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1. Introduction

m what is convexity
m where does it arise

®E main concepts and results

Literature:

Rockafellar: Convex analysis, 1970.
m Webster: Convexity, 1994.

m Griinbaum: Convex polytopes, 1967.
m Ziegler: Lectures on polytopes, 1994.
n

Hiriart-Urruty and Lemaréchal: Convex analysis and
minimization algorithms, 1993.

Boyd and Vandenberghe: Convex optimization, 2004.
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m roughly: a convex set in IR? (or IR") is a set “with no holes" .

m more accurately, a convex set C has the following property:
whenever we choose two points in the set, say x,y € C, then
all points in the line segment between x and y also lie in C.

m a sphere (ball), an ellipsoid, a point, a line, a line segment, a
rectangle, a triangle, halfplane, the plane itself

m the union of two disjoint (closed) triangles is nonconvex.
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Why are convex sets important?

Optimization:
m mathematical foundation for optimization
m feasible set, optimal set, ....
m objective function, constraints, value function
m closely related to the numerical solvability of an optimization
problem
Statistics:
m statistics: both in theory and applications
m estimation: “estimate” the value of one or more unknown
parameters in a stochastic model. To measure quality of a
solution one uses a “loss function” and, quite often, this loss
function is convex.
m statistical decision theory: the concept of risk sets is central;
they are convex sets, so-called polytopes.
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m The expectation operator: Assume that X is a discrete
variable taking values in some finite set of real numbers, say
{x1,...,x} with probabilities p; of the event X = x;.
Probabilities are all nonnegative and sum to one, so p; > 0
and 37, pj = L.The expectation (or mean) of X is the
number

EX = Z pjX;.
j=1

This as a weighted average of the possible values that X can
attain, and the weights are the probabilities. We say that EX
is a convex combination of the numbers xq, ..., x,.

m An extension is when the discrete random variable is a vector,
so it attains values in a finite set S = {x1,...,x,} of points in
IR". The expectation is defined by EX = 37_; p;x; which,
again, is a convex combination of the points in S.
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L 1. Introduction

Approximation

m approximation: given some set S C IR" and a vector z & S,
find a vector x € S which is as close to z as possible among
all vectors in S.

= distance: Euclidean norm (given by (||x|| = (327, x?)'/?) or
some other norm.

m convexity?
m norm functions, i.e., functions x — ||x||, are convex functions.

m a basic question is if a nearest point (to z in S) exists: yes,
provided that S is a closed set.

m and: if S is a convex set (and the norm is the Euclidean
norm), then the nearest point is unique.

m this may not be so for nonconvex sets.
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Nonnegative vectors

convexity deals with inequalities
x € IR" is nonnegative if each component x; is nonnegative.

we let IR denote the set of all nonnegative vectors. The zero
vector is written O.

inequalities for vectors, so if x,y € IR" we write
x<y (ory=x)

and this means that x; < y; fori =1,...,n.
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2. Convex sets

m definition of convex set
m polyhedron

m connection to LP
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Convex sets and polyhedra

definition: A set C C IR" is called convex if
(1 = A)x1 + Axx € C whenever x;,xp € Cand 0 < A < 1.

geometrically, this means that C contains the line segment
between each pair of points in C.

examples: circle, ellipse, rectangle, certain polygons, pyramids
how can we prove that a set is convex?
later we learn some other useful techniques.

how can we verify that a set S is not convex? Well, it suffices
to find two points x; and x and 0 < A < 1 with the property
that (1 — A\)x1 + Ax2 € S (you have then found a kind of
“hole” in S).



L2, Convex sets
m the unit ball:
B={xeR":|x| <1}
m to prove it is convex: let x,y € B and A € [0,1]. Then
11 =x+ Ayl <11 =)+ Ay
= (1= )X+ Allyl
<(T-N+xr=1
Therefore B is convex. U
m we here used the triangle inequality which is a convexity

property (we return to this): recall that the triangle ineq. may
be shown from the Cauchy-Schwarz inequality:

eyl < iyl for x, y € R™.

m More generally: B(a,r) .= {x € R" : [[x — a|| < r} is convex
(where a € IR" and r > 0).

