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¥9 Circuit Design Problem - Maple Application Center - Maplesoft - Mozilla Firefox
Fle Edt Mew Go Bookmarks Tools Help
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* Contact Maplesoft Ia —
i AL iew HTML version
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=, E-mail to a colleague
Abstract:

Based on the classical study of Ebers and Moll (1954), a bipolar transistor is modeled by an electrical circuit
(see also e.g., Granvilliers and Benhamou, 2001). The corresponding model leads to a square system if highly
naonlinear equations in nine (9) variables that has been studied by numerous researchers, in attempts to solve
it, and then prove the correctness of the sugagested solution.

Related Application Categories Member rating: not rated (min. 3 ratings required)
Engineering : Electrical You have not rated this application.

Maple Tools : Maple Functionality Rate it | - Rate - j SUBMIT
Mathematics : Operations Research ) i ——
View top rated applications
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Abstract:

Modeling chemical equilibrium of target compounds is of interest when controlling the pH, alkalinity or
corrosivity of drinking water.

As part of this approach, one must determine the contribution rates of various components to mixtures which
have given (known or prescribed) chemical characteristics.

Inthe example presented, we want to determine the concentrations of several components of phosphoric acid
such that the resulting pH value is equal to 8, and the total phosphate concentration is 0.1 mols.

This warksheet requires that the Glohal Optimization Toolbox has been added to Maple.

Related Application Categories Member rating: not rated (min. 5 ratings required)
Maple Tools : Maple Functionality You have not rated this application.

Maple Tools : MapleMet Functionality Rate it | - Rate - j SUBMIT
Mathematics : Operations Research
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¥ Alkylation Process Model - Maple Application Center - Maplesoft - Mozilla Firefox
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Alkylation Process Model
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Member Rating: [rate this apolication)

Author: Dr. Janos D. Pinter

Application Type:  Maple Worksheet
MapleMet Application

Publish date: October, 2005

Related Products: Maple 10
Mapleret

Language: Enalish

Abstract:

Inthis example, we describe a model for the optimization of a typical process operation in the petrochemical

Options:

@ View live with Maplefet

ML iew HTIML version

Cownload Maple Warksheet (mw, 152 2kb)
E-mail to a colleague

industry. Qur objective is to determine the optirnal set of operating conditions for an alkylation process that
combines olefin with isobutane, in the presence of a catalyst, to form alkylate.

Many chemical processes are characterized by nonlinear equilibrium (material and energy balance)
constraints. In addition, the processes are typically constrained by restrictions on the operating ranges of the
decision variables such as amounts and rates ofthe components used, temperature, pressure, and sa on.

This worksheet requires that the Global Optimization Toolbox has been added to Maple.

Related Application Categories

Member rating: not rated (min. 3 ratings required)

Education : Operations Research You have not rated this application.

Maple Tools : Maple Functionality Rate it | - Rate - v| SUBMIT |




Collision Analysis for Moving Solid Bodies

Given a number of solid bodies, each with corresponding
geometry, initial position, and analytical trajectory
description: our task is to decide whether they will
collide or not

Obviously, this problem-type is of interest in various
practical applications: e.g. in robot motion analysis,
production (job shop) floor planning, and other areas

One can approach this problem by finding the time
moment when the smallest distance between all pairs of
the moving bodies is minimal: this is a (generally
speaking, far from trivial) global optimization problem
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Collision analysis for moving solid bodies: An example

Details, including code implementation: The Mathematica Journal
(2006) Co-author: Frank J. Kampas
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Kinetic Grasp Feasibility Analysis in Robotics Design

Figure 10: Grasp of the maximum sphere

Credits: Yisheng Guan and Hong Zhang, University of Alberta, Edmonton, Canada
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Laser Design
Optimization and Engineering (2003); with G. Isenor & M. Cada

Basic Concepts

The laser is a device that produces a beam of light that
Is coherent. The beam is produced by a process known
as stimulated emission.

The word laser is an acronym for the phrase “Light
Amplification by Stimulated Emission of Radiation”.

The idea of stimulated emission was proposed by Albert
Einstein in 1916. It took another four decades to build
the first lasers as a scientific research tool; soon they
found numerous significant applications.
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Index-coupled distributed feedback laser
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Various laser design issues can be analyzed using GO

Example:

min f(x) field flatness function (key quality
measure)

g(x)s¢ boundary condition (error limit)

xl < x < xu explicit, finite parameter bounds

x = (KL1, KL2, KL3, A, C,) laser design parameters

Essential difficulty: fand g are complicated “black box”
functions. The LGO IDE software has been used to
analyze and solve this model (in several variants).