10/74
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Linear systems and polyhedra

m By a linear system we mean a finite set of linear equations
and/or linear inequalities involving variables xi, ..., x,.

m Example: the linear system x; + x> = 3, x3 > 0, x > 0 in the
variables xi, x.

m equivalent form is x3 +x < 3, —x1 —xp < =3, —x3 <0,
—x» < 0. Here we only have <-inequalities

m definition: we define a polyhedron in IR" as a set of the form
{x € R": Ax < b} where Ac R™" and b € R™. Here m is
arbitrary, but finite. So: the solution set of a linear system.

Every polyhedron is a convex set.

11 /74
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L2, Convex sets

Proposition

The intersection of convex sets is a convex set. The sum of convex
sets if also convex.

Note:
B {x € IR": Ax = b}: affine set; if b= O: linear subspace

m the dimension of an affine set z + L is defined as the
dimension of the (uniquely) associated subspace L

m each affine set is a polyhedron

m of special interest: affine set of dimension n—1, i.e.
H={xecR":a'x=a}

where a € R", a # O and a € R, i.e., solution set of one
linear equation. Called a hyperplane.

12 /74
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LP and convexity

Consider a linear programming (LP) problem

max{ch cAx < b, x > O}

m Then the feasible set {x e R": Ax < b, x > O} is a
polyhedron, and therefore convex.

m Assume that there is a finite optimal value v*. Then the set
of optimal solutions {x € R": Ax < b, x > O, c"x = v*}
is a polyhedron.

m This is (part of) the convexity in LP.

13 /74
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Convex hulls

m convex hull

m Carathéodory's theorem
m polytopes
[

linear optimization over polytopes

14 /74
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Convex hulls

Goal:

m convex combinations are natural linear combinations to work
with in convexity: represent "mixtures”.

m convex hull gives a smallest convex set containing a given set
S. Makes it possible to approximate S by a nice set.

m consider vectors xi,...,x: € IR" and nonnegative numbers
(coefficients) Aj > 0 for j = 1,...,t such that }3;_; Aj = 1.
Then the vector x = Zle Ajx;j is called a convex
combination of x,...,x;. Thus, a convex combination is a
special linear combination.

m convex comb. of two points (vectors), three,

15 /74
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Proposition

A set C C 1R" is convex if and only if it contains all convex
combinations of its points.

Proof: Induction on number of points. U

Definition. Let S C IR" be any set. Define the convex hull of S,
denoted by conv (S) as the set of all convex combinations of
points in S.

m the convex hull of two points x; and x; is the line segment
between the two points, [x1, x2].

m an important fact is that conv (S) is a convex set, whatever
the set S might be.

16 /74
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Proposition

Let S CIR". Then conv (S) is equal to the intersection of all
convex sets containing S. Thus, conv (S) is is the smallest
convex set containing S.

17 /74
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3. Convex hulls

A "special kind" of convex hull

m what happens if we take the convex hull of a finite set of
points?

Definition. A set P C IR" is called a polytope if it is the convex
hull of a finite set of points in IR".

m polytopes have been studied a lot during the history of
mathematics

m Platonian solids
m important in many branches of mathematics, pure and applied.

m in optimization: highly relevant in, especially, linear
programming and discrete optimization.

18 /74
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3. Convex hulls

Linear optimization over polytopes

Consider
max{c”x : x € conv ({x1,...,xc}}
where ¢ € IR".
Each x € P may be written as x = Zle Ajx; for some \; > 0,
j=1,...,t where Zj Aj = 1. Define v* = max; c”x;. Then
t t t
c'x= CTZ)\J'XJ' = Z)\J-CTXJ- < Z)\jv* = V*Z)\j =v".
j Jj=1 J=1 J=1
m The set of optimal solutions is
conv ({xj :j € J})
where J is the set of indices j satisfying chJ- = v*.
m This is a subpolytope of the given polytope (actually a
so-called face). Computationally OK if "few" points. o)
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3. Convex hulls

Carathéodory’s theorem

The following result says that a convex combination of “many”
points may be reduced by using “fewer” points.

Theorem

Let S CIR". Then each x € conv (S) may be written as a convex
combination of (say) m affinely independent points in S. In
particular, m < n+ 1.

Try to construct a proof!

20/74
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3. Convex hulls

Two consequences

m k + 1 vectors xp, x1,...,xx € IR" are called affinely
independent if the k vectors x; — xg, ..., Xk — xp are linearly
independent.

m A simplex is the convex hull of a affinely independent points.

Every polytope in IR" can be written as the union of a finite
number of simplices.

Every polytope in IR" is compact, i.e., closed and bounded.

21/74
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4. Projection and separation

® nearest points
m separating and supporting hyperplanes

m Farkas' lemma

22/74
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Projection

Approximation problem: Given a set S and a point x outside that
set, find a nearest point to x in S !

Question 1: does a nearest point exist?
Question 2: if it does, is it unique?

[
[
m Question 3: how can we compute a nearest point?
[

convexity is central here!

23 /74
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Let S be a closed subset of IR". Recall: S is closed if and only if
S contains the limit point of each convergent sequence of points in
S. Thus, if {x(K)}5° is a convergent sequence of points where
x(k) € S, then the limit point x = limy_ x(k) also lies in S.

For S CIR" and x € IR" we define the distance function
ds(x) =inf{|[x — 5| : s € S}

where || - || is the Euclidean norm.

24 /74
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L4. Projection and separation

Nearest point

Proposition

Let S C IR" be a nonempty closed set and let x € IR". Then there
is a nearest point s € S to x, i.e., |x — s|| = ds(x).

Proof. There is a sequence {s(X)}3°, of points in S such that
limi_oo ||x — s(K)|| = ds(x). This sequence is bounded and has a
convergent subsequence, and the limit point must lie in S. Then,
by continuity, ds(x) = lim;_o [|x — s =[x — s|. U

Thus, closedness of S assures that a nearest point exists. But such
a point may not be unique.

25 /74
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L4. Projection and separation

Good news for convex sets

Theorem

Let C C IR"be a nonempty closed convex set. Then, for every
x € IR", the nearest point xy to x in C is unique. Moreover, xg is
the unique solution of the inequalities

(x —x0)T(y —x) <0 forally € C. (1)

26 /74
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Proof: Let xp be a nearest point to x in C. Let y € C and let

0 < A< 1. Since Cis convex, (1 —N)xo + Ay € C and since xg is
a nearest point we have that [|(1 — \)xo + Ay — x|| > ||x0 — x|,
i.e., ||(xo — x)+ Ay — x0)|| = ||xo — x||. This implies

X0 — x[1> +2X(x0 = x) T (y = x0) + N?[ly — x| > [|x0 — x||*. We
now subtract ||xp — x||? on both sides, divide by A, let A — 0" and
finally multiply by —1. This proves that the inequality (1) holds for
every y € C. Let now x; be another nearest point to x in C; we
want to show that x; = xg. By letting y = xy in (1) we get

(*1) (x— Xo)T(Xl —xp) < 0.

27 /74
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Proof, cont.: By symmetry we also get that
(x2) (x — Xl)T(XO —x1) <0.

By adding the inequalities (*1) and (*2) we obtain
Ix1 — x0/|> = (x1 — x0) " (x1 — x0) < 0 which implies that x; = xp.
Thus, the nearest point is unique. U

The variational inequality (1) has a nice geometrical
interpretation: the angle between the vectors x — xg and y — xg
(both starting in the point xp) is obtuse, i.e., larger that 90°.

m pc(x) denotes the (unique) nearest point to x in C.