A very significant improvement (over 90% reduction) of
the field flathess function has been attained.
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Radiotherapy Planning

Significance of the problem: world-wide interest and R&D
activities devoted to cancer therapy by irradiation

Specific area of our research: intensity modulated
radiation therapy planning, delivered by multi-leaf
collimators, to cure individual patients

Objective: determine the operations (movements) of the
leafs in an MLC equipment, to optimally approximate the
prescribed dose intensity distribution in 3 dimensions,
thereby

« providing prescribed radiation intensity to a target area
or volume (the body parts affected by cancer)

- avoiding unwanted radiation as much as possible
(especially of organs at risk, as well as other body parts)

For details, cf. Tervo et al., Annals of Operations Research, 2003
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Dose Delivery and Effect Modeling

Sophisticated, computationally intensive mathematical
models of dose delivery by MLC equipment have been
developed in several versions by researchers at the
University of Kuopio, Finland. The key novel feature of
this approach is to optimize dose distribution directly
via adjusting MLC parameters. These optimization
models are all characterized by

* tens or hundreds of variables (leaf positions and their
coordinated movements, to describe MLC operations),

« alarge number of relatively simple constraints
(feasible leaf positions),

« a few significant complex “black box” constraints;
complex objective function (target dose, and limits on
unwanted dose in OAR and body tissue).
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Joint operation of leafs in MLC equipment
(simplified scheme)

B T

Leaf positions

R

—

Radiation intensity

A resulting radiation profile
(based on all leaf positions
that determine total exposure)

Superposition of overall irradiation effect,
as a function of leaf positions and radiation intensity
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A Numeric

lllustrative model (2D phantom) used in optimized radiation
dose distribution test calculations: overall irradiation area,
hypothetical target area, and an organ at risk are shown
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Bicture

Kl

Dose distribution found by local optimization of nominal solution
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Picture

"
Kl _| o
Globally optimized dose distribution
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Modeling and Optimization of Transducers

MathOptimizer User Guide, joint presentations with C.J. Purcell

« Traditional engineering design often based on
experimental studies: change key parameters and
then trace their effect (e.g. by physical experiments
and their graphical summaries) — as a rule, expensive
and time consuming...

 Parametric studies are ideal tasks for computers:
numerical models can (partially) replace experiments

 Parametric models can be directly optimized

* In our study, a combination of detailed system
modeling and optimization has been applied; this has
resulted in improved (in some cases “surprising” and
entirely new) designs

J.D. Pintér, Global Optimization 166
eVITA Winter School 2009, Norway



Engineering Design Optimization by Trial and Error

ﬂ’iﬁfs gasas/ A=
Expensive and tlme-consumlng
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ModelMaker

Mathematica package for developing
advanced finite element models (FEM)

Numeric and symbolic parameterized
models can be developed

Models and results presented in
interactive Mathematica document
(notebook) format

Built-in, extensible documentation

Supports other FEM packages (such as
Mavart, Mavart3D, MavartMag, Atila,...)

Developed since 1994 by C. Purcell, DRDC
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Example: Folded Shell Projector

FSP is a sonar projector (or in-air loudspeaker) with
overall cylinder shape with corrugations on the sides
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Experimental Design

Three FSPs with varying transformer ratio
(a key design parameter): optimization needed...
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Sonar Transducer Design: Numerical Model

b lc R4 G Ls Rs
o Q)—_ o M o °
Ot gk = o3 3 k"
e RD o . 5 0 , 0
Ro

This electric circuit simulates a piezoelectric sonar projector

The optimization problem consists of finding circuit design
parameters such that the sonar projector gives a broad

efficiency vs. frequency. This model has been solved using
MathOptimizer. The results have been applied to the actual

design of sonar equipment, leading to improved designs.
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goal[x ]:=N[1-Cos[Pi x]"2];

objective[d] ,Cs ,Ls ,L1 ,Cl ,Cd ,Id4d ]:=

— Sum[goal[f] * Module

[{Y,w=N[2 Pi f],Z2r,Z1,22,Z3,V1,V2,Vv3,10,1I1,V0=1,

powerout ,powerin}, ( (* Begin Module calculations *)
Zzr=1/(1/Rr+1/(w I Lr)) ; (* impedance to gnd at Rr *)
Zl1=1/(w I Cs) + w I Ls + Rs+ Zr/C"2; (* impedance to gnd at input to Cs *)
(* 1mpedance to gnd at input to beta transformer *)
z2=1/((1/ Rl+w I T1+1/(w I Cl)) + *2/Z1);