28 /74
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L4. Projection and separation

What's next?

We shall now discuss supporting hyperplanes and separation of
convex sets.

Why is this important?
m leads to another representation of closed convex sets

®m may be used to approximate convex functions by simpler
functions

m may be used to prove Farkas' lemma, and the linear
programming duality theorem

m used in statistics (e.g. decision theory), mathematical
finance, economics, game theory.

29 /74
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Hyperplanes: definitions

m Hyperplane: hasthe H = {x € IR":a"x = a} for some
nonzero vector a and a real number a.

m a is called the normal vector of the hyperplane.

m Every hyperplane is an affine set of dimension n — 1.

m Each hyperplane divides the space into two sets

Ht* ={xcR":a’x>a}and H- ={xcR":a"x < a}.

m These sets H and H~ are called halfspaces.

30/74
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Definition: Let S C IR" and let H be a hyperplane in IR".

m If S is contained in one of the halfspaces H™ or H= and HN'S
is nonempty, we say that H is a supporting hyperplane of S.

m We also say that H supports S at x, for each x € HN S.

31/74
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L4. Projection and separation

Supporting hyperplanes

Note:

m We now restrict the attention to closed convex sets.
m Recall that pc(x) is the (unique) nearest point to xin C.

m Then each point outside our set C gives rise to a supporting
hyperplane as the following lemma tells us.

Proposition

Let C CIR" be a nonempty closed convex set and let x € R" \ C.
Consider the hyperplane H containing pc(x) and having normal
vector a = x — pc(x). Then H supports C at pc(x) and C is
contained in the halfspace H= = {y : a’ y < a} where

a=a’ pc(x).

32/74
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L4. Projection and separation

The proof

Note that a is nonzero as x € C while pc(x) € C. Then H is the
hyperplane with normal vector a and given by

a’y = a = a’ pc(x). We shall show that C is contained in the
halfspace H™. So, let y € C. Then, by (1) we have

(x = pc(x))T(y = pc(x)) <0, ie, a’y < a’pc(x) = o as
desired. U

33/74
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Separation

Define:
Han :={x € R":a"x = a};

Hyo ={xeR": ax
Hi, ={xeR":a’x
We say that the hyperplane H,, separates two sets S and T if
S CH,,and T C H, or vice versa.
Note that both S and T may intersect the hyperplane H, , in this
definition.

We say that the hyperplane H,, strongly separates S and T if
there is an € > 0 such that S C H;,,_.and T C H . or vice
versa. This means that

alx<a—e forallxeS:;

a’x>a+e forallxe T.

34 /74
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L4. Projection and separation

Strong separation

Theorem

Let C CIR" be a nonempty closed convex set and assume that
x € R"\ C. Then C and x can be strongly separated.

Proof. Let H be the hyperplane containing pc(x) and having
normal vector x — pc(x). From the previous proposition we know
that H supports C at pc(x). Moreover x # pc(x) (as x & C).
Consider the hyperplane H* which is parallel to H (i.e., having the
same normal vector) and contains the point (1/2)(x + pc(x)).
Then H* strongly separates x and C.

35/74
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L4. Projection and separation

An important consequence

Exterior description of closed convex sets:

Corollary

Let C CIR" be a nonempty closed convex set. Then C is the
intersection of all its supporting halfspaces.

36 /74
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L4. Projection and separation

Another application: Farkas' lemma

Theorem

Let Ac R™" and b € R™. Then there exists an x > O
satisfying Ax = b if and only if for each y € R™ with yTA> O it
also holds that y b > 0.

Proof: Consider the closed convex cone (define!!)

C = cone ({a',...,a"}) CIR™. Observe: Ax = b has a
nonnegative solution simply means simply (geometrically) that
beC.

Assume now that Ax = b and x > O. IfyTa > O, then
yTb=yT(ax) = (y"a)x > 0.

37/74
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Proof, cont.: Conversely, if Ax = b has no nonnegative solution,
then b ¢ C. But then, by Strong Separation Theorem, C and b
can be strongly separated, so there is a nonzero vector y € IR" and
a € Rwith yTx > o foreach x € Cand y'b<a. As O € C, we
have av < 0. Moreover y"a > 0so y"a> O. Since y"b < 0 we
have proved the other direction of Farkas' lemma.

38/74
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5. Representation of convex sets

m study (very briefly) the structure of convex sets

m involves the notions: faces, extreme points and extreme
halflines

® an important subfield: the theory (and application) of
polyhedra and polytopes

39/74
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Faces

Definition. Let C be a convex set in IR". A convex subset F of C
is a face of C whenever the following condition holds:

m if x1,x2 € C is such that (1 — A\)x; + Ax2 € F for some
0< A<, then x1,x € F.

So: if a relative interior point of the line segment between two
points of C lies in F, then the whole line segment between these
two points lies in F.

Note: the empty set and C itself are (trivial) faces of C.

Example:

m faces of the unit square and unit circle

40 /74
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L5. Representation of convex sets

Exposed faces

Definition. Let C C IR" be a convex set and H a supporting
hyperplane of C. Then the intersection C N H is called an exposed
face of C.

Relation between faces and exposed faces:

m Let C be a nonempty convex set in IR". Then each exposed
face of C is also a face of C.

m For polyhedra: exposed faces and faces are the same!

41 /74
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Extreme points and extreme halflines

Definition. If {x} is a face of a convex set C, then x is called an
extreme point of C. (So: face of dimension 0)

m Equivalently: x € C is an extreme point of C if and only if
whenever xi, xo € C satisfies x = (1/2)x; + (1/2)x2, then
X1 = Xo = X.

m Example: what are the extreme points if a polytope
P = conv ({x1,x2,...,xt})?

Definition. Consider an unbounded face F of C that has
dimension 1. Since F is convex, F must be either a line segment, a
line or a halfline (i.e., a set {xg + Az : A > 0}). If F is a halfline,
we call F an extreme halfline of C.

42 /74
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L5. Representation of convex sets

Inner description of closed convex sets

Theorem

Let C CIR" be a nonempty and line-free closed convex set. Then
C is the convex hull of its extreme points and extreme halflines.

The bounded case is called Minkowski's theorem.

Corollary

If C CIR" is a compact convex set, then C is the convex hull of
its extreme points.

43 /74
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Representation of polyhedra

Consider a polyhedron
P={xeR": Ax < b}

A point xp € P is called a vertex of P if xg is the (unique) solution
of n linearly independent equations from the system Ax = b.

The following says: Extreme point = vertex

Proposition

Let xg € P. Then xp is a vertex of P if and only if xp is an
extreme point of P.

44 /74
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Ls. Representation of convex sets

Main theorem for polyhedra

Theorem

Each polyhedron P C IR" may be written as
P = conv (V) + cone (Z)

for finite sets V., Z C IR". In particular, if P is pointed, we may
here let V' be the set of vertices and let Z consist of a direction
vector of each extreme halfline of P.

Conversely, if V and Z are finite sets in IR", then the set

P = conv (V) + cone (Z) is a polyhedron. i.e., there is a matrix
A € IR™" and a vector b € R for some m such that

conv (V) + cone (Z) = {x € R": Ax < b}.

45 /74
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6. Convex functions

m convex functions of a single variable
m ... of several variables

m characterizations
[

properties, and optimization

46 /74
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6. Convex functions

Convex function - one variable

Definition. Let f : IR — IR. We say that f is convex if
fFI(T—=X)x+Ay) < (1—=XN)f(x)+ Af(y)

holds for every x,y € IR and every 0 < \ < 1. Extension:
f:la,b] = R

Geometric interpretation: “graph below secant”.