Z3=1/(w I Cg)+ 1/ (W I Cb+ 1/(RA+1l/ (W I CA)+ w I Id + Z2));
(* 1mpedance at input to Cg *)

Y=(1/RO + w I CO +172/Z3); (* input admittance *)

I0= Y * VO, (* the input current ¥*)

Vli= 0 VO(1-1/(I w Cg Z3)) ;
V2= V1 * Z2/(Z24+RA+1/(w I CA)+w I Id4d) ;
V3= O V2 *(Zr/*2)/(Zr/*2+Rs+w I Ls+1l/(w I Cs)) ;

powerout=Re [V3 Conjugate[V3/Rr]]; (* acoustic power Watts *)
powerin=Re[VO0 Conjugate[IO0]]; (* input electrical power Watts ¥*)
powerout/powerin ) (* return value: relative efficiency *)

1,{€£, 0.1, 1., 0.01}]; (* End of Module calculations *)

(* Constants ¥*)

(CO,RO}={.5, 105} ; Mathematica code of a numerical
{Rs,R1,Rd}={.01, .01, .01}; model (only a portion is shown here),
{Rr,Lr}={.01, .2}; subsequently solved by MathOptimizer

{Cb,Cg}={20., 20.};
{7 .71y=§ _01. .06 -



Example: Optimized FFR Transducer Design

 FFR is a free flooding ring projector and refers to a
high power, unlimited depth sonar projector, in the
shape of a ring

 Used by Canada and the UK in sonar research over
the last 1t years

« TVR is the transmitting voltage response of a sonar
projector and gives the response of the device in
units of microPascals/Volt (mP/V) measured at 1 meter
from the device center, and converted into decibels
(by taking 20*/og,, of the resulting mP/V value)

* A higher TVR means more output sound per unit of
input voltage, and thus it is a key design objective to
provide a uniformly high TVR
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Example: Multi-Mode Pipe Projector (MMPP)

 Low frequency, depth insensitive sonar projector

 Prototype MMPP demonstrated reasonable
bandwidth from 2.5 to 6 kHz, but TVR (sonar
response) was too low
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MMPP Modeling

MR 1 s sur crmees

Mk 1 MAVART model

TVR(dBre luPa/V @ | m)

WA &

Frequency (Hz)

 Goal of optimization is to improve TVR and to increase
bandwidth (3 to 9 kHz)

* First optimization done using NMinimize (a Mathematica fct)
« Second optimization done using MathOptimizer

« Optimization was run on wave-guide wall thickness, end-cap

thickness and wave-guide wall height
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MMPP Optimization Results

140 S
€
— 130
®
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E  1004f/
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— Original MMPP
904/ —— NMinimize Optimized MMPP

MathOptimizer Optimized MMPP
As Built Optimized MMPP
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Frequency (Hz)
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MMPP Optimization: Summary

« Optimization provided solutions enhancing the
MMPP design in a very short time period

« Optimized MMPP is a broadband, lightweight,
depth-insensitive design which can be employed
for numerous applications such as

— communications
— active sonar
— oil well borehole shaker
as well as some others
— patents submitted / used for actual designs
Details for a special case described in MathOptimizer User Guide,

and in Wolfram Research Developer Conference Proceedings

Co-author: C.J. Purcell
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Oil Field Production Analysis and Optimization

2 Description of the Optimization Problem

Our test model considers the blending of gas produced from five fields ( F}, ..., F5)
to supply different quality gas at six processing plants ( Py, ..., Ps) through a converging-
diverging gas gathering/distribution network, as shown in Figure 1 below:

Figure 1: Schematic of the Gas Blending Network

Credits: T. Mason, P. Zwietering, C. Emelle, et al. Shell R&D, Rijswijk, NL
EURO 2006 talk, JIMO 2007 paper by Mason, Emelle, Van Berkel, Bagirov, Kampas, and Pintér
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Oil Field Production Analysis and Optimization:
The Global Optimization Advantage

Gas Lifs Bate (MYD)

d  YEAR

Improved gas lift (production) found by using HFTP/LGO at Shell IEP
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Fintér Cansulting Services, Halifax, N5, Canada, 2006

Summary

model response that matches the actual (measured) response as clo

runitmize the error fonction.