Examples:
f(x) = x? (or f(x) = (x — a)?)

mf(x)=x"forx>0
m f(x) = Ix|

m f(x)=¢€"

m f(x) = —logx

m f(x) = —xlogx

47 /74
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6. Convex functions

Increasing slopes

Here is a characterization of convex functions. And it also works
even when f is not differentiable!

Proposition

A function f : IR — IR is convex if and only if for each xp € IR the

slope function
)~ f(x0)
X — X0

is increasing on R\ {xo}.

48 /74
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6. Convex functions

Differentiability

The left-sided derivative of f at xp is defined by

oy 00— ()
fi(XO) o XI—>X0_ X — Xo .

provided this limit exists. Similar: right-sided derivative f(xp).

Theorem

Let f : | — IR be a convex function defined on an interval I. Then
f has both left-and right-sided derivatives at every interior point
of I. Moreover, if x,y € land x < y, then

fy) - F(x)

() < () < 20—

<f'(y) < fl(y).

In particular, both f’ and f{ are increasing functions.

49 /74
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6. Convex functions

Criterion: derivatives

Theorem
Let f : | — IR be a continuous function defined on an open
interval I.

(i) If f has an increasing left-derivative (or an increasing
right-derivative) on, then f is convex.

(ii) If f is differentiable, then f is convex if and only if f’ is
increasing. If f is two times differentiable, then f is convex if and
only if >0 in|I.

50 /74
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6. Convex functions

Convex functions are "essentially continuous”!

Let f : [a, b] — IR be convex and define M = max{—f{ (a), f’(b)}.
Then

1f(y) — f(x)] < M|y — x| for all x,y € [a, b].

In particular, f is continuous at every interior point of I.

51/74
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6. Convex functions

Generalized derivative: the subdifferential

m Differentiability: one can show that each convex function is
differentiable almost everywhere; the exceptional set is
countable.

m We now look further at derivatives of convex functions.

Let f : IR — IR be a convex function. For each x € IR we
associate the closed interval

Of (x) == [fL(x), FL(x)].
which is called the subdifferential of f at x. Each point s € 9f(x)
is called a subderivative of f at x.
m By a previous result: 0f(x) is a nonempty and finite (closed)
interval for each x € IR.

m Moreover, f is differentiable at x if and only if Of(x) contains

a single point, namely the derivative f'(x).
52 /74
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Corollary

Let f : IR — IR be a convex function and let xy € IR. Then, for
every s € Of (xp), the inequality

f(x) > f(x0) +s-(x—xo)
holds for every x € IR.

Proof: Let s € Of(xp). Due to Theorem 9 the following inequality
holds for every x < xp:

(f(x) — f(x0))/(x — x0) < fL(x0) < s.
Thus, f(x) — f(x0) > s+ (x — x0). Similarly, if x > xp then
s < fi(x0) < (f(x) = f(x0))/(x = x0)

so again f(x) — f(xo) > s - (x — xo) and we are done.
53 /74



Convexity: an introduction

6. Convex functions

Support

Consider again the inequality:
f(x) > f(xo) +5s-(x—xp) = L(x)

m L can be seen as a linear approximation to f at xp. We say
that L supports f at xp; this means that L(xp) = f(xp) and
L(x) < f(x) for every x.

m So L underestmates f everywhere!
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6. Convex functions

Global minimum

We call xg a global minimum if

f(x0) < f(x) for all x € R.

Weaker notion: local minimum: smallest function value in some
neighborhood of xg.

m In general it is hard to find a global minimum of a function.

m But when f is convex this is much easier!
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The following result may be derived from

f(x) = f(x0) +s- (x = x0) = ().

Corollary

Let f : R — IR be a convex function. Then the following three
statements are equivalent.
(i)  xo isa local minimum for f.

(ii) xo is a global minimum for f.
(iii) 0 € 0f(x).
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6. Convex functions

Jensen’s inequality

Let f : | — IR be a convex function defined on an interval |. If
Xty X € [ and Ay, ... A, > 0 satisfy 357y A; =1, then

FO - Aix) <D NF(x).
j=1 j=1

The arithmetic geometric mean inequality follows from this by
using f(x) = — log x:

r

(I < @yr ZXJ

Jj=1
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Convex functions of several variables

m many results from the univariate case extends to the general
case of n variables.

Let f : C — IR where C CIR" is a convex set. We say that f is
convex if

FI(L—=XN)x+Ay) < (1—=XNf(x)+ Af(y)

holds for every x,y € IR"and every 0 < A < 1.

m note: need C to be a convex set here
m every linear, or affine, function from IR” to IR is convex.

m Assume that f : IR” — IRis convex and h: IR™ — IR" is
affine. Then the composition f o h is convex (where

(f o h)(x) == f(h(x)))

58 /74



Convexity: an introduction

6. Convex functions

Jensen’s inequality, more generally

Theorem

Let f : C — IR be a convex function defined on a convex set
CCR". Ifxy,....,.x,€ Cand \y,..., A\, >0 satisfyzjf:l)\j =1,
then

FO - Aix) <D NF(x).
j=1 j=1

Note: in (discrete) probability this means

f(EX) < Ef(X)
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The epigraph

Let f: C — IR where C CIR" is a convex set. Define the
following set in IR"*! associated with f:

epi (f) = {(x,y) € R" 1 y > f(x)}.
It is called the epigraph of f.

The following result makes it possible to use results for convex sets
to obtain results for convex function (and vice versa). relation.

Theorem

Let f : C — IR where C CIR" is a convex set. Then f is a
convex function if and only if epi (f) is a convex set.
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Supremum of convex functions

Corollary

Let f; (i € 1) be a nonempty family of convex functions defined on
a convex set C C IR". Then the function fgiven by

f(x) =supfi(x) forxe C
icl

(the pointwise supremum) is convex.

Example:

m Pointwise supremum of affine functions, e.g. (finite case)

f(x) = max (a] x + b)

m Note: such a function if not differentiable in certain points!

61 /74



Convexity: an introduction

6. Convex functions

The support function

Let P be a polytope in IR", say P = conv ({vi,...,v:+}). Define
Yp(c) :==max{c’x: x € P}.

which is the optimal value of this LP problem. This function ¥p is
called the support function of P.

m p is a convex function! Because it is the pointwise
supremum of the linear functions ¢ — ¢"v; (j < t). This
maximum is attained in a vertex (since the objective function
is linear).

m More generally: the support function ¢ of a compact
convex set C is convex. Similar proof, but we take the
supremum of an infinite family of linear functions; one for
each extreme point of C.

m Here we used Minkowski's theorem saying that a compact

convex set is the convex hull of its extreme points.
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Directional derivative

Let f : IR"” — IR be a function and let x; € IR" and z € IR",
z # O. The directional derivative of f at xp is

f(xo + tz) — f(x0)

(xo:2) = li
borz) = fim =
. . . . . i / i o af(X)
provided the limit exists. Special case: f'(xo; ej) = 5
J

Let £ : IR" — IR be a convex function and consider a line
L={xo+ Az : X € IR} where xg is a point on the line and z is the
direction vector of L. Define the function g : IR — IR by

g(t) =f(xo+tz) forteR.

One can prove that g is a convex function (of a single variable).
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m Thus, the restriction g of a convex function f to any line is
another convex function.

m A consequence of this result is that a convex function
f : IR" — IR has one-sided directional derivatives:

g.(0) = lime_o+(g(t) — £(0))/¢
— limq o+ (F(x0 + t2) — F(x0))/t

= f{(x0: 2)
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Continuity

Let f : C — IR be a convex function defined on an open convex
set C CIR". Then f is continuous on C.
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Characterization of convexity

We now recall a concept from linear algebra: a symmetric matrix
A€ IR™"is positive semidefinite if
xTAx = Z ajxjxj > 0 for each x € IR".
i7j
A useful fact is that A is positive semidefinite if and only if all the
eigenvalues of A are (real and) nonnegative.