Toolbox 1z needed to dertve the best possible fit to the given actual

» Global Optimization Basics

» The Global Optimization Toolbox

» Deriving the Actual Response

» Minimizing the Error with the Global Optimization Toolbox

» Verification of the Result

» lllustrative References J.D. Pinter, Global Op

® Ready

se as possible.

data set.

»An Example: Suspension System Model Selection and Target Response

» Measuring the Error Between the Target and Actual Responses

timization
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In thiz example application, we consider the problem of designing a suspension system that extubits a specified behavior in
response to a bump m the road. The problem wariables are the spring constant & and the damper constant & Given the mass of
the car on each wheel, #2, and the expected amplitude of a typical bump, we have to find values for & and » to generate a system

The above problem-type can be cast in an optimization model frameworls the model objective function 15 the squared error
between the desired and actual response as a function of & and & measured over a discrete set of time moments. After dertving the
actual response by solving the system's differential equation, we use numernical ophimization to find the values of & and & that

Duie to the typical multi-modal structure of the associated (nonlinear model calibration) error function, the Global Optitnization

Case study
development
using Maple

Memoary: 0.37M Time: -

e

Tewxt Mode



Suspension System Tuning

Model calibration problem
solved by using the
Global Optimization
Toolbox for Maple

Parameter Optimization: Tuned Parameters

¥ Tuned Parameters

To denve the actual response of the system to a bump, solve the differential equation of the
system's behaviour with the tutial condition w0 =0.1.
The differential equation of anunforced mass-spring-damper systenc

Spstern Equation =m [i x[r}] + b [% r{t]]

df?
How solve the system and define the response as afunction of k b o
1 oms
-—— b
1 (2 -1800k +» B2 - 1300k ) e[ 00
sol =x(t)=—=— 5
20 ¥ - 1800 &
[_1_5_1_,
L (32-5 /271800 % - 1300 %) ¢ 900 500
20 B2-1800 &

The following products provide all the computational power and development tools you need to find the
“best” parameter values, given your design constraints, or for rapid modeling parameter matching (or
System ldentification) from experimental data.

Maple 10 - The most powerful and intuitive tool for solving complex mathematical problems and creating
rich, executable technical documents.

Global Optimization Toolbox - Farmulate your optimization model easily inside the powerful Maple
numeric and symbolic system, and then use world-class Maple numeric solvers to return the best answer,
fast!

Database Integration Toolbox - Quickly develop and deploy powerful applications that combine large
enterprise datasets with the state-ofthe-art analysis and visualization of Maple.

ICP: Intelligent Control Parameterization - A suite of Rapid Control Development tools that enables
quick and easy system identification of engineering systems.

Professional Math Toolbox for LabVIEW - Augments LabVIEW with easy access to the sophisticated
symbolic and numeric math functionality of Maple.

Global Optimization with Maple (eBook) - Presents Maple as an advanced model development and
optimization environment. Special emphasis is placed on solving multiextrermal models.
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Double Wishbone Suspension and Steering System
Design by Global Optimization

—

Objective

Given a desired (target) behaviour of a double wishbone
suspension system, in terms of the displacement curves for
bumps on the road, determine its so-called hard point settings

DynaFlex Pro by MotionPro, Inc. is used to model the system
The resulting inverse problem is then solved by the GOT
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Designation of the Hard Points

milliseconds = (.

The designer can specify or optimize the Cartesian coordinates of the hard points that
define the double wishbone suspension: the label associated with each hard point is
indicated in the lhs figure, see Ato M

The Cartesian coordinates relative to the chassis-fixed XYZ frame are shown in the
rhs figure: the hard point coordinates are expressed in millimeters

Using global optimization, superior new designs have been found; the GOT is now
used also be several leading automotive companies as an R&D tool

183
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Global Optimization Software Users:
Summary

 Universities

Research organizations

Advanced industries, R&D departments

Consulting organizations

Scientists, engineers, econometrists and financial
modelers

GO software is used worldwide (software by PCS and
partners is used at several hundred organizations)
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Global Optimization Applications and
Perspectives: lllustrative References

Authors/Editors

Grossmann, 1996

Pardalos, Shalloway & Xue, 1996
Pintér, 1996

Corliss and Kearfott, 1999
Floudas et al., 1999

Papalambros and Wilde (2000)
Edgar, Himmelblau & Lasdon, 2001
Gao, Ogden & Stavroulakis, 2001
Pardalos and Resende, 2002
Schittkowski, 2002

Tawarmalani and Sahinidis (2002)
Diwekar (2003)

Application Areas, with Information on
Software (in works denoted by +S)

Chemical Engineering Design + S
Computational Chemistry and Biology
Environmental Modeling/Mgmt, and others + S
Rigorous Optimization in Industry + S
Handbook of Test Problems

Engineering Design

Chemical Engineering Design/Operations+ S
Physics (Mechanics)

Topical chapter by Floudas (Chem. Engrg)
Model Fitting (Calibration) + S

Chemical Engineering Design/Operations+ S
Environmental Modeling/Mgmt + S
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Global Optimization Applications and
Perspectives: lllustrative References

Authors/Editors

Locatelli, Schoen et al. 2000+
Stojanovic, 2003
Zabinsky, 2003

Neumaier, 2004
Bartholomew-Biggs, 2005
Liberti & Maculan, 2005
Nowak, 2005

Pintér, 2006

Pintér, 2006

Pintér, 200...

Kampas & Pintér, 200...

Further information is welcome

Application Areas, with Details on
Software (in works denoted by +S)

Computational Chemistry and Biology + S
Financial Modeling + S

Engineering Design + S

See topical review sections + S

Financial Modeling and Optimization
Chapters on Software Implementations + S
MINLP Software Devpt & Tests + S

Global Optimization with Maple + S

GO: Sci & Engrg Case Studies + S

Applied NLO in Modeling Environments + S
Modeling & Opt. Using Mathematica + S

Note: Keep an eye also on other literature not written by GO researchers —
numerous examples discussed by professionals who need GO...
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Introduction
The Glohal Optimization odel

The objective of global optirnization (GO 15 to find the globally best solution of nonlinear models, i the possible or known presence of multiple local optima.
Formally, (30O seeks the global solution set of a constrained optimization model of the form:

tran {20 glz) <=0, 2l === <=,

where =, =, zu are fimte real n-vectors; £'15 a real-valued (scalar) function; and, g 15 a real-valued m-vector function. All mequalities are mterpreted
cotnponent-wise. Additonal structural assumnptions typically nclude at least the continity of the model fanctions i the n-mterval [32:0]. Denote the feastble set
by

= {:X: ¥ <= <=, g(‘x} o= [:I:},

which we assume 13 nonempty. Then, the above-stated, rather mmimal assumptions guarantee that the global optimization model 12 well-posed since it follows
(b the Bolzano-Weierstrass theorem) that the solution set of the global optitmization model 18 nonempty.
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Optimization with Mathematica

Scientific, Engineering, and Economic Applications

Frank J. Kampas and Janos D. Pinteér
ELSEVIER SCIENCE (forthcoming)
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Conclusions

« Global optimization is a subject of growing importance:
it is relevant in many areas in the sciences, engineering,
and economics

 Development and application of sophisticated, complex
numerical models frequently requires the use of global
scope optimization methodology

* Professionally developed and supported GO solver
options are available for a range of platforms; further
development in progress

J.D. Pintér, Global Optimization 194
eVITA Winter School 2009, Norway



Conclusions -

Several Key Application Areas
 Advanced engineering

Chemical and process industries
Defense, security

Econometrics and finance
Math/physics/chemistry/biology
Medical and pharmaceutical R&D

J.D. Pintér, Global Optimization
eVITA Winter School 2009, Norway
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Conclusions s
Some Key Challenges and Future Work

* Integrate exact and heuristic methods

 Handle problems with (very) costly functions
 Handle problems w/o any exploitable structure

« Stochastic optimization: simulation and optimization
 Dynamic models: ODE/PDE solvers and optimization
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Conclusions 4

Interest in R&D and Business Cooperation

 Customized model, algorithm, software, DSS
development and related consulting services

« Workshops and tutorials

 Demonstration software, reports, and articles
available

 New test examples and practical challenges are
welcome
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Thanks for your attention!

PINTER
CONSULTING
SERVICES INC

Further information:
www.pinterconsulting.com

Comments and questions:
janos.d.pinter@gmail.com
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