Theorem (Characterization via the Hessian)

Let f be a real-valued function defined on an open convex set
C C IR" and assume that f has continuous second-order partial
derivatives on C.

Then f is convex if and only if the Hessian matrix H¢(x) is
positive semidefinite for each x € C.
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EIES

m Let A€ IR™" be a symmetric matrix which is positive
semidefinite and consider the function f : R" — IR given by

f(x) =xTAx = Z ajjXiX;.
i
Then it is easy to check that H¢(x) = A for each x € IR".
Therefore, f is a convex function.
m A symmetric n X n matrix A is called diagonally dominant if

Jail > > lagl (i< n)
J#i
If all these inequalities are strict, A is strictly diagonally
dominant. These matrices arise in many applications, e.g.
splines and differential equations.
m It can be shown that every symmetric diagonally dominant
matrix with positive diagonal is positive semidefinite. 67/74
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Differentiability

A function f defined on an open set in IR" is said to be
differentiable at a point xg in its domain if there is a vector d such
that

—

Iimo(f(xo + h) — f(xo) —dTh)/||h| = 0.
Then d is unique; called the gradient of f at xp.

Assume that f is differentiable at xp and the gradient at xp is d.
Then, for each nonzero vector z,

f'(x0;z) =d"z.
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Partial derivatives, gradients

Theorem

Let f be a real-valued convex function defined on an open convex
set C CIR". Assume that all the partial derivatives exist at a
point x € C. Then f is differentiable at x.

Theorem

Let f : C — IR be a differentiable function defined on an open
convex set C C IR". Then the following conditions are equivalent:

(i) f is convex.
(i) f(x) > f(xo) + VF(x0) " (x — x0) for all x,xp € C.
(i)  (VF(x) = Vf(x0))T(x —x0) >0 for all x,xp € C.
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Consider a convex function f and an affine function h, both
defined on a convex set C C IR".

We say that h: IR" — IR supports f at xg if h(x) < f(x) for every
x and h(xg) = f(xo0)-

Theorem

Let f : C — IR be a convex function defined on a convex set

C CR". Then f has a supporting (affine) function at every point.
Moreover, f is the pointwise supremum of all its (affine)
supporting functions.
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Global minimum

Corollary

Let f : C — IR be a differentiable convex function defined on an
open convex set C C IR". Let x* € C. Then the following three
statements are equivalent.

(i) x*isa local minimum for f.

(i) x*isa global minimum for f.

(iii) Vf(x*)= O (i.e., all partial derivatives at x* are zero).
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Subgradients

Definition. Let f be a convex function and xg € IR". Then s € IR"
is called a subgradient of f at xg if

f(x) > f(x0) +s"(x —x) forall x € R"

m The set of all subgradients of f at xp is called the
subdifferential of f at xp, and it is denoted by Of(xp).

Here is the basic result on the subdifferential.

Theorem

Let f : IR" — IR be a convex function, and xo € IR". Then Of(xo)
is a nonempty, compact and convex set in IR".
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Global minimum, again

Moreover, we have the following theorem on minimum of convex
functions.

Corollary

Let f : C — IR be a convex function defined on an open convex
set C CIR". Let x* € C. Then the following three statements are
equivalent.

(i) x*isa local minimum for f.

(i) x* is a global minimum for f.

(iii) O € Of(x*) (O is a subgradient).
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Final comments ...

m This means that convex problems are attractive, and
sometimes other problems are reformulated/modfied into
convex problems

m Algorithms exist for minimizing convex functions, with or
wiothout constraints.

m So gradient-like methods for differentiable functions are
extended into subgradient methods for general convex
functions.

m More complicated, but efficient methods exist.
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